Package ‘depth’

November 21, 2019

Type Package
Title Nonparametric Depth Functions for Multivariate Analysis
Version 2.1-1.1
Date 2017-01-07
Author Maxime Genest <maxime.genest@clevelslauzon.qc.ca>, Jean-Claude Masse <jcmasse@mat.ulaval.ca>, Jean-Francois Plante <jfplante@hec.ca>

data/depth.f contains eigen, tql2 and tred2 written by the EISPLACK authors,
dgedi, dgefa from LINPACK written by Cleve Moler,
daxpy, dscal, dswap and idamax from LINPACK written by Jack Dongarra,
VERT from NAPACK (authors unstated),
AS 78 written by J. C. Gower,
AS 143 written by F. K. Bedall and H. Zimmermann,
AS 307 written by P.J. Rousseeuw and I. Ruts.
Maintainer Jean-Francois Plante <jfplante@hec.ca>

Description Tools for depth functions methodology applied
to multivariate analysis. Besides allowing calculation
of depth values and depth-based location estimators, the package
includes functions or drawing contour plots and perspective plots
of depth functions. Euclidian and spherical depths are supported.

Depends R (>= 3.2.0), abind, grDevices, circular, rgl
Suggests robustbase, MASS
License GPL-2
Repository CRAN
Date/Publication 2019-11-21 11:22:54 UTC

R topics documented:

 depth-package .. 2
 ctrmean ... 3
Description

This is a collection of functions applying depth functions methodology to multivariate analysis. Besides allowing calculation of depth values and depth-based location estimators, the package includes functions for drawing contour plots and perspective plots of depth functions.

Details

- Package: depth
- Type: Package
- Version: 2.0
- Date: 2012-08-12
- License: GPL-2
- LazyLoad: yes

All functions apply to a multivariate data set. Function `depth` calculates the depth of a point with respect to the data set. Depth functions covered are Tukey’s, Liu’s and Oja’s. Functions `med`, `trmean` and `ctrmean` return depth-based medians, classical-like trimmed means and centroid trimmed means, respectively. Functions `perspdepth` and `isodepth` draw perspective and contour plots, respectively. Functions `sdepth`, `smed`, `strmeasure` and `scontour` give equivalent results for directional data.

Author(s)

Maxime Genest <maxime.genest@clevislauzon.qc.ca>, Jean-Claude Masse <jcmasse@mat.ulaval.ca>, Jean-Francois Plante <jfplante@hec.ca>.

Maintainer: Jean-Francois Plante <jfplante@hec.ca>
References

Examples

```r
set.seed(159); library(MASS)
mu1 <- c(0,0); mu2 <- c(6,0); sigma <- matrix(c(1,0,0,1), nc = 2)
mixbivnorm <- rbind(mvrnorm(80, mu1, sigma), mvrnorm(20, mu2, sigma))
deepth(c(0,0),mixbivnorm)
med(mixbivnorm)
trmean(mixbivnorm, 0.2)
library(rgl)
perspdepth(mixbivnorm, col = "magenta")
isodepth(mixbivnorm, dpth = c(35,5), col = rainbow(2))
```

ctrmean

Centroid trimmed mean

Description

Computes the centroid of a Tukey depth-based trimmed region.

Usage

```r
ctrmean(x ,alpha, eps = 1e-8, mustdith = FALSE, maxdith = 50,
dithfactor = 10 ,factor = .8)
```

Arguments

- `x` Bivariate data as a matrix, data frame or list. If it is a matrix or data frame, then each row is viewed as one bivariate observation. If it is a list, both components must be numerical vectors of equal length (coordinates of observations).
- `alpha` Outer trimming fraction (0 to 0.5). Observations whose depth is less than alpha to be trimmed.
- `eps` Error tolerance to control the calculation.
- `mustdith` Logical. Should dithering be applied? Used when data set is not in general position or a numerical problem is encountered.
- `maxdith` Positive integer. Maximum number of dithering steps.
dithfactor Scaling factor used for horizontal and vertical dithering.
factor Proportion (0 to 1) of outermost contours computed according to a version of the algorithm ISODEPTH of Rousseeuw and Ruts (1998); remaining contours are derived from an algorithm in Rousseeuw et al. (1999).

