Package ‘dfms’

April 3, 2023

Version 0.2.1

Title Dynamic Factor Models

Description Efficient estimation of Dynamic Factor Models using the Expectation Maximization (EM) algorithm or Two-Step (2S) estimation, supporting datasets with missing data. The estimation options follow advances in the econometric literature: either running the Kalman Filter and Smoother once with initial values from PCA - 2S estimation as in Doz, Giannone and Reichlin (2011) <doi:10.1016/j.jeconom.2011.02.012> - or via iterated Kalman Filtering and Smoothing until EM convergence - following Doz, Giannone and Reichlin (2012) <doi:10.1162/REST_a_00225> - or using the adapted EM algorithm of Banbura and Modugno (2014) <doi:10.1002/jae.2306>, allowing arbitrary patterns of missing data. The implementation makes heavy use of the 'Armadillo' C++ library and the 'collapse' package, providing for particularly speedy estimation. A comprehensive set of methods supports interpretation and visualization of the model as well as forecasting. Information criteria to choose the number of factors are also provided - following Bai and Ng (2002) <doi:10.1111/1468-0262.00273>.

URL https://sebkrantz.github.io/dfms/

BugReports https://github.com/SebKrantz/dfms/issues

Depends R (>= 3.3.0)

Imports Rcpp (>= 1.0.1), collapse (>= 1.8.0)

LinkingTo Rcpp, RcppArmadillo

Suggests xts, vars, magrittr, testthat (>= 3.0.0), knitr, rmarkdown, covr

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.1.2
Description

Quickly estimate a VAR(p) model using Armadillo’s inverse function.

Usage

\texttt{.VAR(x, p = 1L)}

Arguments

\begin{itemize}
\item \texttt{x} \hspace{1cm} data numeric matrix with time series in columns - without missing values.
\item \texttt{p} \hspace{1cm} positive integer. The lag order of the VAR.
\end{itemize}
Value

A list containing matrices $Y = x[-(1:p),]$, X which contains lags 1 - p of x combined column-wise, A which is the $np \times n$ transition matrix, where n is the number of series in x, and the VAR residual matrix $res = Y - X \times A$.

A list with the following elements:

- Y : $x[-(1:p),]$.
- X : lags 1 - p of x combined column-wise.
- A : $np \times n$ transition matrix, where n is the number of series in x.
- res : VAR residual matrix: $Y - X \times A$.

Examples

```r
var = .VAR(diff(EuStockMarkets), 3)
str(var)
var$A
rm(var)
```

Description

Matrix inverse and pseudo-inverse by the Armadillo C++ library.

Usage

```r
ainv(x)
apinv(x)
```

Arguments

- `x` : a numeric matrix, must be square for `ainv`.

Value

The matrix-inverse or pseudo-inverse.

Examples

```r
ainv(crossprod(diff(EuStockMarkets)))
```
as.data.frame.dfm

Extract Factor Estimates in a Data Frame

Description

Extract Factor Estimates in a Data Frame

Usage

```r
## S3 method for class 'dfm'
as.data.frame(
x,
..., 
method = "all",
pivot = c("long", "wide.factor", "wide.method", "wide", "t.wide"),
time = seq_row(x$F_pca),
stringsAsFactors = TRUE
)
```

Arguments

- **x**: an object class 'dfm'.
- **...**: not used.
- **method**: character. The factor estimates to use: any of "qml", "zs", "pca" (multiple can be supplied) or "all" for all estimates.
- **pivot**: character. The orientation of the frame: "long", "wide.factor" or "wide.method", "wide" or "t.wide".
- **time**: a vector identifying the time dimension, or NULL to omit a time variable.
- **stringsAsFactors**: make factors from method and factor identifiers. Same as option to `as.data.frame.table`.

Value

A data frame of factor estimates.

Examples

```r
collection(xts)
# Fit DFM with 3 factors and 3 lags in the transition equation
mod = DFM(diff(BM14_H), r = 3, p = 3)

# Taking a single estimate:
print(head(as.data.frame(mod, method = "qml")))
print(head(as.data.frame(mod, method = "qml", pivot = "wide")))

# Adding a proper time variable
```
time = index(BM14_M)[-1L]
print(head(as.data.frame(mod, method = "qml", time = time)))

All estimates: different pivoting methods
for (pv in c("long", "wide.factor", "wide.method", "wide", "t.wide")) {
 cat("pivot = ", pv, "
"
 print(head(as.data.frame(mod, pivot = pv, time = time), 3))
}

BM14_Models

Euro Area Macroeconomic Data from Banbura and Modugno 2014

Description

A data extract from BM 2014 replication files. Some proprietary series (mostly PMI’s) are excluded. The dataset BM14_Models provides information about all series and their inclusion in the 'small', 'medium' and 'large' sized dynamic factor models estimated by BM 2014. The actual data is contained in *xts* format in BM14_M for monthly data and BM14_Q for quarterly data.

