Package ‘densratio’

October 13, 2022

Type Package
Version 0.2.1
Title Density Ratio Estimation
Description Density ratio estimation.
 The estimated density ratio function can be used in many applications such as
 anomaly detection, change-point detection, covariate shift adaptation.
 The implemented methods are uLSIF (Hido et al. (2011) <doi:10.1007/s10115-010-0283-2>),
 RuLSIF (Yamada et al. (2011) <doi:10.1162/NECO_a_00442>),
URL https://github.com/hoxo-m/densratio
BugReports https://github.com/hoxo-m/densratio/issues
License MIT + file LICENSE
Imports utils
Suggests graphics, knitr, mvtnorm, rmarkdown, stats, testthat
RoxygenNote 6.1.1
VignetteBuilder knitr
Encoding UTF-8
NeedsCompilation no
Author Koji Makiyama [aut, cre]
Maintainer Koji Makiyama <hoxo.smile@gmail.com>
Repository CRAN
Date/Publication 2019-06-30 17:20:03 UTC

R topics documented:

densratio .. 2
KLIEP .. 3
RuLSIF .. 3
squared_euclid_distance 4
uLSIF .. 5

Index 6
densratio estimate density ratio \(p(x)/q(x) \)

Description

Estimate Density Ratio \(p(x)/q(x) \)

Usage

densratio(x1, x2, method = c("uLSIF", "RuLSIF", "KLIEP"),
 sigma = "auto", lambda = "auto", alpha = 0.1, kernel_num = 100,
 fold = 5, verbose = TRUE)

Arguments

- **x1**: numeric vector or matrix. Data from a numerator distribution \(p(x) \).
- **x2**: numeric vector or matrix. Data from a denominator distribution \(q(x) \).
- **method**: "uLSIF" (default), "RuLSIF", or "KLIEP".
- **sigma**: positive numeric vector. Search range of Gaussian kernel bandwidth.
- **lambda**: positive numeric vector. Search range of regularization parameter for uLSIF and RuLSIF.
- **alpha**: numeric in \([0, 1]\). Relative parameter for RuLSIF. Default 0.1.
- **kernel_num**: positive integer. Number of kernels.
- **fold**: positive integer. Number of the folds of cross validation for KLIEP.
- **verbose**: logical (default TRUE).

Value

densratio object that contains a function to compute estimated density ratio.

Examples

```r
x1 <- rnorm(200, mean = 1, sd = 1/8)
x2 <- rnorm(200, mean = 1, sd = 1/2)
densratio_obj <- densratio(x1, x2)

new_x <- seq(0, 2, by = 0.05)
estimated_density_ratio <- densratio_obj$compute_density_ratio(new_x)
plot(new_x, estimated_density_ratio, pch=19)
```
KLIEP

Estimate Density Ratio \(p(x)/q(x) \) by KLIEP (Kullback-Leibler Importance Estimation Procedure)

Description

Estimate Density Ratio \(p(x)/q(x) \) by KLIEP (Kullback-Leibler Importance Estimation Procedure)

Usage

```r
KLIEP(x1, x2, sigma = "auto", kernel_num = 100, fold = 5,
       verbose = TRUE)
```

Arguments

- `x1`: numeric vector or matrix. Data from a numerator distribution \(p(x) \).
- `x2`: numeric vector or matrix. Data from a denominator distribution \(q(x) \).
- `sigma`: positive numeric vector. Search range of Gaussian kernel bandwidth.
- `kernel_num`: positive integer. Number of kernels.
- `fold`: positive integer. Number of the folds of cross validation.
- `verbose`: logical (default TRUE).

Value

KLIEP object that contains a function to compute estimated density ratio.

RuLSIF

Estimate alpha-Relative Density Ratio \(\frac{p(x)}{\alpha p(x) + (1-\alpha) q(x)} \) by RuLSIF (Relative unconstrained Least-Square Importance Fitting)

Description

Estimate alpha-Relative Density Ratio \(\frac{p(x)}{\alpha p(x) + (1-\alpha) q(x)} \) by RuLSIF (Relative unconstrained Least-Square Importance Fitting)

Usage

```r
RuLSIF(x1, x2, sigma = 10^seq(-3, 1, length.out = 9),
        lambda = 10^seq(-3, 1, length.out = 9), alpha = 0.1,
        kernel_num = 100, verbose = TRUE)
```
squared_euclid_distance

Arguments

 x1 numeric vector or matrix. Data from a numerator distribution p(x).
 x2 numeric vector or matrix. Data from a denominator distribution q(x).
 sigma positive numeric vector. Search range of Gaussian kernel bandwidth.
 lambda positive numeric vector. Search range of regularization parameter.
 alpha numeric value from 0.0 to 1.0. Relative parameter. Default 0.1.
 kernel_num positive integer. Number of kernels.
 verbose logical. Default TRUE.

Value

 RuLSIF object which has ‘compute_density_ratio()’.

squared_euclid_distance

 Compute Squared Euclid Distance

Description

 Compute Squared Euclid Distance

Usage

 squared_euclid_distance(x, y)

Arguments

 x a numeric vector.
 y a numeric vector.

Value

 squared Euclid distance
| **uLSIF** | Estimate Density Ratio \(p(x)/q(x) \) by **uLSIF** (unconstrained Least-Square Importance Fitting) |

Description

Estimate Density Ratio \(p(x)/q(x) \) by uLSIF (unconstrained Least-Square Importance Fitting)

Usage

\[
uLSIF(x1, x2, sigma = 10^\text{seq(-3, 1, length.out = 9)},
\text{lambda} = 10^\text{seq(-3, 1, length.out = 9)}, \text{kernel_num} = 100,
\text{verbose} = \text{TRUE})
\]

Arguments

- \(x1 \) numeric vector or matrix. Data from a numerator distribution \(p(x) \).
- \(x2 \) numeric vector or matrix. Data from a denominator distribution \(q(x) \).
- \(\text{sigma} \) positive numeric vector. Search range of Gaussian kernel bandwidth.
- \(\text{lambda} \) positive numeric vector. Search range of regularization parameter.
- \(\text{kernel_num} \) positive integer. Number of kernels.
- \(\text{verbose} \) logical (default TRUE).

Value

uLSIF object that contains a function to compute estimated density ratio.
Index

densratio, 2
KLIEP, 3
RuLSIF, 3
squared_euclid_distance, 4
uLSIF, 5