Details
Dimension 2 only. Centroid trimmed mean is defined to be the centroid of a Tukey depth-based trimmed region relative to the uniform measure. Contours are derived from algorithm ISODEPTH by Ruts and Rousseeuw (1996) or, more exactly, revised versions of this algorithm which appear in Rousseeuw and Ruts (1998) and Rousseeuw et al. (1999). Argument factor determines which version to use. If n is the number of observations, contours of depth ≤ factor n/2 are obtained from the 1998 version, while the remaining contours are derived from the 1999 version.

When the data set is not in general position, dithering can be used in the sense that random noise is added to each component of each observation. Random noise takes the form \(\epsilon \) times \(dithfactor \) times U for the horizontal component and \(\epsilon \) times \(dithfactor \) times V for the vertical component, where U, V are independent uniform on [-.5, .5]. This is done in a number of consecutive steps applying independent U’s and V’s.

Value
Centroid trimmed mean vector

Author(s)
Jean-Claude Masse and Jean-Francois Plante, based on Fortran code by Ruts and Rousseeuw from University of Antwerp.

References

See Also
med for multivariate medians and trmean for classical-like depth-based trimmed means.

Examples
```r
## exact centroid trimmed mean
set.seed(345)
xx <- matrix(rnorm(1000), nc = 2)
```
Usage

```r
depth(u, x, method = "Tukey", approx = FALSE, eps = 1e-8, ndir = 1000)
```

Arguments

- **u**: Numerical vector whose depth is to be calculated. Dimension has to be the same as that of the observations.
- **x**: The data as a matrix, data frame or list. If it is a matrix or data frame, then each row is viewed as one multivariate observation. If it is a list, all components must be numerical vectors of equal length (coordinates of observations).
- **method**: Character string which determines the depth function used. `method` can be "Tukey" (the default), "Liu" or "Oja".
- **approx**: Logical. If dimension is 3, should an approximate Tukey depth be computed? Useful when sample size is large.
- **eps**: Error tolerance to control the calculation.
- **ndir**: Number of random directions used when Tukey depth is approximated.

Details

Method "Tukey" refers to the Tukey or halfspace depth. In dimension 2, exact calculation is based on Fortran code from Rousseeuw and Ruts (1996). In dimensions higher than 2, calculation utilises Fortran code from Struyf and Rousseeuw (1998). This yields exact calculation when dimension is 3 and `approx = FALSE`, and approximate calculation when dimension is higher than 3.

The Liu (or simplicial) depth is computed in dimension 2 only. Calculation is exact and based on Fortran code from Rousseeuw and Ruts (1996).
The Oja depth is derived from a location measure considered by Oja. If \(p \) is the dimension and \(n \) the size of the data set, it is defined to be
\[
0.5(1 + \binom{n}{p}^{-1} \sum \text{Volume}(S(u, x[i_1], \ldots, x[i_p])))^{-1},
\]
where \(S(args) \) denotes the simplex generated by \(args \), and sum and average are taken over all \(p \)-plets \(x[i_1], \ldots, x[i_p] \) such that \(1 \leq i_1 < \ldots < i_p \leq n \). Calculation is exact.

Value

Returns the depth of multivariate point \(u \) with respect to data set \(x \).

Author(s)

Jean-Claude Masse and Jean-Francois Plante, based on Fortran code by Rousseeuw, Ruts and Struyf from University of Antwerp.

References

See Also

perspdepth and *isodepth* for depth graphics.

Examples

```r
## calculation of Tukey depth
data(starsCYG, package = "robustbase")
depth(apply(starsCYG, 2, mean), starsCYG)

## Tukey depth applied to a large bivariate data set.
set.seed(356)
x <- matrix(rnorm(9999), nc = 3)
depth(rep(0, 3), x)

## approximate calculation much easier
depth(rep(0, 3), x, approx = TRUE)
```
isodepth

Contour plots for depth functions

Description

Draws a contour plot of Tukey’s depth function.