Usage

BM14_Models
BM14_M
BM14_Q

Format

BM14_Models is a data frame with 101 obs. (series) and 8 columns:

- **series**: BM14 series code (converted to snake case for R)
- **label**: BM14 series label
- **code**: original series code from data source
- **freq**: series frequency
- **log_trans**: logical indicating whether the series was transformed by the natural log before differencing. Note that all data are provided in untransformed levels, and all data was (log-)differenced by BM14 before estimation.
- **small**: logical indicating series included in the 'small' model of BM14. Proprietary series are excluded.
- **medium**: logical indicating series included in the 'medium' model of BM14. Proprietary series are excluded.
- **large**: logical indicating series included in the 'large' model of BM14. This comprises all series, thus the variable is redundant but included for completeness. Proprietary series are excluded.
Source

Examples

```r
library(magrittr)
library(xts)

# Constructing the database for the large model
BM14 = merge(BM14_M, BM14_Q)
BM14[, BM14_Models$log_trans] %<>% log()
BM14[, BM14_Models$freq == "M"] %<>% diff()
BM14[, BM14_Models$freq == "Q"] %<>% diff(3)

# Small Model Database
head(BM14[, BM14_Models$small])

# Medium-Sized Model Database
head(BM14[, BM14_Models$medium])
```

DFM Estimate a Dynamic Factor Model

Description
Efficient estimation of a Dynamic Factor Model via the EM Algorithm - on stationary data with time-invariant system matrices and classical assumptions, while permitting missing data.

Usage

```
DFM(
  X,
  r,
  p = 1L,
  ...
, idio.ar1 = FALSE,
  rQ = c("none", "diagonal", "identity"),
  rR = c("diagonal", "identity", "none"),
  em.method = c("auto", "DGR", "BM", "none"),
  min.iter = 25L,
  max.iter = 100L,
  tol = 1e-04,
  pos.corr = TRUE,
  check.increased = FALSE
)
```
Arguments

\(X \) a \(T \times n \) numeric data matrix or frame of stationary time series. May contain missing values.

\(r \) integer. number of factors.

\(p \) integer. number of lags in factor VAR.

... (optional) arguments to \texttt{tsnarmimp}.

\(\text{idio.ar1} \) logical. Model observation errors as AR(1) processes: \(e_t = \rho e_{t-1} + v_t \). \textit{Note} that this substantially increases computation time, and is generally not needed if \(n \) is large (>30). See theoretical vignette for details.

\(\text{rQ} \) character. restrictions on the state (transition) covariance matrix (Q).

\(\text{rR} \) character. restrictions on the observation (measurement) covariance matrix (R).

\(\text{em.method} \) character. The implementation of the Expectation Maximization Algorithm used. The options are:

"auto" Automatic selection: "BM" if \texttt{anyNA(X)}, else "DGR".

"DGR" The classical EM implementation of Doz, Giannone and Reichlin (2012). This implementation is efficient and quick, but requires \(n \) to be large (>30).

"BM" The modified EM algorithm of Banbura and Modugno (2014) which also accounts for missing data in the EM iterations. Optimal for datasets with systematically missing data e.g. datasets with ragged edges or series at different frequencies.

"none" Performs no EM iterations and just returns the Two-Step estimates from running the data through the Kalman Filter.

\(\text{min.iter} \) integer. Minimum number of EM iterations (to ensure a convergence path).

\(\text{max.iter} \) integer. Maximum number of EM iterations.

\(\text{tol} \) numeric. EM convergence tolerance.

\(\text{pos.corr} \) logical. Increase the likelihood that factors correlate positively with the data, by scaling the eigenvectors such that the principal components (used to initialize the Kalman Filter) co-vary positively with the row-means of the standardized data.

\(\text{check.increased} \) logical. Check if likelihood has increased. Passed to \texttt{em_converged}. If \texttt{TRUE}, the algorithm only terminates if convergence was reached with decreasing likelihood.

Details

This function efficiently estimates a Dynamic Factor Model with the following classical assumptions:

1. Linearity
2. Idiosyncratic measurement (observation) errors (\(R \) is diagonal)
3. No direct relationship between series and lagged factors (\textit{ceteris paribus} contemporaneous factors)
4. No relationship between lagged error terms in the either measurement or transition equation (no serial correlation), unless explicitly modeled as AR(1) processes using `idio.ar1 = TRUE`.

Factors are allowed to evolve in a VAR\((p)\) process, and data is internally standardized (scaled and centered) before estimation (removing the need of intercept terms). By assumptions 1-4, this translates into the following dynamic form:

\[
\begin{align*}
x_t &= C_0 f_t + e_t \sim N(0, R) \\
f_t &= \sum_{j=1}^{p} A_j f_{t-j} + u_t \sim N(0, Q_0)
\end{align*}
\]

where the first equation is called the measurement or observation equation and the second equation is called transition, state or process equation, and

- \(n\) number of series in \(x_t\) (\(r\) and \(p\) as the arguments to \texttt{DFM}).
- \(x_t\) \(n \times 1\) vector of observed series at time \(t\): \((x_{1t}, \ldots, x_{nt})'\). Some observations can be missing.
- \(f_t\) \(r \times 1\) vector of factors at time \(t\): \((f_{1t}, \ldots, f_{rt})'\).
- \(C_0\) \(n \times r\) measurement (observation) matrix.
- \(A_j\) \(r \times r\) state transition matrix at lag \(j\).
- \(Q_0\) \(r \times r\) state covariance matrix.
- \(R\) \(n \times n\) measurement (observation) covariance matrix. It is diagonal by assumption 2 that \(E[x_{it}|x_{-i,t}, x_{i,t-1}, \ldots, f_{it}, f_{i,t-1}, \ldots] = E[x_i|f_i]\) (no relationship of observed series with lagged factors given contemporaneous factors).

