Package ‘dexterMST’

October 13, 2022

Type  Package
Title  CML and Bayesian Calibration of Multistage Tests
Version 0.9.3
Date  2022-02-14
Maintainer Timo Bechger <tmbechger@gmail.com>
License GPL (>= 2)
URL https://dexter-psychometrics.github.io/dexter/
BugReports https://github.com/dexter-psychometrics/dexter/issues
Encoding UTF-8
Depends R (>= 3.4)
Imports Rcpp, dexter (>= 1.1.4), dplyr, RSQLite, rlang, igraph (>= 1.2.1), tidyr, DBI, crayon, graphics, methods, stats, utils
LinkingTo Rcpp, RcppArmadillo
RoxygenNote 7.1.2
Suggests knitr, rmarkdown, testthat, mirt, ggplot2, Cairo
VignetteBuilder knitr
NeedsCompilation yes
Author Timo Bechger [aut, cre], Jesse Koops [aut], Ivailo Partchev [aut], Gunter Maris [aut], Robert Zwitser [ctb]
Repository CRAN
Date/Publication 2022-02-14 19:40:13 UTC
Description

DexterMST is a generalization of the most important functionality in dexter to multi stage tests. Function names are typically the same as in dexter with ‘_mst’ added. CML calibration of real life mst tests is tricky, especially if one considers the need to condition on the design in combination with data selections and corrections of key errors. DexterMST aims to handle these things automatically and protect the user from making mistakes by working from a local database which enforces some restrictions.

Details

The main features are:

- project databases providing a structure for storing data about persons, items, responses and booklets.
- CML calibration of the extended nominal response model and interaction model.

To learn more about dexterMST, start with the vignette: `vignette('dexterMST', package='dexterMST')`
add_item_properties_mst

**Description**
Add item properties to an dexterMST project

**Usage**
```
add_item_properties_mst(db, item_properties)
```

**Arguments**
- `db` - dexterMST project database
- `item_properties` - data.frame with a column item_id and other columns containing the item properties

**Author(s)**

**Maintainer**: Timo Bechger <tmbechger@gmail.com>

Authors:
- Jesse Koops
- Ivailo Partchev
- Gunter Maris

Other contributors:
- Robert Zwitser [contributor]

**See Also**

Useful links:
- [https://dexter-psychometrics.github.io/dexter/](https://dexter-psychometrics.github.io/dexter/)
- Report bugs at [https://github.com/dexter-psychometrics/dexter/issues](https://github.com/dexter-psychometrics/dexter/issues)
add_person_properties_mst

*Add person properties to a mst project*

**Description**

Add person properties to a mst project

**Usage**

```
add_person_properties_mst(db, person_properties)
```

**Arguments**

- `db`: dextermst project database
- `person_properties`: data.frame with a column person_id and other columns containing the person properties

add_response_data_mst

*Add multistage response data*

**Description**

Multistage response data can be entered in long format for one or multiple booklets simultaneously or in wide format one booklet at a time.

**Usage**

```
add_response_data_mst(db, rsp_data, auto_add_unknown_rules = FALSE)
add_booklet_mst(
  db,
  booklet_data,
  test_id,
  booklet_id,
  auto_add_unknown_rules = FALSE
)```
**Arguments**

- **db**: a dextermst db handle
- **rsp_data**: data.frame with columns (person_id, test_id, booklet_id, item_id, response)
- **auto_add_unknown_rules**: if FALSE, unknown responses (i.e. not defined in the scoring rules) will generate an error and the function will abort. If TRUE unknown responses will be automatically added to the scoring rules with a score of 0
- **booklet_data**: data.frame with a column person_id and other columns which names correspond to item_id’s
- **test_id**: id of a test known in the database
- **booklet_id**: id of a booklet known in the database

**Details**

Users familiar with dexter might expect to be able to enter new booklets here. Because mst tests have a more complicated design that cannot be (easily) derived from the data, in dexterMST the test designs have to be entered beforehand.

**See Also**

- `create_mst_test`

---

**Description**

add scoring rules to an mst project

**Usage**

`add_scoring_rules_mst(db, rules)`

**Arguments**

- **db**: a dextermst db connection
- **rules**: dataframe (item_id, response, item_score), listing all permissible responses to an item and their scores
alter_scoring_rules_mst

*alter scoring rules in an mst project*

**Description**

It is only possible to change item_scores for existing items and responses through this function. Scoring rules can only be changed for items that are in the last module of a (mst) test.

**Usage**