Usage

```
isodepth(x, dpth = NULL, output = FALSE, twodim = TRUE,
          mustdith = FALSE, maxdith = 50, dithfactor = 10,
          trace.errors = TRUE, eps = 1e-8, factor = 0.8, xlab = "X",
          ylab = "Y", zlab = "Tukey's depth", colcontours = NULL, ...)
```

Arguments

- **x**: Bivariate data as a matrix, data frame or list. If it is a matrix or data frame, then each row is viewed as one bivariate observation. If it is a list, both components must be numerical vectors of equal length (coordinates of observations).
- **dpth**: Vector of positive integers. Numbers 1, 2, ..., refer to contours of depth $1/n, 2/n, ...$, where n is the number of observations. Useful to draw particular contours. Default `dpth = NULL` corresponds to the set of all contours.
- **output**: Logical. Default `FALSE` produces a contour plot; otherwise a list of contour vertices.
- **twodim**: Logical. `twodim = FALSE` returns a transparent perspective plot making use of the `rgl` package.
- **mustdith**: Logical. Should dithering be applied? Used when data set is not in general position or a numerical problem is encountered.
- **maxdith**: Positive integer. Maximum number of dithering steps.
- **dithfactor**: Scaling factor used for horizontal and vertical dithering.
- **trace.errors**: Logical. Should all contours be considered? Used when a numerical problem is encountered for some inner contours. Default `trace.errors = FALSE` means those contours are left out.
- **eps**: Error tolerance to control the calculation.
- **factor**: Proportion (0 to 1) of outermost contours computed according to a version of the algorithm ISODEPTH of Rousseeuw and Ruts (1998); remaining contours are derived from an algorithm in Rousseeuw *et al.* (1999).
- **xlab**: Title for x-axis. Must be a character string.
- **ylab**: Title for y-axis. Must be a character string.
- **zlab**: Title for z-axis. Used jointly with `twodim = FALSE`.
- **colcontours**: Vector of color names of some or all of the contours. Recycling is used when necessary. Colors can be specified in different ways, see color specification in `par`.
- **...**: Any additional graphical parameters (see `par`).
Details

Tukey’s depth and dimension 2 only. Contours are computed according to algorithm ISODEPTH by Ruts and Rousseeuw (1996) or, more exactly, revised versions of this algorithm which appear in Rousseeuw and Ruts (1998) and Rousseeuw et al. (1999). Argument factor determines which version to use. If \(n \) is the number of observations, contours of depth \(\leq \text{factor} \frac{n}{2} \) are obtained from the 1998 version, while the remaining contours are derived from the 1999 version.

When the data set is not in general position, dithering can be used in the sense that random noise is added to each component of each observation. Random noise takes the form \(\epsilon \times \text{dithfactor} \) times \(\text{U} \) for the horizontal component and \(\epsilon \times \text{dithfactor} \) times \(\text{V} \) for the vertical component, where \(\text{U}, \text{V} \) are independent uniform on \([- .5, .5.]\). This is done in a number of consecutive steps applying independent \(\text{U} \)’s and \(\text{V} \)’s.

Value

Default output = FALSE yields a contour plot. If not, the function returns a list of \(m \) components, where \(m \) is the number of contours and component \(i \) is a matrix whose rows are the vertices of contour \(i \).

Author(s)

Jean-Claude Masse and Jean-Francois Plante, based on Fortran code by Rousseeuw, Ruts and Struyf from University of Antwerp.

References

See Also

depth, *perspdepth*

Examples

```r
## exact contour plot with 10 contours
set.seed(601) ; x = matrix(rnorm(48), nc = 2)
isodepth(x)

## exact colored contours
set.seed(159); library(MASS)
mu1 <- c(0,0); mu2 <- c(6,0); sigma <- matrix(c(1,0,0,1), nc = 2)
mixbivnorm <- rbind(mvrnorm(80, mu1 ,sigma), mvrnorm(20, mu2, sigma))
isodepth(mixbivnorm, dpth = c(35,5), col = rainbow(2))

## vertices of each contour
```
set.seed(601)
x <- matrix(rnorm(48), nc = 2)
isodepth(x, output = TRUE)

data set not in general position
data(starsCYG, package = "robustbase")
isodepth(starsCYG, mustdith = TRUE)

colored contours
set.seed(601)
x <- matrix(rnorm(48), nc = 2)
isodepth(x, colcontours = rainbow(10))

perspective plot
library(rgl)
set.seed(601)
x <- matrix(rnorm(48), nc = 2)
isodepth(x, twodim = FALSE)

med

Multivariate median

Description

Computes the median of a multivariate data set.