This model can be estimated using a classical form of the Kalman Filter and the Expectation Maximization (EM) algorithm, after transforming it to State-Space (stacked, VAR(1)) form:

\[
\begin{align*}
x_t &= C F_t + e_t \sim N(0, R) \\
F_t &= A F_{t-1} + u_t \sim N(0, Q)
\end{align*}
\]

where

- \(n\) number of series in \(x_t\) (\(r\) and \(p\) as the arguments to \texttt{DFM}).
- \(x_t\) \(n \times 1\) vector of observed series at time \(t\): \((x_{1t}, \ldots, x_{nt})'\). Some observations can be missing.
- \(F_t\) \(rp \times 1\) vector of stacked factors at time \(t\): \((f_{1t}, \ldots, f_{rt}, f_{1,t-1}, \ldots, f_{r,t-1}, \ldots, f_{1,t-p}, \ldots, f_{r,t-p})'\).
- \(C\) \(n \times rp\) observation matrix. Only the first \(n \times r\) terms are non-zero, by assumption 3 that \(E[x_i|F_t] = E[x_i|f_i]\) (no relationship of observed series with lagged factors given contemporaneous factors).
- \(A\) stacked \(rp \times rp\) state transition matrix consisting of 3 parts: the top \(r \times rp\) part provides the dynamic relationships captured by \((A_1, \ldots, A_p)\) in the dynamic form, the terms \(A[(r+1):rp, 1:(rp-r)]\) constitute an \((rp-r) \times (rp-r)\) identity matrix mapping all lagged factors to their known values at times \(t\). The remaining part \(A[(rp-r+1):rp, (rp-r+1):rp]\) is an \(r \times r\) matrix of zeros.
Q \(rp \times rp \) state covariance matrix. The top \(r \times r \) part gives the contemporaneous relationships, the rest are zeros by assumption.

R \(n \times n \) observation covariance matrix. It is diagonal by assumption 2 and identical to R as stated in the dynamic form.

Value

A list-like object of class 'dfm' with the following elements:

- \(X_{\text{imp}} \) \(T \times n \) matrix with the imputed and standardized (scaled and centered) data - with attributes attached allowing reconstruction of the original data:

 - "stats" is a \(n \times 5 \) matrix of summary statistics of class "qsu" (see qsu).
 - "missing" is a \(T \times n \) logical matrix indicating missing or infinite values in the original data (which are imputed in \(X_{\text{imp}} \)).
 - "attributes" contains the attributes of the original data input.
 - "is.list" is a logical value indicating whether the original data input was a list / data frame.

\[\text{eigen} = \text{eigen} (\text{cov}(X_{\text{imp}})) \].

\[F_{\text{pca}} \] \(T \times r \) matrix of principal component factor estimates - \(X_{\text{imp}} \%\% \text{eigen} \$\text{vectors} \).

\[P_0 \] \(r \times r \) initial factor covariance matrix estimate based on PCA results.

\[F_{\text{2s}} \] \(T \times r \) matrix two-step factor estimates as in Doz, Giannone and Reichlin (2011) - obtained from running the data through the Kalman Filter and Smoother once, where the Filter is initialized with results from PCA.

\[P_{\text{2s}} \] \(r \times r \times T \) covariance matrices of two-step factor estimates.

\[F_{\text{qml}} \] \(T \times r \) matrix of quasi-maximum likelihood factor estimates - obtained by iteratively Kalman Filtering and Smoothing the factor estimates until EM convergence.

\[P_{\text{qml}} \] \(r \times r \times T \) covariance matrices of QML factor estimates.

A \(r \times rp \) factor transition matrix.

C \(n \times r \) observation matrix.

Q \(r \times r \) state (error) covariance matrix.

R \(n \times n \) observation (error) covariance matrix.

e \(T \times n \) estimates of observation errors \(e_t \). Only available if \(\text{idio.ar1} = \text{TRUE} \).

\[\text{rho} \] \(n \times 1 \) estimates of AR(1) coefficients (\(\rho \)) in observation errors: \(e_t = \rho e_{t-1} + \nu_t \). Only available if \(\text{idio.ar1} = \text{TRUE} \).

loglik vector of log-likelihoods - one for each EM iteration. The final value corresponds to the log-likelihood of the reported model.
tol The numeric convergence tolerance used.
converged single logical valued indicating whether the EM algorithm converged (within max.iter iterations subject to tol).
anyNA single logical valued indicating whether there were any (internal) missing values in the data (determined after removal of rows with too many missing values). If FALSE, X_imp is simply the original data in matrix form, and does not have the "missing" attribute attached.
rm.rows vector of any cases (rows) that were removed beforehand (subject to max.missing and na.rm.method). If no cases were removed the slot is NULL.
em.method The EM method used.
call call object obtained from match.call().

