Package ‘demic’

January 22, 2024

Title Dynamic Estimator of Microbial Communities

Description Multi-sample algorithm based on contigs and coverage values, to infer the relative distances of contigs from the replication origin and to accurately compare bacterial growth rates between samples. Yuan Gao and Hongzhe Li (2018) <doi:10.1038/s41592-018-0182-0>.

Version 2.0.0

Encoding UTF-8

RoxygenNote 7.2.3

Imports lme4, Matrix (>= 1.6-2), reshape2

Suggests covr, lintr, testthat (>= 3.0.0)

Config/testthat/edition 3

Depends R (>= 2.10)

LazyData true

License GPL (>= 3)

URL https://github.com/Ulthran/DEMIC

BugReports https://github.com/Ulthran/DEMIC/issues

NeedsCompilation no

Author Yuan Gao [aut, cph], Charlie Bushman [cre]

Maintainer Charlie Bushman <ctbushman@gmail.com>

Repository CRAN

Date/Publication 2024-01-22 22:22:47 UTC

R topics documented:

compare_contig_subsets ... 2
compare_sample_subsets ... 3
consist_transfer .. 4
ContigCluster1 .. 5
compare_contig_subsets

Compares contig subset x against contig subset y

Description

Compares contig subset x against contig subset y

Usage

compare_contig_subsets(
 est_ptrs_x,
 est_ptrs_y,
 pipeline_x,
 pipeline_y,
 cor_cutoff,
 max_cor
)
compare_sample_subsets

Arguments

- `est_ptrs_x` : PTR estimates from contig subset x
- `est_ptrs_y` : PTR estimates from contig subset y
- `pipeline_x` : pipeline for contig subset x
- `pipeline_y` : pipeline for contig subset y
- `cor_cutoff` : the correlation cutoff
- `max_cor` : the max correlation

Value

a named list including the est_ptr dataframe and a max_cor value

- sample: sample
- est_ptr: PTR estimate
- coefficient: coefficient of linear regression
- pValue: p-value of linear regression
- cor: correlation coefficient
- correctY: corrected coverage

max_cor: the max correlation achieved

Description

Compares sample subset x against sample subset y

Usage

```r
compare_sample_subsets(
  est_ptrs_x, 
  est_ptrs_y, 
  pipeline_x, 
  pipeline_y, 
  cor_cutoff, 
  max_cor 
)
```
consist_transfer

Arguments

- `est_ptrs_x`: PTR estimates from sample subset x
- `est_ptrs_y`: PTR estimates from sample subset y
- `pipeline_x`: pipeline for sample subset x
- `pipeline_y`: pipeline for sample subset y
- `cor_cutoff`: the correlation cutoff
- `max_cor`: the max correlation

Value

A named list including the est_ptr dataframe and a max_cor value

- `sample`: sample
- `est_ptr`: PTR estimate
- `coefficient`: coefficient of linear regression
- `pValue`: p-value of linear regression
- `cor`: correlation coefficient
- `correctY`: corrected coverage

Description

A function for data frame integration

Usage

`consist_transfer(x, y, i)`

Arguments

- `x`: first data frame
- `y`: second data frame
- `i`: 'sample' column

Value

A data frame with the other column as mean or max of that in the original two
ContigCluster1

Description
Data associated with DEMIC paper (on SourceForge)

Usage
ContigCluster1

Format
ContigCluster1:
A data frame with 120,897 rows and 5 columns:
log_cov Log Coverage for Sliding Windows over Contigs
GC_content GC Content for Sliding Windows over Contigs
sample Sample Name
contig Contig Name
length Length of Contig

Source
https://sourceforge.net/projects/demic/files/

ContigCluster2

Description
Data associated with DEMIC paper (on SourceForge)

Usage
ContigCluster2

Format
ContigCluster2:
A data frame with 66,735 rows and 5 columns:
log_cov Log Coverage for Sliding Windows over Contigs
GC_content GC Content for Sliding Windows over Contigs
sample Sample Name
contig Contig Name
length Length of Contig
contig_pca

A function to return the first dimension of PCA on an input matrix

Description
A function to return the first dimension of PCA on an input matrix

Usage
contig_pca(X)

Arguments
X a matrix to undergo PCA

Value
first dimension of the PCA results

cor_diff

Determine the majority orientation of the input PTR estimates correlations

Description
Determine the majority orientation of the input PTR estimates correlations

Usage
cor_diff(Z)

Arguments
Z a vector of values

Value
a minor subset, where each value has the same orientation
df_transfer

A function for data frame transfer

Description
A function for data frame transfer

Usage
df_transfer(x, y)

Arguments
x first data frame with six columns
y second data frame with six columns

Value
a data frame with the same six columns but integrated info

est_ptr

Estimate PTRs using all input data as well as using subsets of contigs and samples

Description
Estimate PTRs using all input data as well as using subsets of contigs and samples

Usage
est_ptr(X)