Usage

\[
\text{med}(x, \text{method} = "\text{Tukey}", \text{approx} = \text{FALSE}, \text{eps} = 1e-8, \text{maxit} = 200, \\
\text{mustdith} = \text{FALSE}, \text{maxdith} = 50, \text{dithfactor} = 10, \text{factor} = 0.8, \\
\text{nstp} = \text{NULL}, \text{ntry} = \text{NULL}, \text{nalt} = \text{NULL}, \\
\text{ndir} = 1000)
\]

Arguments

- **x**: The data as a matrix, data frame or list. If it is a matrix or data frame, then each row is viewed as one multivariate observation. If it is a list, all components must be numerical vectors of equal length (coordinates of observations).
- **method**: Character string which determines the depth function used. method can be "Tukey" (the default), "Liu", "Oja", "Spatial" or "CWmed".
- **approx**: Logical. Should an approximate Tukey median be computed? Useful in dimension 2 only when sample size is large.
- **eps**: Error tolerance to control the calculation.
- **maxit**: Number of Newton-Raphson iterations in case method is "Spatial".
- **mustdith**: Logical. Should dithering be applied? Used to compute the Tukey median when data set is not in general position or a numerical problem is encountered.
- **maxdith**: Integer. Maximum number of dithering steps.
dithfactor
Scaling factor used for horizontal and vertical dithering.

factor
Proportion (0 to 1) of outermost contours computed according to algorithm HALFMED of Rousseeuw and Ruts (1998); remaining contours derived from an algorithm in Rousseeuw et al. (1999).

nstp
Positive integer. Maximum number of steps in the iteration process leading to an approximate value of the Tukey median. If NULL, the default value is taken to be the largest integer not greater than \(5n^{0.5}p\), where \(n\) is the number of observations and \(p\) the dimension.

ntry
Positive integer. Maximum number of steps without an increase of the Tukey depth in the iteration process leading to an approximate value of the Tukey median. If NULL, the default value is taken to be \(10(p+1)\), where \(p\) is the dimension.

nalt
Positive integer. Maximum number of consecutive steps without an increase of the Tukey depth at any time in the iteration process leading to an approximate value of the Tukey median. If NULL, the default value is taken to be \(4(p+1)\), where \(p\) is the dimension.

ndir
Positive integer. Number of random directions used in the iteration process leading to an approximate value of the Tukey median.

Details

The method "Tukey" computes the Tukey median. Calculation is exact in dimensions 1 and 2, and approximate in higher dimensions. The bivariate case utilises algorithm HALFMED by Rousseeuw and Ruts (1998) as well as an algorithm from Rousseeuw et al. (1999). Argument factor determines which algorithm to use. If \(n\) is the number of observations, contours of depth \(\leq \text{factor } n/2\) are derived from algorithm HALFMED, while the remaining contours are obtained from the second algorithm. The higher dimensional case is covered by Fortran code from Struyf and Rousseeuw (2000).

When method is "Tukey", data must be in general position. If not, in dimension 2 dithering can be used in the sense that random noise is added to each component of each observation. Random noise takes the form \(\text{eps times dithfactor times } U\) for the horizontal component and \(\text{eps times dithfactor times } V\) for the vertical component, where \(U, V\) are independent uniform on \([-0.5, 0.5]\). This is done in a number of consecutive steps applying independent \(U\)'s and \(V\)'s.

The method "Liu" computes the Liu median. It is based on Fortran code from Rousseeuw and Ruts (1996) and restricted to two-dimensional data.

The method "Oja" computes the Oja median. It is based on Fortran code by Niinimaa et al. (1992) and restricted to two-dimensional data.

The method "Spatial" computes the spatial median or mediancentre. It is based on Fortran code by Gower (1974), and Bedall and Zimmermann (1979).

The method "CWmed" computes the coordinatewise median.

Value

A list with components

- **median**
 the median

- **depth**
 the depth of the median (omitted when method is "Spatial" or "CWmed")
Author(s)

Jean-Claude Masse and Jean-Francois Plante, based on Fortran code by authors listed in the references.