References

Examples

```r
library(magrittr)
library(xts)
library(vars)

# BM14 Replication Data. Constructing the database:
BM14 = merge(BM14_M, BM14_Q)
BM14[, BM14_Models$log_trans] %<>% log()
BM14[, BM14_Models$freq == "M"] %<>% diff()
BM14[, BM14_Models$freq == "Q"] %<>% diff(3)

### Small Model ---------------------------------------
# IC for number of factors
IC_small = ICr(BM14[, BM14_Models$small], max.r = 5)
plot(IC_small)
screepplot(IC_small)

# I take 2 factors. Now number of lags
VARselect(IC_small$F_pca[, 1:2])

# Estimating the model with 2 factors and 3 lags
```
dfm_small = DFM(BM14[, BM14_Models$small], 2, 3)

Inspecting the model
summary(dfm_small)
plot(dfm_small) # Factors and data
plot(dfm_small, method = "all", type = "individual") # Factor estimates
plot(dfm_small, type = "residual") # Residuals from factor predictions

10 periods ahead forecast
plot(predict(dfm_small), xlim = c(300, 370))

Medium-Sized Model ---------------------------------

IC for number of factors
IC_medium = ICr(BM14[, BM14_Models$medium])
plot(IC_medium)
screeplot(IC_medium)

I take 3 factors. Now number of lags
VARselect(IC_medium$F_pca[, 1:3])

Estimating the model with 3 factors and 3 lags
dfm_medium = DFM(BM14[, BM14_Models$medium], 3, 3)

Inspecting the model
summary(dfm_medium)
plot(dfm_medium) # Factors and data
plot(dfm_medium, method = "all", type = "individual") # Factor estimates
plot(dfm_medium, type = "residual") # Residuals from factor predictions

10 periods ahead forecast
plot(predict(dfm_medium), xlim = c(300, 370))

Large Model ---------------------------------

IC for number of factors
IC_large = ICr(BM14)
plot(IC_large)
screeplot(IC_large)

I take 6 factors. Now number of lags
VARselect(IC_large$F_pca[, 1:6])

Estimating the model with 6 factors and 3 lags
dfm_large = DFM(BM14, 6, 3)

Inspecting the model
summary(dfm_large)
plot(dfm_large) # Factors and data
plot(dfm_large, method = "all", type = "individual") # Factor estimates
plot(dfm_large, type = "residual") # Residuals from factor predictions
10 periods ahead forecast
plot(predict(dfm_large), xlim = c(300, 370))

em_converged
Convergence Test for EM-Algorithm

Description

Convergence Test for EM-Algorithm

Usage

```r
em_converged(loglik, previous_loglik, tol = 1e-04, check.increased = FALSE)
```

Arguments

- `previous_loglik`: numeric. Value of the log-likelihood function at the previous iteration.
- `tol`: numerical. The tolerance of the test. If |LL(t) - LL(t-1)| / avg < tol, where avg = (|LL(t)| + |LL(t-1)|)/2, then algorithm has converged.
- `check.increased`: logical. Check if likelihood has increased.

Value

A logical statement indicating whether EM algorithm has converged. If `check.increased` = TRUE, a vector with 2 elements indicating the convergence status and whether the likelihood has decreased.

Examples

```r
em_converged(1001, 1000)
em_converged(10001, 10000)
em_converged(10001, 10000, check = TRUE)
em_converged(10000, 10001, check = TRUE)
```
Description

(Fast) Fixed-Interval Smoother (Kalman Smoother)

Usage

FIS(A, F, F_pred, P, P_pred, F_0 = NULL, P_0 = NULL)

Arguments

A transition matrix \((rp \times rp)\).

F state estimates \((T \times rp)\).

F_pred state predicted estimates \((T \times rp)\).

P variance estimates \((rp \times rp \times T)\).

P_pred predicted variance estimates \((rp \times rp \times T)\).

F_0 initial state vector \((rp \times 1)\) or empty (NULL).

P_0 initial state covariance \((rp \times rp)\) or empty (NULL).

Details

The Kalman Smoother is given by:

\[
J_t = P_tA + inv(P_{pred,t+1})
\]

\[
F_{smooth,t} = F_t + J_t (F_{smooth,t+1} - F_{pred,t+1})
\]

\[
P_{smooth,t} = P_t + J_t (P_{smooth,t+1} - P_{pred,t+1})J_t'
\]

The initial smoothed values for period \(t = T\) are set equal to the filtered values. If \(F_0\) and \(P_0\) are supplied, the smoothed initial conditions \((t = 0\) values\) are also calculated and returned. For further details see any textbook on time series such as Shumway & Stoffer (2017), which provide an analogous R implementation in \texttt{astsa::Ksmooth0}.

Value

Smoothed state and covariance estimates, including initial \((t = 0)\) values.

\textbf{F_smooth} \quad T \times rp \text{ smoothed state vectors, equal to the filtered state in period } T.

\textbf{P_smooth} \quad rp \times rp \times T \text{ smoothed state covariance, equal to the filtered covariance in period } T.

\textbf{F_smooth_0} \quad 1 \times rp \text{ initial smoothed state vectors, based on } F_0.

\textbf{P_smooth_0} \quad rp \times rp \text{ initial smoothed state covariance, based on } P_0.
ICr

Information Criteria to Determine the Number of Factors (r)

Description

Minimizes 3 information criteria proposed by Bai and Ng (2002) to determine the optimal number of factors r* to be used in an approximate factor model. A Screeplot can also be computed to eyeball the number of factors in the spirit of Onatski (2010).