Arguments
X dataframe with coverage matrix (column names: "log_cov", "GC_content", "sample", "contig", "length")

Value

named list with results from all three methods all_ptr dataframe with the estimated PTRs on success, null otherwise
- est_ptr: estimated PTR values
- coefficient: coefficient of linear regression
- pValue: p-value of linear regression
est_ptrs_subset

- cor: correlation coefficient
- correctY: corrected coverage

contigs_ptr dataframe with the estimated PTRs on success, null otherwise

- est_ptr: estimated PTR values
- coefficient: coefficient of linear regression
- pValue: p-value of linear regression
- cor: correlation coefficient
- correctY: corrected coverage

samples_ptr dataframe with the estimated PTRs on success, null otherwise

- est_ptr: estimated PTR values
- coefficient: coefficient of linear regression
- pValue: p-value of linear regression
- cor: correlation coefficient
- correctY: corrected coverage

Examples

```r
est_ptrs_001 <- est_ptr(max_bin_003)
est_ptrs_001
```

est_ptrs_subset
Get PTR estimates for output of the core pipeline on a subset of data

Description

Get PTR estimates for output of the core pipeline on a subset of data

Usage

```r
est_ptrs_subset(p)
```

Arguments

- `p` is the pipeline named list
est_ptr_on

Value

a dataframe

- sample: sample
- est_ptr: PTR estimate
- coefficient: coefficient of linear regression
- pValue: p-value of linear regression
- cor: correlation coefficient
- correctY: corrected coverage

Description

Tries up to max_attempts times to compare each permutation of removing random subsets of contigs/samples from X, and returns the PTR estimate if a valid one comes back from the comparisons

Usage

est_ptr_on(X, subset_on, max_attempts = 10, num_subsets = 3, cor_cutoff = 0.98)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>cov3 dataframe</td>
</tr>
<tr>
<td>subset_on</td>
<td>either "contig" or "sample"</td>
</tr>
<tr>
<td>max_attempts</td>
<td>max number of attempts to find a valid ptr estimate</td>
</tr>
<tr>
<td>num_subsets</td>
<td>number of subsets to split contigs/samples into</td>
</tr>
<tr>
<td>cor_cutoff</td>
<td>minimum correlation coefficient to accept PTR estimate</td>
</tr>
</tbody>
</table>

Value

est_ptrs dataframe on success, null otherwise

- est_ptr: estimated PTR values
- coefficient: coefficient of linear regression
- pValue: p-value of linear regression
- cor: correlation coefficient
- correctY: corrected coverage
est_ptr_on_all

Examples

```
est_ptrs_001_on_contigs <- est_ptr_on(max_bin_003, "contig", num_subsets = 5)
est_ptrs_001_on_contigs

est_ptrs_001_on_samples <- est_ptr_on(max_bin_003, "sample")
is.null(est_ptrs_001_on_samples)
```

est_ptr_on_all
Estimates PTRs based on the whole input dataset

Description

Estimates PTRs based on the whole input dataset

Usage

```
est_ptr_on_all(X)
```

Arguments

- **X** cov3 dataframe

Value

est_ptr dataframe on success, null otherwise

- est_ptr: estimated PTR values
- coefficient: coefficient of linear regression
- pValue: p-value of linear regression
- cor: correlation coefficient
- correctY: corrected coverage

Examples

```
est_ptrs_001 <- est_ptr_on_all(max_bin_003)
est_ptrs_001
```
filter_sample

A function for sample filtration
Input requirements:
1. have values in more than half of the contigs
2. average log2(cov) > 0 in all these contigs

Description
A function for sample filtration
Input requirements:
1. have values in more than half of the contigs
2. average log2(cov) > 0 in all these contigs

Usage
filter_sample(Z, avg_cutoff, cutoff_ratio)

Arguments
Z a matrix
avg_cutoff threshold of average
cutoff_ratio threshold of ratio

Value
the coefficient and p value of linear regression

get_eptr_stats
Generate a variety of stats on PTR estimates for a given dataset

Description
Generate a variety of stats on PTR estimates for a given dataset

Usage
get_eptr_stats(X, iterations = 30)

Arguments
X cov3 dataframe
iterations number of iterations to run
iterate_pipelines

Value
	named list of stats on PTR estimates

• all_sd: standard deviation of PTR estimates from all method
• all_mean: mean of PTR estimates from all method
• contigs_sd: standard deviation of PTR estimates from contigs method
• contigs_mean: mean of PTR estimates from contigs method
• samples_sd: standard deviation of PTR estimates from samples method
• samples_mean: mean of PTR estimates from samples method

Examples

stats <- get_eptr_stats(max_bin_001[max_bin_001$sample %in% c('Akk0_001', 'Akk1_001')], 2)
stats

iterate_pipelines

A function for iteration of pipeline until convergence

Description

A function for iteration of pipeline until convergence

Usage

iterate_pipelines(Z)