References

See Also

trmean and ctrmean for trimmed means

Examples

exact Tukey median for a mixture of bivariate normals
set.seed(159); library(MASS)
mul <- c(0,0); mu2 <- c(6,0); sigma <- matrix(c(1,0,0,1), nc = 2)
mixbivnorm <- rbind(mvrnorm(80, mul, sigma), mvrnorm(20, mu2, sigma))
med(mixbivnorm)

approximate Tukey median of a four-dimensional data set
set.seed(601)
zz <- matrix(rnorm(96), nc = 4)
med(zz)

data set not in general position
data(starsCYG, package = "robustbase")
med(starsCYG, method = "Liu")

use of dithering for the Tukey median
med(starsCYG, mustdith = TRUE)
perspdepth

Perspective plots for depth functions

Description

Draws a perspective plot of the surface of a depth function over the x-y plane.

Usage

perspdepth(x, method = "Tukey", output = FALSE, tt = 50,
 xlab = "X", ylab = "Y", zlab = NULL, col = NULL, ...)

Arguments

x
Bivariate data as a matrix, data frame or list. If it is a matrix or data frame, then each row is viewed as one bivariate observation. If it is a list, both components must be numerical vectors of equal length (coordinates of observations).

method
Character string which determines the depth function used. method can be "Tukey" (the default), "Liu" or "Oja".

output
Logical. Default FALSE produces a perspective plot; otherwise, returns a list containing the grid points and depth values over these points.

tt
Gridsize. Number of equally spaced grid points in each coordinate direction to be used in perspective plot.

xlab
Title for x-axis. Must be a character string.

ylab
Title for y-axis. Must be a character string.

zlab
Title for z-axis. Must be a character string. Default NULL identifies the depth function.

col
Color of the surface plot. Default NULL is "lightblue".

Details

Requires the rgl package. The perspective plot takes advantage of some of the user interaction facilities of that package.

Value

Default output = FALSE yields a perspective plot; otherwise the function returns a list with components

x
x-coordinates of the grid where the depth function is evaluated.

y
y-coordinates of the grid where the depth function is evaluated.

z
Matrix whose entry z[i,j] is the value of the depth function at (x[i], y[j]).
pkg-internal

Author(s)

Jean-Claude Masse and Jean-Francois Plante, based on Fortran code by Rousseeuw, Ruts and Struyf from University of Antwerp.

References

See Also

isodepth, depth

Examples

```r
## 2 perspective plots
data(geyser, package = "MASS")
perspdepth(geyser, col = "magenta")
set.seed(159); library(MASS)
mu1 <- c(0,0); mu2 <- c(6,0); sigma <- matrix(c(1,0,0,1), nc = 2)
mixbivnorm <- rbind(mvrnorm(80, mu1, sigma),mvrnorm(20, mu2, sigma))
perspdepth(mixbivnorm, col = "chartreuse")

## grid coordinates and corresponding depth values
set.seed(601)
x <- matrix(rnorm(48), nc = 2)
perspdepth(x, output = TRUE, tt = 10)
```

pkg-internal

Internal functions of the depth package

Description

These functions are not meant to be used at the user-level.

scontour

Plotting spherical depth contours

Description

Traces spherical depth contours of a multivariate data set. Supports data on the circle or on the sphere.
Usage

`scontour(P, tracepoints=FALSE, colpoints="black", tracemed=TRUE, maxdepth=FALSE, xlim=c(0,2*pi), displaymed=FALSE, title="Circular Tukey contours", ylab="Tukey's circular depth", xlab=expression(theta), colmed=2, colarc="red", sizepoints=3)``

Arguments

- `P` The data as a vector, a matrix, a data frame or a list.
- `tracepoints` Logical; if TRUE, data points are added to the plot.
- `colpoints` A specification for the color of the data points.
- `tracemed` Logical; if TRUE, the Tukey median is added to the plot.
- `maxdepth` Logical; On the circle only; if TRUE, the maximum depth is printed on the plot.
- `xlim` Numeric vectors of length 2, giving the x coordinate range.
- `displaymed` Logical; On the circle only; if TRUE, the median value is printed on the plot.
- `title` On the circle only, a specification for the plot title.
- `ylab` On the circle only, a specification for the y axis title.
- `xlab` On the circle only, a specification for the x axis title.
- `colmed` Color of the Tukey median on the plot.
- `colarc` On the sphere only, color of the spherical depth contours on the plot.
- `sizepoints` Size of plotted points.