```r
alter_scoring_rules_mst(db, rules)
```

**Arguments**

- `db`: a dextermsdb connection
- `rules`: data.frame (item_id, response, item_score), see dexter

**close_mst_project**

*Close an mst project*

**Description**

Close an mst project

**Usage**

```r
close_mst_project(db)
```

**Arguments**

- `db`: dexterms project db connection
create_mst_project

create a new (empty) mst project

Description

create a new (empty) mst project

Usage

create_mst_project(pth)

Arguments

pth path and filename to save project file

Value

handle to project database

create_mst_test

Define a new multi stage test

Description

Before you can enter data, dexterMST needs to know the design of your test.

Usage

create_mst_test(
  db,
  test_design,
  routing_rules,
  test_id,
  routing = c("all", "last")
)

Arguments

db output of open_mst_project or create_mst_project
test_design data.frame with columns item_id, module_id, item_position
routing_rules output of mst_rules
test_id id of the mst test
routing all or last routing (see details)
Details

In dexterMST we use the following terminology:

**test** collection of modules and rules to go from one module to the other. A test must have one starting module.

**booklet** a specific path through a mst test.

**module** a block of items that is always administered together. Each item has a specific position in a module.

**routing rules** rules to go from one module to another based on score on the current and possibly previous modules.

Additionally, there are two possible types of routing:

**all** the routing rules are based on the sum of the current and previous modules.

**last** the routing rules are based only on the current module.

The type of routing must be defined for a test as a whole so it is not possible to mix routing types. In CML (as opposed to MML) the routing rules are actually used in the calibration so it is important they are correctly specified. DexterMST includes multiple checks, both when defining the test and when entering data, to make sure your routing rules are valid and your data conform to them.

Examples

```r
# extended example
# we:
# 1) define an mst design
# 2) simulate mst data
# 3) create a project, enter scoring rules and define the MST test
# 4) do an analysis

library(dplyr)

items = data.frame(item_id=sprintf("item%02i",1:70), item_score=1, delta=sort(runif(70,-1,1)))

design = data.frame(item_id=sprintf("item%02i",1:70),
                    module_id=rep(c("M4", "M2", "M5", "M1", "M6", "M3", "M7"),each=10))

routing_rules = routing_rules = mst_rules(
  `124` = M1[0:5] ---+ M2[0:10] ---+ M4,

theta = rnorm(3000)

dat = sim_mst(items, theta, design, routing_rules,'all')
dat$test_id='sim_test'
dat$response=dat$item_score

scoring_rules = data.frame(
```
design_plot

item_id = rep(items$item_id,2),
item_score= rep(0:1,each=nrow(items)),
response= rep(0:1,each=nrow(items))) # dummy respons

db = create_mst_project(":memory:")
add_scoring_rules_mst(db, scoring_rules)
create_mst_test(db,
test_design = design,
routing_rules = routing_rules,
test_id = 'sim_test',
routing = "all")
add_response_data_mst(db, dat)
design_plot(db)
f = fit_enorm_mst(db)
head(coef(f))
abl = ability(get_responses_mst(db), f) %>%
inner_join(tibble(person_id=as.character(1:3000), theta.sim=theta), by='person_id')
plot(abl$theta, abl$theta.sim)
abl = filter(abl, is.finite(theta))
cor(abl$theta, abl$theta.sim)

---

**design_plot**

Plot the routing design of mst tests

**Description**

Plot the routing design of mst tests

**Usage**

design_plot(db, predicate = NULL, by_booklet = FALSE, ...)

**Arguments**

- **db**
  - dexterMST project database connection
- **predicate**
  - logical predicate to select data (tests, booklets, responses) to include in the design plot
- **by_booklet**
  - plot and color the paths in a test per booklet
- **...**
  - further arguments to `plot.igraph`
Details

You can use this function to plot routing designs for tests before or after they are administered. There are some slight differences.

If you have entered response data already, the thickness of the line will indicate the numbers of respondents that took the respective paths through the test. Paths not taken will not be drawn. You can use the predicate (see examples) to include or exclude items, tests and respondents.

If you have not entered response data, all lines will have equal thickness. Variables you can use in the predicate are limited to test_id and booklet_id in this case.

Examples