Usage

ICr(X, max.r = min(20, ncol(X) - 1))

S3 method for class 'ICr'
print(x, ...)

S3 method for class 'ICr'
plot(x, ...)

S3 method for class 'ICr'
screeplot(x, type = "pve", show.grid = TRUE, max.r = 30, ...)

Arguments

- **X**
a T x n numeric data matrix or frame of stationary time series.
- **max.r**integer. The maximum number of factors for which IC should be computed (or eigenvalues to be displayed in the screeplot).
- **x**an object of type 'ICr'.
- **...**further arguments to ts.plot or plot.
- **type**character. Either "ev" (eigenvalues), "pve" (percent variance explained), or "cum.pve" (cumulative PVE). Multiple plots can be requested.
- **show.grid**logical. TRUE shows gridlines in each plot.

See Also

SKF SKFS

Examples

See ?SKFS

References

Details

Following Bai and Ng (2002) and De Valk et al. (2019), let \(NSSR(r) \) be the normalized sum of squared residuals \(SSR(r)/(n \times T) \) when \(r \) factors are estimated using principal components. Then the information criteria can be written as follows:

\[
IC_{r1} = \ln(NSSR(r)) + r \left(\frac{n + T}{nT} \right) + \ln \left(\frac{nT}{n + T} \right)
\]

\[
IC_{r2} = \ln(NSSR(r)) + r \left(\frac{n + T}{nT} \right) + \ln(\min(n, T))
\]

\[
IC_{r3} = \ln(NSSR(r)) + r \left(\frac{\ln(\min(n, T))}{\min(n, T)} \right)
\]

The optimal number of factors \(r^* \) corresponds to the minimum IC. The three criteria are are asymptotically equivalent, but may give significantly different results for finite samples. The penalty in \(IC_{r2} \) is highest in finite samples.

In the Screeplot a horizontal dashed line is shown signifying an eigenvalue of 1, or a share of variance corresponding to 1 divided by the number of eigenvalues.

Value

A list of 4 elements:

- \texttt{F_pca} \hspace{1cm} T \times n matrix of principle component factor estimates.
- \texttt{eigenvalues} \hspace{1cm} the eigenvalues of the covariance matrix of \(X \).
- \texttt{IC} \hspace{1cm} \(r _\text{max} \times 3 \) `table` containing the 3 information criteria of Bai and Ng (2002), computed for all values of \(r \) from \(1:r _\text{max} \).
- \texttt{r_star} \hspace{1cm} vector of length 3 containing the number of factors (\(r \)) minimizing each information criterion.

Note

To determine the number of lags (\(p \)) in the factor transition equation, use the function \texttt{vars::VARselect} with \(r^* \) principle components (also returned by \texttt{ICr}).

References

Examples

```r
library(xts)
library(vars)

ics = ICr(diff(BM14_M))
print(ics)
plot(ics)
screepplot(ics)

# Optimal lag-order with 6 factors chosen
VARselect(ics$F_pca[, 1:6])
```

plot.dfm

Description

Plot DFM

Usage

```r
## S3 method for class 'dfm'
plot(x, 
method = switch(x$em.method, none = "2s", "qml"),
type = c("joint", "individual", "residual"),
scale.factors = TRUE,
...)

## S3 method for class 'dfm'
screepplot(x, ...)
```

Arguments

- **x**: an object class 'dfm'.
- **method**: character. The factor estimates to use: one of "qml", "2s", "pca" or "all" to plot all estimates.
- **type**: character. The type of plot: "joint", "individual" or "residual".
- **scale.factors**: logical. Standardize factor estimates, this usually improves the plot since the factor estimates corresponding to the greatest PCA eigenvalues tend to have a greater variance than the data.
- **...**: for plot.dfm: further arguments to `plot.ts.plot`, or `boxplot`, depending on the type of plot. For screepplot.dfm: further arguments to `screepplot.ICr`.

predict.dfm

Value

Nothing.

Examples

```r
# Fit DFM with 3 factors and 3 lags in the transition equation
mod = DFM(diff(BM14_M), r = 3, p = 3)
plot(mod)
plot(mod, type = "individual", method = "all")
plot(mod, type = "residual")
```

predict.dfm
DFM Forecasts

Description

This function produces h-step ahead forecasts of both the factors and the data, with an option to also forecast autocorrelated residuals with a univariate method and produce a combined forecast.

Usage

```r
## S3 method for class 'dfm'
predict(
  object,
  h = 10L,
  method = switch(object$em.method, none = "2s", "qml"),
  standardized = TRUE,
  resFUN = NULL,
  resAC = 0.1,
  ...
)

## S3 method for class 'dfm_forecast'
print(x, digits = 4L, ...)

## S3 method for class 'dfm_forecast'
plot(
  x,
  main = paste(x$h, "Period Ahead DFM Forecast"),
  xlab = "Time",
  ylab = "Standardized Data",
  factors = seq_len(ncol(x$f)),
  scale.factors = TRUE,
  factor.col = rainbow(length(factors)),
```
predict.dfm

factor.lwd = 1.5,
fct.lty = "dashed",
data.col = c("grey85", "grey65"),
legend = TRUE,
legend.items = paste0("f", factors),
grid = FALSE,
vline = TRUE,
vline.lty = "dotted",
vline.col = "black",
...
)

S3 method for class 'dfm_forecast'
as.data.frame(
 x,
 ...
 use = c("factors", "data", "both"),
pivot = c("long", "wide"),
time = seq_len(nrow(x$F) + x$h),
stringsAsFactors = TRUE
)

Arguments

object an object of class `dfm`.

h integer. The forecast horizon.

method character. The factor estimates to use: one of "qml", "2s" or "pca".

standardized logical. FALSE will return data forecasts on the original scale.

resFUN an (optional) function to compute a univariate forecast of the residuals. The function needs to have a second argument providing the forecast horizon (h) and return a vector or forecasts. See Examples.

resAC numeric. Threshold for residual autocorrelation to apply resFUN: only residual series where AC1 > resAC will be forecasted.