Details

Supports data on the circle or the sphere. For data on the circle, data must be expressed in polar coordinates as a angle in radians with values between 0 and 2\pi. Data on the sphere can be expressed in Euclidean coordinates (n by 3 matrix) or in spherical coordinates (n by 2 matrix) where the first column contains \theta and the second column \phi. The type of coordinates is determined automatically based on the dimensions of the input.

Value

- `plot` A plot of Tukey spherical depth if the input data are on the circle, or the Tukey spherical depth contours if the input data are on the sphere.

If data are on the sphere only, a list of 3 elements is also outputted.

1 A sorted vector giving the depths of the plotted contours.
2 A list of matrices with the vertices of every contour.
3 The Euclidean coordinates of the Tukey median

Author(s)

Maxime Genest.
sdepth

References

See Also

sdepth for calculation of the depth of a point, smed for Tukey’s spherical median.

Examples

Plot of Tukey spherical depth for data on the circle.
set.seed(2011)
scontour(runif(30,min=0,max=2*pi))

Tukey spherical depth contours for data
on the sphere expressed in spherical coordinates.
scontour(cbind(runif(20,min=0,max=2*pi),runif(20,min=0,max=pi)))

Tukey spherical depth contours for data
on the sphere expressed in Euclidean coordinates.
x=matrix(rnorm(60),ncol=3)
x=t(apply(x,1,function(y){y/sqrt(sum(y^2))}))
scontour(x)

sdepth Calculation of spherical depth

Description

Computes the spherical depth of a point with respect to a multivariate data set. Supports data on the circle or on the sphere.

Usage

sdepth(theta, P)

Arguments

theta Numerical vector whose depth is to be calculated. The coordinate system must match that of the observations.
P The data as a vector, a matrix, a data frame or a list.
Details

Computes the Tukey depth of theta with respect to the dataset P. For data on the circle, data must be expressed in polar coordinates as an angle in radians with values between 0 and 2π. Data on the sphere can be expressed in Euclidean coordinates (n by 3 matrix) or in spherical coordinates (n by 2 matrix) where the first column contains θ and the second column φ. The type of coordinates is determined automatically based on the dimensions of the input.

Value

Returns the spherical depth of multivariate point theta with respect to the data set P.

Author(s)

Maxime Genest.

References

See Also

scontour for depth graphics, smed for Tukey’s spherical median.

Examples

```r
## Tukey spherical depth for a dataset on the circle
set.seed(2011)
sdepth(pi,runif(50,min=0,max=2*pi))

## Tukey spherical depth for data in spherical coordinates.
sdepth(c(pi,pi/2),cbind(runif(50,min=0,max=2*pi),runif(50,min=0,max=pi)))

## Tukey spherical depth for data in Euclidean coordinates.
x=matrix(rnorm(150),ncol=3)
x=t(apply(x,1,function(y){y/sqrt(sum(y^2))}))
sdepth(x[,1],x)
```

smed

Calculating spherical medians

Description

Computes the spherical median of a data set on the circle.
smed

Usage

smed(P, sort=FALSE, depths=NULL, alpha=NULL,
 method="Tukey", tracecontour=FALSE, tracepoints=FALSE)

Arguments

P The data as a vector, a matrix, a data frame or a list.
sort Logical; TRUE indicates that the data in P is already sorted.
depths For Tukey's method only; An optionnal vector of the same length as P that
 contains the Tukey depth of each data. The calculation of the depth is then
 skipped and the provided values are used instead.
alpha For Tukey's method only; alpha is an optionnal numeric value between 0 and
 1 to compute the median on a trimmed region rather than on the whole dataset.
 The trimming keeps only those points with a depth greater than or equal to
 alpha. The default value of NULL computes the median from the maximum
 depth trimmed region (i.e. no trimming).
method Character string which determines the depth function used. method can be
 "Tukey" (the default) or "Circular".
tracecontour Only if method="Circular". Traces the plot of depth with respect to angular
 positions on the circle.
tracepoints Only if method="Circular". Draws the points and their median on the circle.

