Package ‘detectseparation’

March 25, 2020

Title Detect and Check for Separation and Infinite Maximum Likelihood Estimates

Version 0.1

Description Provides pre-fit and post-fit methods for detecting separation and infinite maximum likelihood estimates in generalized linear models with categorical responses. The pre-fit methods apply on binomial-response generalized linear models such as logit, probit and cloglog regression, and can be directly supplied as fitting methods to the glm() function. They solve the linear programming problems for the detection of separation developed in Kohnis (2007, <https://ora.ox.ac.uk/objects/uuid:8f9ee0d0-d78e-4101-9ab4-f9cbceed2a2a>) using ‘ROI’ <https://cran.r-project.org/package=ROI> or ‘lpSolveAPI’ <https://cran.r-project.org/package=lpSolveAPI>. The post-fit methods apply to models with categorical responses, including binomial-response generalized linear models and multinomial-response models, such as baseline category logits and adjacent category logits models; for example, the models implemented in the ‘brglm2’ <https://cran.r-project.org/package=brglm2> package. The post-fit methods successively refit the model with increasing number of iteratively reweighted least squares iterations, and monitor the ratio of the estimated standard error for each parameter to what it has been in the first iteration. According to the results in Lesaffre & Albert (1989, <https://www.jstor.org/stable/2345845>), divergence of those ratios indicates data separation.

URL https://github.com/ikosmidis/detectseparation

BugReports https://github.com/ikosmidis/detectseparation/issues

Imports ROI, ROI.plugin.lpsolve, lpSolveAPI, pkgload

Depends R (>= 3.3.0)

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.0.2

Suggests testthat, knitr, rmarkdown, covr, brglm2, AER, ROI.plugin.ecos, ROI.plugin.glpk, ROI.plugin.neos, ROI.plugin.alabama

VignetteBuilder knitr

NeedsCompilation no
check_infinite_estimates

Generic method for checking for infinite estimates

Description

Generic method for checking for infinite estimates

Usage

check_infinite_estimates(object, ...)

Arguments

object a fitted model object (e.g. the result of a glm call).
... other options to be passed to the method.

See Also

check_infinite_estimates.glm
A simple diagnostic of whether the maximum likelihood estimates are infinite

Usage

```r
## S3 method for class 'glm'
check_infinite_estimates(object, nsteps = 20, ...)
```

Arguments

- `object`: the result of a `glm` call.
- `nsteps`: starting from `maxit = 1`, the GLM is refitted for `maxit = 2, maxit = 3, ..., maxit = nsteps`. Default value is 30.
- `...`: currently not used.

Details

`check_infinite_estimates` attempts to identify the occurrence of infinite estimates in GLMs with binomial responses by successively refitting the model. At each iteration the maximum number of allowed IWLS iterations is fixed starting from 1 to `nsteps` (by setting `control = glm.control(maxit = j)`, where `j` takes values 1, ..., `nsteps` in `glm`). For each value of `maxit`, the estimated asymptotic standard errors are divided to the corresponding ones from `control = glm.control(maxit = 1)`. Then, based on the results in Lesaffre & Albert (1989), if the sequence of ratios in any column of the resultant matrix diverges, then complete or quasi-complete separation occurs and the maximum likelihood estimate for the corresponding parameter has value minus or plus infinity.

Value

An object of class `inf_check` that has a `plot` method.

A matrix inheriting from class `inf_check`, with `nsteps` rows and `p` columns, where `p` is the number of model parameters. A `plot` method is provided for `inf_check` objects for the easy inspection of the ratios of the standard errors.

Note

For the definition of complete and quasi-complete separation, see Albert and Anderson (1984). Kosmidis and Firth (2019) prove that the reduced-bias estimator that results by the penalization of the logistic regression log-likelihood by Jeffreys prior takes always finite values, even when some of the maximum likelihood estimates are infinite. The reduced-bias estimates can be computed using the `brglm2` R package.
References

See Also

multinom, detect_separation, brmultinom

Examples

```r
## endometrial data from Heinze & Schemper (2002) (see ?endometrial)
data("endometrial", package = "detectseparation")
endometrial_ml <- glm(HG ~ NV + PI + EH, data = endometrial,
  family = binomial("probit"))
## clearly the maximum likelihood estimate for the coefficient of
## NV is infinite
(estimates <- check_infinite_estimates(endometrial_ml))
plot(estimates)

## Aligator data (Agresti, 2002, Table~7.1)
if (requireNamespace("brglm2", quietly = TRUE)) {
  data("alligators", package = "brglm2")
  all_ml <- brglm2::brmultinom(foodchoice ~ size + lake, weights = round(freq/3),
    data = alligators, type = "ML", ref = 1)
  ## Clearly some estimated standard errors diverge as the number of
  ## Fisher scoring iterations increases
  plot(check_infinite_estimates(all_ml))
  ## Bias reduction the brglm2 R packages can be used to get finite estimates
  all_br <- brglm2::brmultinom(foodchoice ~ size + lake, weights = round(freq/3),
    data = alligators, ref = 1)
  plot(check_infinite_estimates(all_br))
}
```
detect_separation

Method for `glm` that tests for data separation and finds which parameters have infinite maximum likelihood estimates in generalized linear models with binomial responses.