... not used.

x an object class `dfm_forecast`.

digits integer. The number of digits to print out.

main, xlab, ylab character. Graphical parameters passed to `ts.plot`.

factors integers indicating which factors to display. Setting this to NA, NULL or 0 will omit factor plots.

scale.factors logical. Standardize factor estimates, this usually improves the plot since the factor estimates corresponding to the greatest PCA eigenvalues tend to have a greater variance than the data.

factor.col, factor.lwd graphical parameters affecting the colour and line width of factor estimates plots. See `par`.
predict.dfm

fcst.lty integer or character giving the line type of the forecasts of factors and data. See par.
data.col character vector of length 2 indicating the colours of historical data and forecasts of that data. Setting this to NA, NULL or "" will not plot data and data forecasts.
legend logical. TRUE draws a legend in the top-left of the chart.
legend.items character names of factors for the legend.
grid logical. TRUE draws a grid on the background of the plot.
vline logical. TRUE draws a vertical line delimiting historical data and forecasts.
vline.lty, vline.col graphical parameters affecting the appearance of the vertical line. See par.
use character. Which forecasts to use "factors", "data" or "both".
pivot character. The orientation of the frame: "long" or "wide".
time a vector identifying the time dimension, must be of length T + h, or NULL to omit a time variable.
stringsAsFactors logical. If TRUE and pivot = "long" the 'Variable' column is created as a factor. Same as option to as.data.frame.table.

Value

A list-like object of class 'dfm_forecast' with the following elements:

- X_fcst $h \times n$ matrix with the forecasts of the variables.
- F_fcst $h \times r$ matrix with the factor forecasts.
- X $T \times n$ matrix with the standardized (scaled and centered) data - with attributes attached allowing reconstruction of the original data:
 - "stats" is a $n \times 5$ matrix of summary statistics of class "qsu" (see qsu). Only attached if standardized = TRUE.
 - "attributes" contains the attributes of the original data input.
 - "is.list" is a logical value indicating whether the original data input was a list / data frame.
- F $T \times r$ matrix of factor estimates.
- method the factor estimation method used.
- anyNA logical indicating whether X contains any missing values.
- h the forecast horizon.
- resid.fc logical indicating whether a univariate forecasting function was applied to the residuals.
- resid.fc.ind indices indicating for which variables (columns of X) the residuals were forecasted using the univariate function.
- call call object obtained from match.call().
Examples

library(xts)
library(collapse)

Fit DFM with 3 factors and 3 lags in the transition equation
mod = DFM(diff(BM14_M), r = 3, p = 3)

15 period ahead forecast
fc = predict(mod, h = 15)
print(fc)
plot(fc, xlim = c(300, 370))

Also forecasting autocorrelated residuals with an AR(1)
fcfun <- function(x, h) predict(ar(na_rm(x)), n.ahead = h)$pred
fcar = predict(mod, resFUN = fcfun, h = 15)
plot(fcar, xlim = c(300, 370))

Retrieving a data frame of the forecasts
head(as.data.frame(fcar, pivot = "wide")) # Factors
head(as.data.frame(fcar, use = "data")) # Data
head(as.data.frame(fcar, use = "both")) # Both

residuals.dfm

DFM Residuals and Fitted Values

Description

The residuals $e_t = x_t - CF_t$ or fitted values CF_t of the DFM observation equation.

