Package ‘detectR’

February 8, 2021

Type Package

Title Change Point Detection

Version 0.1.0

Author Matthew Gampe [aut, cre],
Changryong Baek [aut],
Kathleen M. Gates [aut],
Vladas Pipiras [aut]

Maintainer Matthew Gampe <mgampe@live.unc.edu>

Description

License Unlimited

Encoding UTF-8

LazyData true

Imports signal, lavaan, doParallel, graphics, glasso, stats, LogConcDEAD, foreach, parallel

Depends R (>= 2.10)

URL https://github.com/mgampe/detectR

RoxygenNote 7.1.1

NeedsCompilation no

Repository CRAN

Date/Publication 2021-02-08 10:40:02 UTC

R topics documented:

- `changesim`
- `detectBinary`
Description

This dataset contains a simulated multivariate time series with two changepoints at time point 150 and 300. The dimension of the data is $T=450$ and $p=20$.

Usage

```
changesim
```

Format

An object of class `matrix` with 450 rows and 20 columns.

detectBinary

Description

This function uses PCA-based method to find breaks. Simultaneous breaks are found from binary segmentation.

Usage

```
detectBinary(
  Y,
  Del,
  L,
  q = "fixed",
  alpha = 0.05,
  nboot = 199,
  n.cl,
  bsize = "log",
)```
detectBinary

bootTF = TRUE,
scaleTF = TRUE,
diagTF = TRUE,
plotTF = TRUE
)

Arguments

Y data: Y = length*dim
Del Delta away from the boundary restriction
L the number of factors
q methods in calculating long-run variance of the test statistic. Default is "andrew"
"fixed" = length^1/3 or user specify the length
alpha significance level of the test
nboot the number of bootstrap sample for pvalue. Defaults is 199.
n.cl number of cores in parallel computing. The default is (machine cores - 1)
bsize block size for the Block Wild Boostrapping. Default is log(length), "sqrt" uses
sqrt(length), "adaptive" deterines block size usign data dependent selection of Andrews
bootTF determine whether the threshold is calculated from bootstrap or asymptotic
scaleTF scale the variance into 1
diagTF include diagonal term of covariance matrix or not
plotTF Draw plot to see test statistic and threshold

Value

tstatlist The complete history of test tsatistic
Bhist The sequence of breakspoints found from binay splitting
L The number of factors used in the procedure
q The estimated vecorized autocovariance on each regime.
crit The critical vlaue to identify change point
bsize The block size of the bootstrap
diagTF If TRUE, the diagonal entry of covariance matrix is used in detecting connectivity changes.
bootTF If TRUE, boostrap is used to find critical value
scaleTF If TRUE, the multivariate signal is studentized to have zero mean and unit variance.

Examples

out3= detectBinary(changesim, L=2, n.cl=1)
**detectGlasso**

*Change point detection using Graphical lasso as in Cribben et al. (2012)*

**Description**

This function implements the Dynamic Connectivity Regression (DCR) algorithm proposed by Cribben et al. (2012) to locate changepoints.

**Usage**

```r
detectGlasso(
 Y,
 Del,
 p,
 lambda = "bic",
 nboot = 100,
 n.cl,
 bound = c(0.001, 1),
 gridTF = FALSE,
 plotTF = TRUE
)
```

**Arguments**

- **Y**: Input data of dimension length*dim (T times d)
- **Del**: Delta away from the boundary restriction
- **p**: Gep(p) distribution controls the size of stationary bootstrap. The mean block length is 1/p
- **lambda**: two selections possible for optimal parameter of lambda. "bic" finds lambda from bic criteria, or user can directly input the penalty value
- **nboot**: the number of bootstrap sample for pvalue. Default is 100.
- **n.cl**: number of cores in parallel computing. The default is (machine cores - 1)
- **bound**: bound of bic search in "bic" rule. Default is (.001, 1)
- **gridTF**: minimum bic is found by grid search. Default is FALSE
- **plotTF**: Draw plot to see test statistic

**Value**

A list with component

- **br**: The estimated breakpoints including boundary (0, T)
- **brhist**: The sequence of breakpoints found from binary splitting
- **diffhist**: The history of BIC reduction on each step
detectMaxChange

W The estimated vectorized autocovariance on each regime.
WI The estimated vectorized precision matrix on each regime.
\( \lambda \) The penalty parameter estimated on each regime.
pvalhist The empirical p-values on each binary splitting.
fitzero Detailed output at first stage. Useful in producing plot.

Examples