```r
## Not run:
# plot test designs for all tests in the project
design_plot(db)

# plot design for a test with id 'math'
design_plot(db, test_id == 'math')

# plot design for test math with item 'circumference' turned off
# (this plot will only work if you have response data)
design_plot(db, test_id == 'math' & item_id != 'circumference')

## End(Not run)
```

DIF_mst

**Description**

Compares two parameter objects and produces a test for DIF based on equality of relative item difficulties category locations

**Usage**

```r
DIF_mst(db, person_property, predicate = NULL)
```

**Arguments**

- `db` an dexterMST db handle
- `person_property` name of a person property defined in your dexterMST project
- `predicate` logical predicate to select data to include in the analysis
References


Examples

## Not run:

dif = DIF_mst(db, person_property = 'test_mode')
print(dif)
plot(dif)

## End(Not run)

fit_enorm_mst

Fit the extended nominal response model on MST data

Description

Fits an Extended NOminal Response Model (ENORM) using conditional maximum likelihood (CML) or a Gibbs sampler for Bayesian estimation; both adapted for MST data

Usage

fit_enorm_mst(
  db,
  predicate = NULL,
  fixed_parameters = NULL,
  method = c("CML", "Bayes"),
  nDraws = 1000
)

Arguments

db an dextermst db handle
predicate logical predicate to select data to include in the analysis, see details
fixed_parameters data.frame with columns ‘item_id’, ‘item_score’ and ‘beta’
method If CML, the estimation method will be Conditional Maximum Likelihood. If Bayes, a Gibbs sampler will be used to produce a sample from the posterior.
nDraws Number of Gibbs samples when estimation method is Bayes.
Details

You can use the predicate to include or omit responses from the analysis, e.g. `p = fit_enorm_mst(db, item_id != 'some_item' & student_birthdate > '2005-01-01')`

DexterMST will automatically correct the routing rules for the purpose of the current analysis. There are some caveats though. Predicates that lead to many different designs, e.g. a predicate like `response != 'NA'` (which is perfectly valid but can potentially create almost as many tests as there are students) might take very long to compute.

Predicates that remove complete modules from a test, e.g. `module_nbr !=2 or module_id != 'RU4'` will cause an error and should be avoided.

Value

object of type 'mst_enorm'. Can be cast to a data.frame of item parameters using function 'coef' or used in dexter's ability functions

References


---

**fit_inter_mst**

*Fit the interaction model on a single multi-stage booklet*

Description

Fit the interaction model on a single multi-stage booklet

Usage

```r
fit_inter_mst(db, test_id, booklet_id)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>db</td>
<td>a db handle</td>
</tr>
<tr>
<td>test_id</td>
<td>id of the test as defined in <code>create_mst_test</code></td>
</tr>
<tr>
<td>booklet_id</td>
<td>id of the booklet as defined in <code>create_mst_test</code></td>
</tr>
</tbody>
</table>
**get_booklets_mst**

*retrieve information from a mst database*

**Description**

retrieve information from a mst database

**Usage**

```r
get_booklets_mst(db)
get_design_mst(db)
get_routing_rules_mst(db)
get_scoring_rules_mst(db)
get_items_mst(db)
get_persons_mst(db)
```