Usage

```r
## S3 method for class 'dfm'
residuals(
  object,
  method = switch(object$em.method, none = "2s", "qml"),
  orig.format = FALSE,
  standardized = FALSE,
  na.keep = TRUE,
  ...
)

## S3 method for class 'dfm'
fitted(
  object,
  method = switch(object$em.method, none = "2s", "qml"),
  orig.format = FALSE,
  ...
standardized = FALSE,
na.keep = TRUE,
...
)

Arguments

object: an object of class 'dfm'.
method: character. The factor estimates to use: one of "qml", "2s" or "pca".
orig.format: logical. TRUE returns residuals/fitted values in a data format similar to X.
standardized: logical. FALSE will put residuals/fitted values on the original data scale.
na.keep: logical. TRUE inserts missing values where X is missing (default TRUE as residuals/fitted values are only defined for observed data). FALSE returns the raw prediction, which can be used to interpolate data based on the DFM. For residuals, FALSE returns the difference between the prediction and the initial imputed version of X used for PCA to initialize the Kalman Filter.

Value

A matrix of DFM residuals or fitted values. If orig.format = TRUE the format may be different, e.g. a data frame.

Examples

library(xts)
# Fit DFM with 3 factors and 3 lags in the transition equation
mod = DFM(diff(BM14_M), r = 3, p = 3)

# Residuals
head(resid(mod))
plot(resid(mod, orig.format = TRUE)) # this is an xts object

# Fitted values
head(fitted(mod))
head(fitted(mod, orig.format = TRUE)) # this is an xts object

(Fast) Stationary Kalman Filter

Description

A simple and fast C++ implementation of the Kalman Filter for stationary data with time-invariant system matrices and missing data.
Usage

SKF(X, A, C, Q, R, F_0, P_0, loglik = FALSE)

Arguments

X numeric data matrix \((T \times n)\).
A transition matrix \((rp \times rp)\).
C observation matrix \((n \times rp)\).
Q state covariance \((rp \times rp)\).
R observation covariance \((n \times n)\).
F_0 initial state vector \((rp \times 1)\).
P_0 initial state covariance \((rp \times rp)\).
loglik logical. Compute log-likelihood?

Details

The underlying state space model is:

\[
\begin{align*}
x_t &= CF_t + e_t \sim N(0, R) \\
F_t &= A F_{t-1} + u_t \sim N(0, Q)
\end{align*}
\]

where \(x_t\) is \(X[t, \cdot]\). The filter then first performs a time update (prediction)

\[
\begin{align*}
F_t &= A F_{t-1} \\
P_t &= A P_{t-1} A' + Q
\end{align*}
\]

where \(P_t = Cov(F_t)\). This is followed by the measurement update (filtering)

\[
\begin{align*}
K_t &= P_t C' (C P_t C' + R)^{-1} \\
F_t &= F_t + K_t (x_t - C F_t) \\
P_t &= P_t - K_t C P_t
\end{align*}
\]

If a row of the data is all missing the measurement update is skipped i.e. the prediction becomes the filtered value. The log-likelihood is computed as

\[
1/2 \sum \log(|S_t|) - e_t' S_t e_t - n \log(2\pi)
\]

where \(S_t = (CP_t C' + R)^{-1}\) and \(e_t = x_t - CF_t\) is the prediction error.

For further details see any textbook on time series such as Shumway & Stoffer (2017), which provide an analogous R implementation in astsa::Kfilter0. For another fast (C-based) implementation that also allows time-varying system matrices and non-stationary data see FKF::fkf.
Value

Predicted and filtered state vectors and covariances.

- **F**: $T \times rp$ filtered state vectors.
- **P**: $rp \times rp \times T$ filtered state covariances.
- **F_pred**: $T \times rp$ predicted state vectors.
- **P_pred**: $rp \times rp \times T$ predicted state covariances.
- **loglik**: value of the log likelihood.

References


See Also

FIS SKFS

Examples

```r
See ?SKFS
```

---

**SKFS**  
(Fast) Stationary Kalman Filter and Smoother

**Description**

(Fast) Stationary Kalman Filter and Smoother

**Usage**

```r
SKFS(X, A, C, Q, R, F_0, P_0, loglik = FALSE)
```

**Arguments**

- **X**: numeric data matrix ($T \times n$).
- **A**: transition matrix ($rp \times rp$).
- **C**: observation matrix ($n \times rp$).
- **Q**: state covariance ($rp \times rp$).
- **R**: observation covariance ($n \times n$).
- **F_0**: initial state vector ($rp \times 1$).
- **P_0**: initial state covariance ($rp \times rp$).
- **loglik**: logical. Compute log-likelihood?
Value

All results from SKF and FIS, and additionally a \( rp \times rp \times T \) matrix \( PP_{m\_smooth} \), which is equal to the estimate of \( Cov(F_{smooth_t}, F_{smooth_{t-1}} | T) \) and needed for EM iterations. See 'Property 6.3: The Lag-One Covariance Smoother' in Shumway & Stoffer (2017).

References


See Also

SKF FIS

Examples

```r
library(collapse)

Two-Step factor estimates from monthly BM (2014) data
X <- fscale(diff(qM(BM14_M))) # Standardizing as KF has no intercept
r <- 5L # 5 Factors
p <- 3L # 3 Lags
n <- ncol(X)

Initializing the Kalman Filter with PCA results
X_imp <- tsnarmimp(X) # Imputing Data
v <- eigen(cov(X_imp))$vectors[, 1:r] # PCA
F_pc <- X_imp %*% v # Principal component factor estimates
C <- cbind(v, matrix(0, n, r*p-r)) # Observation matrix
res <- X - tcrossprod(F_pc, v) # Residuals from static predictions
R <- diag(fvar(res)) # Observation residual covariance
var <- .VAR(F_pc, p) # VAR(p)
A <- rbind(t(var$v), diag(1, r*p-r, r*p))
Q <- matrix(0, r*p, r*p) # VAR residual matrix
Q[1:r, 1:r] <- cov(var$res)
F_0 <- var$X[1L,] # Initial factor estimate and covariance
P_0 <- ainv(diag((r*p)^2) - kronecker(A,A)) %*% unattrib(Q)
dim(P_0) <- c(r*p, r*p)

Run standartized data through Kalman Filter and Smoother once
kfs_res <- SKFS(X, A, C, Q, R, F_0, P_0, FALSE)