Arguments

Z

a matrix of coverages

Value

a named list

• samples: vector of final filtered samples
• correct_ys: matrix of sample, contig and corrected coverages
• pc1: matrix of contig and PC1 values
• pc1_range: vector of PC1 range
• samples_y: samples filtered for reliable coverage
ks

A convenient function for KS test of uniform distribution

Description

A convenient function for KS test of uniform distribution

Usage

```r
ks(x)
```

Arguments

- `x` a vector without NA

Value

the p value of KS test

lme4_model

Run mixed linear model with random effect using lme4

Description

Run mixed linear model with random effect using lme4

Usage

```r
lme4_model(X)
```

Arguments

- `X` input data frame

Value

a dataframe
lm_column

A convenient function for ordinary linear regression on two vectors

Usage

```
lm_column(x, y)
```

Arguments

- `x` first vector
- `y` second vector

Value

the coefficient and p value of linear regression

max_bin_001

MaxBin2 Cluster 001

Description

Generated by PyCov3 on simulated test data

Usage

```
max_bin_001
```

Format

```
max_bin_001:
A data frame with 79,740 rows and 5 columns:

log_cov  Log Coverage for Sliding Windows over Contigs
GC_content GC Content for Sliding Windows over Contigs
sample Sample Name
contig Contig Name
length Length of Contig
```

Source

https://sourceforge.net/projects/demic/files/
max_bin_002

MaxBin2 Cluster 002

Description
Generated by PyCov3 on simulated test data

Usage
max_bin_002

Format

max_bin_002:
A data frame with 148,638 rows and 5 columns:
- **log_cov** Log Coverage for Sliding Windows over Contigs
- **GC_content** GC Content for Sliding Windows over Contigs
- **sample** Sample Name
- **contig** Contig Name
- **length** Length of Contig

Source
https://sourceforge.net/projects/demic/files/

max_bin_003

MaxBin2 Cluster 003

Description
Generated by PyCov3 on simulated test data

Usage
max_bin_003

Format

max_bin_003:
A data frame with 124,578 rows and 5 columns:
- **log_cov** Log Coverage for Sliding Windows over Contigs
- **GC_content** GC Content for Sliding Windows over Contigs
- **sample** Sample Name
- **contig** Contig Name
- **length** Length of Contig
pipeline

A function representing the pipeline of four steps including GC bias correction, sample filtration, PCA and contig filtration

Description

A function representing the pipeline of four steps including GC bias correction, sample filtration, PCA and contig filtration

Usage

```r
pipeline(Y, i)
```

Arguments

- **Y**
 a matrix of coverages
- **i**
 cutoff of filtering samples changes according to parameter i; i=1, cutoffRatio is 0.5; i=2, cutoffRatio is 1 as contig is clean

Value

a named list

- samples: final list of filtered samples
- correct_ys: dataframe with correct Y values per contig/sample
- pc1: PC1 results of PCA per contig
- pc1_range: range of PC1
- samples_y: samples filtered for reliable coverage

reshape_filtered

A function for reshape to facilitate PCA, removing all contigs with missing values for designated samples

Description

A function for reshape to facilitate PCA, removing all contigs with missing values for designated samples

Usage

```r
reshape_filtered(samples_filtered, Z)
```
select_by_ks_test

Arguments
samples_filtered a vector of samples
Z a matrix of coverage

Value
a reshaped matrix of coverage

select_by_ks_test A function to remove outlier contigs using KS test

Description
A function to remove outlier contigs using KS test

Usage
select_by_ks_test(sort_values)

Arguments
sort_values a vector of sorted values

Value
a vector with all values following a uniform distribution

test_reasonable A function to test whether the result is reasonable

Description
A function to test whether the result is reasonable

Usage
test_reasonable(a, b)

Arguments
a first vector of values
b second vector of values

Value
the test result
verify_input Verify that the input dataframe/matrix is valid

Description
Verify that the input dataframe/matrix is valid

Usage
verify_input(X)

Arguments
X dataframe/matrix with cov3 information
Index

* datasets
 - ContigCluster1, 5
 - ContigCluster2, 5
 - max_bin_001, 14
 - max_bin_002, 15
 - max_bin_003, 15

 compare_contig_subsets, 2
 compare_sample_subsets, 3
 consist_transfer, 4
 contig_pca, 6
 ContigCluster1, 5
 ContigCluster2, 5
 cor_diff, 6

 df_transfer, 7
 est_ptr, 7
 est_ptr_on, 9
 est_ptr_on_all, 10
 est_ptrs_subset, 8

 filter_sample, 11
 get_eptr_stats, 11
 iterate_pipelines, 12

 ks, 13
 lm_column, 14
 lme4_model, 13

 max_bin_001, 14
 max_bin_002, 15
 max_bin_003, 15

 pipeline, 16
 reshape_filtered, 16
 select_by_ks_test, 17
 test_reasonable, 17
 verify_input, 18