```r
out1= detectGlasso(changesim, p=.2, n.cl=1)
```

---

**detectMaxChange**

Change point detection using max-type statistic as in Jeong et. al (2016)

**Usage**

```r
detectMaxChange(
 Y,
 m = c(30, 40, 50),
 margin = 30,
 thre.localfdr = 0.2,
 design.mat = NULL,
 plotTF = TRUE,
 n.cl
)
```

**Arguments**

- **Y** Input data matrix
- **m** window sizes
- **margin** margin
- **thre.localfdr** threshold for local fdr
- **design.mat** design matrix for analyzing task data
- **plotTF** Draw plot to see test statistic and threshold
- **n.cl** number of clusters for parallel computing

**Value**

- **CLX** Test statistic corresponding to window size arranged in column
- **CLXLocalFDR** The Local FDR calculated for each time point
- **br** The final estimated break points
Examples

```r
out2 = detectMaxChange(changesim, m=c(30, 35, 40, 45, 50), n.cl=1)
```

---

detectSliding  
*Change point detection using PCA and sliding method*

Description

Change point detection using PCA and sliding method

Usage

```r
detectSliding(
 Y,
 wd = 40,
 L,
 Del,
 q = "fixed",
 alpha = 0.05,
 nboot = 199,
 n.cl,
 bsize = "log",
 bootTF = TRUE,
 scaleTF = TRUE,
 diagTF = TRUE,
 plotTF = TRUE
)
```

Arguments

- `Y`: data: `Y = length*dim`
- `wd`: window size for sliding averages
- `L`: the number of factors
- `Del`: Delta away from the boundary restriction
- `q`: methods in calculating long-run variance of the test statistic. Default is "andrew" "fixed" = length^1/3 or user specify the length
- `alpha`: significance level of the test
- `nboot`: the number of bootstrap sample for pvalue. Defaults is 199.
- `n.cl`: number of cores in parallel computing. The default is (machine cores - 1)
- `bsize`: block size for the Block Wild Boostrapping. Default is log(length), "sqrt" uses sqrt(length), "adaptive" determines block size using data dependent selection of Andrews
- `bootTF`: determine whether the threshold is calculated from bootstrap or asymptotic
- `scaleTF`: scale the variance into 1
- `diagTF`: include diagonal term of covariance matrix or not
- `plotTF`: Draw plot to see test statistic and threshold
Value

`sW` The test statistic

`L` The number of factors used in the procedure

`q` The estimated vectorized autocovariance on each regime.

`crit` The critical value to identify change point

`bsize` The block size of the bootstrap

`diagTF` If TRUE, the diagonal entry of covariance matrix is used in detecting connectivity changes.

`bootTF` If TRUE, bootstrap is used to find critical value

`scaleTF` If TRUE, the multivariate signal is studentized to have zero mean and unit variance.

Examples

```r
out4 = detectSliding(changesim, wd=40, L=2, n.cl=1)
```

---

### Global Variables and functions

**Description**

Defining variables and functions used in the internal functions

**preprocess**

*Data preparation for changepoint detection using functions in this package.*

**Description**

Id

**Usage**