**Arguments**

- **db**
  - dexterMST project database connection

---

**get_responses_mst**

*Extract response data from a dexterMST database*

**Description**

Extract response data from a dexterMST database

**Usage**

```r
get_responses_mst(
  db,
  predicate = NULL,
  columns = c("person_id", "test_id", "booklet_id", "item_id", "item_score")
)
```

**Arguments**

- **db**
  - a dexterMST project database connection
- **predicate**
  - an expression to select data on
- **columns**
  - the columns you wish to select, can include any column in the project
**Value**

a data.frame of responses

---

**import_from_dexter**

*import data from a dexter project*

---

**Description**

This function will import items, scoring rules, persons, test designs and responses from a dexter database into the dexterMST database.

**Usage**

```r
import_from_dexter(db, dexter_db, dx_response_prefix = "")
```

**Arguments**

- `db`: dextermst project db connection
- `dexter_db`: path to a dexter database file or open dexter db connection
- `dx_response_prefix`: string to prefix responses from dexter with (usually not necessary, see details)

**Details**

DexterMST has no problem calibrating data from linear tests. However, dexter and dexterMST have differently structured project databases. If you already have response data from linear tests in a dexter database, you can easily import it into your dexterMST database from there.

The dexterMST variables `test_id`, `module_id` and `booklet_id` will all be set to the dexter variable `booklet_id` (i.e. a linear test becomes a multistage test with one booklet and one module only).

It is assumed that items with equal id’s in your dexter and dexterMST project refer to the same items. If an item in dexter has different score categories compared to an existing item with the same `item_id` in dexterMST an error will be generated. If the same response to the same item has a different score, this will also generate an error. However, it is possible for an item in dexter to have scoring rules for responses not defined in dexterMST and vice versa.

In the unusual and unfortunate situation that the same response to the same item should have a different score in dexter than in dexterMST, you can use the parameter `dx_response_prefix` to prefix the responses in dexter with some unique combination of characters, e.g. "dexter". In practice this sometimes happens when old archived data is only available in scored form (i.e. response 0 has score 0, response 1 has score 1) and new data is available in raw form but the actual response can also be 0 or 1, etc. causing a conflict.
**mst\_rules**

## Examples

```r
## Not run:
library(dexter)
dbDex = start_new_project(verbAggrRules, "verbAggression.db",
    person_properties=list(gender="unknown"))
add_booklet(dbDex, verbAggrData, "agg")
add_item_properties(dbDex, verbAggrProperties)
db = create_mst_project("
    import_from_dexter(db, dbDex)
f_mst = fit_enorm_mst(db)
f_dexter = fit_enorm(dbDex)
close_mst_project(db)
close_project(dbDex)

## End(Not run)
```

---

### mst\_rules

#### Define routing rules

#### Description

Define routing rules for use in `create_mst_test`

#### Usage

```r
mst\_rules(...)  
```

#### Arguments

... routing rules defined using a dot-like syntax, read → as an arrow and [:] as a range of score to move to the next stage

#### Details

Each scoring rule in ‘...’ defines one or more routing rules together making up a booklet. For example, ‘route1 = a[0:5] → d[9:15] → f’ means a start at module ‘a’, continue to module ‘d’ when the score on ‘a’ is between 0 and 5 (inclusive) and continue to ‘g’ when the score on modules ‘a + b’ is between 0 and 8 (for ‘All’ routing) or the score on just module ‘b’ is between 0 and 8 (for ‘Last’ routing). ‘route1’ becomes the id of the specific path or booklet, which must be supplied with the data later.

A routing design for a linear (non-multistage) booklet can simply be entered as `mst\_rules(my\_booklet = my\_single\_module)`.