Two-step solution is state mean from the Kalman Smoother
F_kal <- kfs_res$F_smooth[, 1:r, drop = FALSE]
colnames(F_kal) <- paste0("f", 1:r)

See that this is equal to the Two-Step estimate by DFM()
all.equal(F_kal, DFM(X, r, p, em.method = "none", pos.corr = FALSE)$F_2s)

Same in two steps using SKF() and FIS()
kfs_res2 <- with(SKF(X, A, C, Q, R, F_0, P_0, FALSE), FIS(A, F, F_pred, P, P_pred))
F_kal2 <- kfs_res2$F_smooth[, 1:r, drop = FALSE]
```
summary.dfm

```r
colnames(F_kal2) <- paste0("f", 1:r)
all.equal(F_kal, F_kal2)
```

```r
rm(X, r, p, n, X_imp, v, F_pc, C, res, R, var, A, Q, F_0, P_0, kfs_res, F_kal, kfs_res2, F_kal2)
```

### summary.dfm

DFM Summary Methods

**Description**

Summary and print methods for class 'dfm'. `print.dfm` just prints basic model information and the factor transition matrix $A$, `summary.dfm` returns all system matrices and additional residual and goodness of fit statistics - with a print method allowing full or compact printout.

**Usage**

```r
S3 method for class 'dfm'
print(x, digits = 4L, ...)
S3 method for class 'dfm'
summary(object, method = switch(object$em.method, none = "2s", "qml"), ...)
S3 method for class 'dfm_summary'
print(x, digits = 4L, compact = sum(x$info["n"] > 15, x$info["n"] > 40), ...)
```

**Arguments**

- `x, object` an object class 'dfm'.
- `digits` integer. The number of digits to print out.
- `...` not used.
- `method` character. The factor estimates to use: one of "qml", "2s" or "pca".
- `compact` integer. Display a more compact printout: 0 prints everything, 1 omits the observation matrix $C$ and residual covariance matrix $\text{cov}(\text{resid(model)})$, and 2 omits all disaggregated information on the input data. Sensible default are chosen for different sizes of the input dataset so as to limit large printouts.

**Value**

Summary information following a dynamic factor model estimation.

**Examples**

```r
mod = DFM(diff(BM14_Q), 2, 3)
print(mod)
summary(mod)
```
Description

This function imputes missing values in a stationary multivariate time series using various methods, and removes cases with too many missing values.

Usage

```r
tsnarmimp(
 X,
 max.missing = 0.8,
 na.rm.method = c("LE", "all"),
 na.impute = c("median.ma.spline", "median.ma", "median", "rnorm"),
 ma.terms = 3L
)
```

Arguments

- `X`: a T x n numeric data matrix (incl. ts or xts objects) or data frame of stationary time series.
- `max.missing`: numeric. Proportion of series missing for a case to be considered missing.
- `na.rm.method`: character. Method to apply concerning missing cases selected through `max.missing`: "LE" only removes cases at the beginning or end of the sample, whereas "all" always removes missing cases.
- `na.impute`: character. Method to impute missing values for the PCA estimates used to initialize the EM algorithm. Note that data are standardized (scaled and centered) beforehand. Available options are:
  - "median": simple series-wise median imputation.
  - "rnorm": imputation with random numbers drawn from a standard normal distribution.
  - "median.ma": values are initially imputed with the median, but then a moving average is applied to smooth the estimates.
  - "median.ma.spline": "internal" missing values (not at the beginning or end of the sample) are imputed using a cubic spline, whereas missing values at the beginning and end are imputed with the median of the series and smoothed with a moving average.
- `ma.terms`: the order of the (2-sided) moving average applied in `na.impute` methods "median.ma" and "median.ma.spline".

Value

The imputed matrix `X_imp`, with attributes:
tnarmimp

"missing" a missingness matrix W matching the dimensions of X_imp.
"rm.rows" and a vector of indices of rows (cases) with too many missing values that were removed.

Examples

library(xts)
str(tsnarmimp(BM14_M))
Index

* datasets
  BM14_Models, 5
  .VAR, 2
  ainv, 3
  apinv(ainv), 3
  as.data.frame.dfm, 4
  as.data.frame.dfm_forecast
    (predict.dfm), 17
  as.data.frame.table, 4, 19
  attributes, 9, 19
  BM14_M(BM14_Models), 5
  BM14_Models, 5
  BM14_Q(BM14_Models), 5
  boxplot, 16
  DFM, 6
  em_converged, 7, 12
  FIS, 13, 23, 24
  fitted.dfm(residuals.dfm), 20
  ICr, 14
  par, 18, 19
  plot, 14, 16
  plot.dfm, 16
  plot.dfm_forecast(predict.dfm), 17
  plot.ICr(ICr), 14
  predict.dfm, 17
  print.dfm(summary.dfm), 25
  print.dfm_forecast(predict.dfm), 17
  print.dfm_summary(summary.dfm), 25
  print.ICr(ICr), 14
  qsu, 9, 19
  resid.dfm(residuals.dfm), 20
  residuals.dfm, 20
  screeplot.dfm(plot.dfm), 16
  screeplot.ICr, 16
  screeplot.ICr(ICr), 14
  SKF, 14, 21, 24
  SKFS, 14, 23, 23
  summary.dfm, 25
  ts.plot, 14, 16, 18
  tsnarmimp, 7, 26