Description

`detect_separation` is a method for `glm` that tests for the occurrence of complete or quasi-complete separation in datasets for binomial response generalized linear models, and finds which of the parameters will have infinite maximum likelihood estimates. `detect_separation` relies on the linear programming methods developed in Konis (2007).

Usage

```r
detect_separation(
  x,
  y,
  weights = rep(1, nobs),
  start = NULL,
  etastart = NULL,
  mustart = NULL,
  offset = rep(0, nobs),
  family = gaussian(),
  control = list(),
  intercept = TRUE,
  singular.ok = TRUE
)
```

```r
detectSeparation(
  x,
  y,
  weights = rep(1, nobs),
  start = NULL,
  etastart = NULL,
  mustart = NULL,
  offset = rep(0, nobs),
  family = gaussian(),
  control = list(),
  intercept = TRUE,
  singular.ok = TRUE
)
```

See Also

`detect_separation`, `check_infinite_estimates`
Arguments

- **x**
 x is a design matrix of dimension $n \times p$.

- **y**
 y is a vector of observations of length n.

- **weights**
 an optional vector of ‘prior weights’ to be used in the fitting process. Should be NULL or a numeric vector.

- **start**
 currently not used.

- **etastart**
 currently not used.

- **mustart**
 currently not used.

- **offset**
 this can be used to specify an a priori known component to be included in the linear predictor during fitting. This should be NULL or a numeric vector of length equal to the number of cases. One or more offset terms can be included in the formula instead or as well, and if more than one is specified their sum is used. See `model.offset`.

- **family**
 a description of the error distribution and link function to be used in the model. For glm this can be a character string naming a family function, a family function or the result of a call to a family function. For glm.fit only the third option is supported. (See `family` for details of family functions.)

- **control**
 a list of parameters controlling separation detection. See `detect_separation_control` for details.

- **intercept**
 logical. Should an intercept be included in the null model?

- **singular.ok**
 logical. If FALSE, a singular model is an error.

Details

detect_separation is a wrapper to the separator_ROI function and separator_lpSolveAPI function (a modified version of the separator function from the **safeBinaryRegression** R package). detect_separation can be passed directly as a method to the glm function. See, examples.

The coefficients method extracts a vector of values for each of the model parameters under the following convention: 0 if the maximum likelihood estimate of the parameter is finite, and Inf or -Inf if the maximum likelihood estimate of the parameter is plus or minus infinity. This convention makes it easy to adjust the maximum likelihood estimates to their actual values by element-wise addition.

detectSeparation is an alias for detect_separation.

Value

A list that inherits from class detect_separation, glm and lm. A print method is provided for detect_separation objects.

Note

For the definition of complete and quasi-complete separation, see Albert and Anderson (1984). Kosmidis and Firth (2019) prove that the reduced-bias estimator that results by the penalization of the logistic regression log-likelihood by Jeffreys prior takes always finite values, even when some of
the maximum likelihood estimates are infinite. The reduced-bias estimates can be computed using the `brglm2` R package.

`detect_separation` was designed in 2017 by Ioannis Kosmidis for the `brglm2` R package, after correspondence with Kjell Konis, and a port of the separator function had been included in `brglm2` under the permission of Kjell Konis.

In 2020, `detect_separation` and `check_infinite_estimates` were moved outside `brglm2` into the dedicated `detectseparation` package. Dirk Schumacher authored the separator_ROI function, which depends on the `ROI` R package and is now the default implementation used for detecting separation.

Author(s)

Ioannis Kosmidis [aut, cre] <ioannis.kosmidis@warwick.ac.uk>, Dirk Schumacher [aut] <mail@dirk-schumacher.net>,
Kjell Konis [ctb] <kjell.konis@me.com>

References

Konis K. (2007). *Linear Programming Algorithms for Detecting Separated Data in Binary Logistic Regression Models*. DPhil. University of Oxford. https://ora.ox.ac.uk/objects/uuid:8f9ee0d0-d78e-4101-9ab4-f9cbeed2a2a