#### Value

data.frame with columns...
See Also

- `create_mst_test` for a description of all and last routing and `add_response_data_mst` to see how to enter data

Examples

```r
# a (complicated) three stage (1-3-3) routing design with 9 booklets and 7 modules

routing_rules = mst_rules(
  bk1 = M1[0:61] ---+ M2[0:136] ---+ M5,
  bk2 = M1[0:61] ---+ M2[137:183] ---+ M6,
  bk3 = M1[0:61] ---+ M2[184:Inf] ---+ M7,
  bk4 = M1[62:86] ---+ M3[0:98] ---+ M5,
  bk5 = M1[62:86] ---+ M3[99:149] ---+ M6,
  bk7 = M1[87:Inf] ---+ M4[0:98] ---+ M5,
  bk8 = M1[87:Inf] ---+ M4[99:130] ---+ M6,
```

### open_mst_project

**open an existing mst project**

**Description**

open an existing mst project

**Usage**

```r
open_mst_project(pth)
```

**Arguments**

- `pth` path to project file

### plot.DIF_stats_mst

**plot method for DIF_mst**

**Description**

plot method for DIF_mst

**Usage**

```r
# S3 method for class 'DIF_stats_mst'
plot(x, items = NULL, itemsX = items, itemsY = items, ...)
```
plot.im_mst

Arguments

x  
object produced by DIF_mst

items  
character vector of item id’s for a subset of the plot. Useful if you have many items. If NULL all items are plotted.

itemsX  
character vector of item id’s for the X axis

itemsY  
character vector of item id’s for the Y axis

...  
further arguments to plot

plot.im_mst  
plots for the interaction model

Description

plots for the interaction model

Usage

## S3 method for class ‘im_mst’
plot(x, item_id = NULL, show.observed = TRUE, curtains = 10, zoom = FALSE, ...)

Arguments

x  
output of fit_inter_mst

item_id  
id of the item to plot

show.observed  
plot the observed mean item scores for each test score

curtains  
percentage of most extreme values to cover with curtains, 0 to omit curtains

zoom  
if TRUE, limits the plot area to the test score range allowed by the routing rules

...  
further arguments to plot

profile_tables_mst  
Profile analysis

Description

Expected and observed domain scores per booklet and test score

Usage

profile_tables_mst(parms, domains, item_property)
**Arguments**

- **parms**: An object returned by `fit_enorm_mst`.
- **domains**: data.frame with column item_id and a column whose name matches ‘item_property’.
- **item_property**: the name of the item property used to define the domains.

**Value**

a data.frame with expected score per domain, booklet and booklet_score

---

**sim_mst**  
*Simulate multistage testing data*

**Description**

Simulates data from an extended nominal response model according to an mst design.

**Usage**

```r
sim_mst(pars, theta, test_design, routing_rules, routing = c("last", "all"))
```

**Arguments**

- **pars**: item parameters, can be either: a data.frame with columns item_id, item_score, beta or a dexter or dexterMST parameters object.
- **theta**: vector of person abilities.
- **test_design**: data.frame with columns item_id, module_id.
- **routing_rules**: output of `mst_rules`.
- **routing**: 'all' or 'last' routing.
Index

ability, 12
add_booklet_mst
   (add_response_data_mst), 4
add_item_properties_mst, 3
add_person_properties_mst, 4
add_response_data_mst, 4, 16
add_scoring_rules_mst, 5
alter_scoring_rules_mst, 6
close_mst_project, 6
create_mst_project, 7, 7
create_mst_test, 5, 7, 12, 15, 16
design_plot, 9
dexterMST (dexterMST-package), 2
dexterMST-package, 2
DIF_mst, 10
fit_enorm_mst, 11, 18
fit_inter_mst, 12, 17
get_booklets_mst, 13
get_design_mst (get_booklets_mst), 13
get_items_mst (get_booklets_mst), 13
get_persons_mst (get_booklets_mst), 13
get_responses_mst, 13
get_routing_rules_mst
   (get_booklets_mst), 13
get_scoring_rules_mst
   (get_booklets_mst), 13
import_from_dexter, 14
mst_rules, 7, 15, 18
open_mst_project, 7, 16
plot.DIF_stats_mst, 16
plot.igraph, 9
plot.im_mst, 17
profile_tables_mst, 17
sim_mst, 18