```r
preprocess(file = NULL,
header = NULL,
sep = NULL,
signal = NULL,
noise = NULL,
butterfreq = NULL,
model = NULL)
```
Arguments

- **file**: a data matrix or file name with columns as variables and rows as observations across time.
- **header**: logical for whether or not there is a header in the data file.
- **sep**: The spacing of the data files. "" indicates space-delimited, "/" indicates tab-delimited, "," indicates comma delimited. Only necessary to specify if reading data in from physical directory.
- **signal**: (optional) a character vector containing the names of variables that contain signal i.e., which variables to use to detect change point. The default (NULL) indicates all variables except those in 'noise' argument are considered signal. Example: signal = c("dDMN4", "vDMN5", "vDMN1", "vDMN1.4")
- **noise**: (optional) a character vector containing the names of variables that contain noise. The signal variables will be regressed on these variables and residuals used in change point detection. The default (NULL) indicates there are no noise variables. Example: noise = c("White.Matter1", "CSF1")
- **butterfreq**: (optional) bandpass filter frequency ranges. Example: c(.04,.4)
- **model**: (optional) syntax indicating which variables belong to which networks for first pass of data reduction that is user-specified. If no header naming convention follows "V#". Notation should follow lavaan syntax style.

---

testGlasso

Test for the equality of connectivity based on the Graphical lasso estimation.

Description

This function utilizes Dynamic Connectivity Regression (DCR) algorithm proposed by Cribben et al. (2012) to test the equality of connectivity in two fMRI signals.

Usage

testGlasso(
    subY1, subY2, p, lambda = "bic", nboot = 100, n.cl, bound = c(0.001, 1), gridTF = FALSE
)
**testMax**

**Max-type test for the equality of connectivity**

**Arguments**

- **subY1**: a sample of size length*dim
- **subY2**: a sample of size length*dim
- **p**: Gep(p) distribution controls the size of stationary bootstrap. The mean block length is 1/p
- **lambda**: two selections possible for optimal parameter of lambda. "bic" finds lambda from bic criteria, or user can directly input the penalty value.
- **nboot**: the number of bootstrap sample for pvalue. Default is 100.
- **n.cl**: number of cores in parallel computing. The default is (machine cores - 1)
- **bound**: bound of bic search in "bic" rule. Default is (.001, 1)
- **gridTF**: Utilize a grid search to optimize hyperparameters

**Value**

- **pval**: The empirical p-value for testing the equality of connectivity structure
- **rho**: The sequence of penalty parameter based on the combined sample, subY1 and subY2.
- **fit0**: Output of glasso for combined sample
- **fit1**: Output of glasso for subY1
- **fit2**: Output of glasso for subY2

**Examples**

```r
test1= testGlasso(testsim$X, testsim$Y, n.cl=1)
```

**Description**

This function produces three test results based on max-type block bootstrap (BMB), long-run variance block bootstrapping with lagged-window estimator (LVBWR) and sum-type block bootstrap (BSUM). See Baek el al. (2019) for details.

**Usage**

```r
testMax(subY1, subY2, diagTF = TRUE, nboot, q = "andrew", n.cl)
```

**Arguments**

- **subY1**: a sample of size length*dim
- **subY2**: a sample of size length*dim
- **diagTF**: include diagonal term of covariance matrix or not
- **nboot**: number of bootstrap sample, default is 2000
- **q**: methods in calculating long-run variance of the test statistic. Default is "andrew". Second option "fixed" = length^1/3 or user specify the length
- **n.cl**: number of cores in parallel computing. The default is (machine cores - 1)
Value

- **tstat**: Test statistic for testing the equality of connectivity structure
- **pval**: The p-value for testing the equality of connectivity structure
- **q**: The tuning parameter used in calculating long-run variance

Examples

```r
test2 = testMax(testsim$X, testsim$Y, n.cl=1)
```

---

**testPCA**  
*PCA-based test for the equality of connectivity*

**Description**

This function performs PCA-test for testing the equality of connectivity in two fMRI signals.

**Usage**

```r
testPCA(subY1, subY2, L = 2, nlag, diagTF = TRUE)
```

**Arguments**

- **subY1**: a sample of size length*dim
- **subY2**: a sample of size length*dim
- **L**: the number of factors
- **nlag**: is the number of ACF lag to be used in the test, default is 2, Default is nlag = \(\text{floor}(N^{1/3})\)
- **diagTF**: include diagonal term of covariance matrix or not

**Value**

- **tstat**: Test statistic
- **pval**: Returns the p-value
- **df**: The degree of freedom in PCA-best test
- **L**: The number of factors used in the test
- **diagTF**: If true, the diagonal entry of covariance matrix is used in testing

**Examples**

```r
test3 = testPCA(testsim$X, testsim$Y, L=2)
```
Description

This dataset contains a simulated multivariate time series with two different autocovariances. It is a list data with two variables X and Y. Each multivariate time series had dimension of $T=150$ and $p=20$.

Usage

testsim

Format

An object of class list of length 2.
Index

* datasets
  changesim, 2
  testsim, 11
changesim, 2

detectBinary, 2
detectGlasso, 4
detectMaxChange, 5
detectSliding, 6
global, 7
preprocess, 7
testGlasso, 8
testMax, 9
testPCA, 10
testsim, 11