See Also

`glm.fit` and `glm`, `check_infinite_estimates`, `brglm_fit`,

Examples

```r
## endometrial data from Heinze & Schmepher (2002) (see ?endometrial)
data("endometrial", package = "detectseparation")
endometrial_sep <- glm(HG ~ NV + PI + EH, data = endometrial,
  family = binomial("logit"),
  method = "detect_separation")
endometrial_sep
## The maximum likelihood estimate for NV is infinite
summary(update(endometrial_sep, method = "glm.fit"))

## Example inspired by unpublished microeconometrics lecture notes by
## Achim Zeileis [https://eeecon.uibk.ac.at/~zeileis/]
## The maximum likelihood estimate of sourhernyes is infinite
if (requireNamespace("AER", quietly = TRUE)) {
  data("MurderRates", package = "AER")
murder_sep <- glm(I(executions > 0) ~ time + income +
  noncauc + lfp + southern, data = MurderRates,
  family = binomial(), method = "detect_separation")
```

```
detect_separation_control

Auxiliary function for the \texttt{glm} interface when method is \texttt{detect_separation}.

**Description**

Typically only used internally by \texttt{detect_separation} but may be used to construct a control argument.

**Usage**

```r
detect_separation_control(
 implementation = c("ROI", "lpSolveAPI"),
 solver = "lpSolve",
 linear_program = c("primal", "dual"),
 purpose = c("find", "test"),
 tolerance = 1e-04,
 solver_control = list()
)
```

```r
detectSeparationControl(
 implementation = c("ROI", "lpSolveAPI"),
 solver = "lpSolve",
 linear_program = c("primal", "dual"),
 purpose = c("find", "test"),
 tolerance = 1e-04,
 solver_control = list()
)
```

**Arguments**

- `implementation` should the implementation using ROI or the implementation using lpSolveAPI be used? Default is ROI.
The linear program should be solved using the "lpsolve" (using the ROI.plugin.lpsolve package; default) or another solver? Alternative solvers are "glpk", "cbc", "clp", "cplex", "ecos", "gurobi", "scs", "symphony". If ROI.plugin.[solver] is not installed then the user will be prompted to install it before continuing.

The linear program should detect separation solve the "primal" (default) or "dual" linear program for separation detection? Only relevant if implementation = "lpSolveAPI".

The purpose should detect separation simply "test" for separation or also "find" (default) which parameters are infinite? Only relevant if implementation = "lpSolveAPI".

The tolerance maximum absolute variable value from the linear program, before separation is declared. Default is 1e-04.

The solver_control a list with additional control parameters for the "solver". This is solver specific, so consult the corresponding documentation. Default is list() unless solver is "alabama" when the default is list(start = rep(0,p)), where p is the number of parameters.

Value
A list with the supplied linear_program, solver, solver_control, purpose, tolerance, implementation, and the matched separator function (according to the value of implementation).

endometrial
Histology grade and risk factors for 79 cases of endometrial cancer

Description
Histology grade and risk factors for 79 cases of endometrial cancer

Usage
endometrial

Format
A data frame with 79 rows and 4 variables:

NV neovasculization with coding 0 for absent and 1 for present
PI pulsality index of arteria uterina
EH endometrium height
HG histology grade with coding 0 for low grade and 1 for high grade

Source
The packaged data set was downloaded in .dat format from http://www.stat.ufl.edu/~aa/glm/data. The latter link provides the data sets used in Agresti (2015). The endometrial data set was first analyzed in Heinze and Schemper (2002), and was originally provided by Dr E. Asseryanis from the Medical University of Vienna.
lizards

References


See Also

brglm_fit

lizards

Habitat preferences of lizards

Description

The lizards data frame has 23 rows and 6 columns. Variables grahami and opalinus are counts of two lizard species at two different perch heights, two different perch diameters, in sun and in shade, at three times of day.

Usage

lizards

Format

An object of class data.frame with 23 rows and 6 columns.

Details

- grahami. count of grahami lizards
- opalinus. count of opalinus lizards
- height. a factor with levels <5ft, >=5ft
- diameter. a factor with levels <=2in, >2in
- light. a factor with levels sunny, shady
- time. a factor with levels early, midday, late

Source


Originally from


See Also

brglm_fit
Index

*Topic datasets
   endometrial, 9
   lizards, 10

brglm_fit, 7, 10
brmultinom, 4

check_infinite_estimates, 2, 5, 7
check_infinite_estimates.glm, 3
checkInfiniteEstimates
   (check_infinite_estimates.glm), 3
coefficients, 6

detect_separation, 4, 5, 5, 6–9
detect_separation_control, 6, 8
detectSeparation (detect_separation), 5
detectSeparationControl
   (detect_separation_control), 8

endometrial, 9

family, 6

glm, 2, 3, 5–8
glm.fit, 7

lizards, 10

model.offset, 6
multinom, 4

offset, 6

print.detect_separation
   (detect_separation), 5