Details

Calculates spherical medians for data on the circle only. The input must be a list of angles in
radians between 0 and 2π (polar coordinates). If method="Tukey", the Tukey median is returned.
If method="Circular", the circular median (the point minimizing the average distance based on
arccosine) is returned.

Value

A numeric value between 0 and 2π giving the median in polar coordinate.

Author(s)

Maxime Genest.

References

See Also

sdepth for calculation of the depth of a point, scontour for Tukey's spherical median.
Examples

calculation of the Tukey spherical median for data on the circle
set.seed(2011)
smed(runif(30,min=0,max=2*pi))

strmeasure
Computing trimmed measures of spherical location

Description

Computes a sample trimmed measure of location based on the spherical Tukey’s depth. Supports data on the circle or on the sphere (for Circular median only).

Usage

strmeasure(P,sorted=FALSE,depths=NULL,alpha=0,method="Mean")

Arguments

P
The data as a vector, a matrix, a data frame or a list.

sorted
Logical; if TRUE, it indicates that the data given in first argument is sorted.

depths
An optionnal vector of the same length of P that contains the Tukey’s depth of each data. The calculation of the depth is then skipped and the provided values are used instead.

alpha
An optionnal numeric value between 0 and 1 to compute the median on a trimmed region rather than on the whole dataset. The trimming keeps only those points with a depth greater than or equal to alpha. The default value of 0 computes the median from the maximum depth trimmed region (i.e. no trimming).

method
Character string which determines the measure used. method can be "Mean" (the default) to compute trimmed mean direction or "Tukey" (for circular sample only) to compute trimmed Tukey’s median.

Details

This function returns a location estimate (Tukey’s median or mean direction) of a sample truncated by Tukey’s depth. For data on the circle, data must be expressed in polar coordinates as a angle in radians with values between 0 and 2π. Data on the sphere can be expressed in Euclidean coordinates (n by 3 matrix) or in spherical coordinates (n by 2 matrix) where the first column contains θ and the second column φ. The type of coordinates is determined automatically based on the dimensions of the input.

While the option method="Tukey" supports only data on the circle, method="Mean" can also handle data on the sphere.

Value

If the input sample is on the circle, a numeric value between 0 and 2π giving the trimmed measure. If the input sample is on the sphere, the trimmed measure in Euclidean coordinates.
trmean

Author(s)
Maxime Genest.

References

See Also
sdepth for the calculation of the depth of a point, scontour for Tukey’s spherical median.

Examples
```r
## calculation of trimmed mean direction
set.seed(2011)
strmeasure(runif(30,min=0,max=2*pi),alpha=1/3,method="Mean")

## calculating of trimmed Tukey median
set.seed(2011)
strmeasure(runif(30,min=0,max=2*pi),alpha=1/3,method="Tukey")
```

trmean

Classical-like depth-based trimmed mean

Description
Computes a sample trimmed mean based on the Tukey depth, the Liu depth or the Oja depth.

Usage
```
trmean(x, alpha, W = function(dep, alpha){return(1)},
   method = "Tukey", ndir = 1000, approx = FALSE,
   eps = 1e-8, ...)
```

Arguments
- **x**
 The data as a matrix, data frame or list. If it is a matrix or data frame, then each row is viewed as one bivariate observation. If it is a list, all components must be numerical vectors of equal length (coordinates of observations).
- **alpha**
 Outer trimming fraction (0 to 0.5). Observations whose depth is less than alpha to be trimmed.
- **W**
 Nonnegative weight function defined on [0, 1] through its argument dep. Number of arguments can be greater than 2 but the trimming fraction has to be one argument. See examples.
method Character string which determines the depth function used. method can be "Tukey" (the default), "Liu" or "Oja".
ndir Positive integer. Number of random directions used when approximate Tukey depth is utilised. Used jointly with approx = TRUE.
approx Logical. If dimension is 3, should approximate Tukey depth be used? Useful when sample size is large.
eps Error tolerance to control the calculation.
... Any additional arguments to the weight function.

Details

Dimension 2 or higher when method is "Tukey" or "Oja"; dimension 2 only when method is "Liu". Exactness of calculation depends on method. See depth.

Value

Multivariate depth-based trimmed mean

Author(s)

Jean-Claude Masse and Jean-Francois Plante, based on Fortran code by Ruts and Rousseeuw from University of Antwerp.

References

See Also

med for medians and ctrmean for a centroid trimmed mean.

Examples

exact trimmed mean with default constant weight function
data(starsCYG, package = "robustbase")
trmean(starsCYG, .1)

another example with default constant weight function
set.seed(159); library(MASS)
m1 <- c(0,0); m2 <- c(6,0); sigma <- matrix(c(1,0,0,1), nc = 2)
mixbivnorm <- rbind(mvrnorm(80, m1, sigma), mvrnorm(20, m2, sigma))
trmean(mixbivnorm, 0.3)

trimmed mean with a non constant weight function
W1 <- function(x, alpha, epsilon) {
 (2*(x-alpha)^2/epsilon^2)*(alpha<=x)*(x<alpha+epsilon/2) +
 (-2*(x-alpha)^2/epsilon^2+4*(x-alpha)/epsilon-1)*
 (alpha+epsilon/2<=x)*(x<alpha+epsilon)+(alpha+epsilon<=x)
}

set.seed(345)
x <- matrix(rnorm(210), nc = 3)
trmean(x, .1, W = W1, epsilon = .05)

two other examples of weighted trimmed mean
set.seed(345)
x <- matrix(rnorm(210), nc = 3)
W2 <- function(x, alpha) {x^(.25)}
trmean(x, .1, W = W2)
W3 <- function(x, alpha, beta){1-sqrt(x)+x^2/beta}
trmean(x, .1, W = W3, beta = 1)
Index

*Topic **directional**
 scontour, 13
 sdepth, 15
 smed, 16
 strmeasure, 18

*Topic **multivariate**
 ctrmean, 3
 depth, 5
 depth-package, 2
 isodepth, 7
 med, 9
 perspdepth, 12
 scontour, 13
 sdepth, 15
 smed, 16
 strmeasure, 18
 trmean, 19

*Topic **nonparametric**
 ctrmean, 3
 depth, 5
 depth-package, 2
 isodepth, 7
 med, 9
 perspdepth, 12
 scontour, 13
 sdepth, 15
 smed, 16
 strmeasure, 18
 trmean, 19

*Topic **package**
 depth-package, 2

*Topic **robust**
 ctrmean, 3
 depth, 5
 depth-package, 2
 isodepth, 7
 med, 9
 perspdepth, 12
 scontour, 13

 sdepth, 15
 smed, 16
 strmeasure, 18
 trmean, 19

 airtrispher (pkg-internal), 13
 cmsphertri (pkg-internal), 13
 cmsphertri2 (pkg-internal), 13
 contourc (scontour), 13
 ctrmean, 2, 3, 11, 20
 depth, 2, 5, 8, 13, 20
 depth-package, 2
 dirmoytronq (pkg-internal), 13
 disp (pkg-internal), 13
 espaceutronque (pkg-internal), 13
 intersect (pkg-internal), 13
 isodepth, 2, 6, 7, 13
 med, 2, 4, 9, 20
 medianecirc (pkg-internal), 13
 par, 7
 perspdepth, 2, 6, 8, 12
 pkg-internal, 13
 pointshemi (pkg-internal), 13
 prodvect2 (pkg-internal), 13
 schema.polyspher (pkg-internal), 13
 scontour, 2, 13, 16, 17, 19
 sdepth, 2, 15, 15, 17, 19
 sdirmoytronq (pkg-internal), 13
 smed, 2, 15, 16, 16
 sphericaldevide (pkg-internal), 13
 spherpolycentroide (pkg-internal), 13
 STD (scontour), 13
 strmeasure, 2, 18
 tracearc (pkg-internal), 13
INDEX

tracepolyspher (pkg-internal), 13
traceregion (pkg-internal), 13
trmeean, 2, 4, 11, 19
tukdephc2 (pkg-internal), 13
tukdephc3 (pkg-internal), 13
tukdepths2 (pkg-internal), 13
tukdepthsdemi (pkg-internal), 13
tukdepthsdemiineg (pkg-internal), 13
tukmedc (pkg-internal), 13
tukmedtronq (pkg-internal), 13
verifdemic (pkg-internal), 13
verifextpoly (pkg-internal), 13
whichdemi (pkg-internal), 13