Package ‘did2s’

April 7, 2023

Title Two-Stage Difference-in-Differences Following Gardner (2021)

Version 1.0.2

Description Estimates Two-way Fixed Effects difference-in-differences/event-study models using the approach proposed by Gardner (2021) <doi:10.48550/arXiv.2207.05943>. To avoid the problems caused by OLS estimation of the Two-way Fixed Effects model, this function first estimates the fixed effects and covariates using untreated observations and then in a second stage, estimates the treatment effects.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

Depends R (>= 3.5.0), fixest (>= 0.10.1)

Imports data.table, SparseM, MatrixExtra, Matrix, stats, boot, broom, ggplot2, rlang, did, staggered, didimputation

URL https://kylebutts.github.io/did2s/

Suggests rmarkdown, knitr, haven, testthat (>= 3.0.0)

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation no

Author Kyle Butts [aut, cre] (<https://orcid.org/0000-0002-9048-8059>), John Gardner [aut] (<https://orcid.org/0000-0002-4028-6862>), Grant McDermott [ctb] (<https://orcid.org/0000-0001-7883-8573>), Laurent Berge [ctb]

Maintainer Kyle Butts <kyle.butts@colorado.edu>

Repository CRAN

Date/Publication 2023-04-07 15:50:02 UTC
R topics documented:

- castle... 2
- df_het... 2
- df_hom... 3
- did2s... 4
- event_study... 8
- gen_data... 9

castle

Data from Cheng and Hoekstra (2013)

Description

State-wide panel data from 2000-2010 that has information on castle-doctrine, the so-called "stand-your-ground" laws that were implemented by 20 states.

Usage

`castle`

Format

A data frame with 550 rows and 5 variables:

- `sid` state id, unit of observation
- `year` time in panel data
- `l_homicide` log of the number of homicides per capita
- `effyear` year that castle doctrine is passed
- `post` 0/1 variable for when castle doctrine is active
- `time_till` time relative to castle doctrine being passed into law

df_het

Simulated data with two treatment groups and heterogenous effects

Description

Generated using the following call: `did2s::gen_data(panel = c(1990, 2020), g1 = 2000, g2 = 2010, g3 = 0, te1 = 2, te2 = 1, te3 = 0, te_m1 = 0.05, te_m2 = 0.15, te_m3 = 0)`

Usage

`df_het`
Format

A data frame with 31000 rows and 15 variables:

- **unit**: individual in panel data
- **year**: time in panel data
- **g**: the year that treatment starts
- **dep_var**: outcome variable
- **treat**: T/F variable for when treatment is on
- **rel_year**: year relative to treatment start. Inf = never treated.
- **rel_year_binned**: year relative to treatment start, but <=-6 and >=6 are binned.
- **unit_fe**: Unit FE
- **year_fe**: Year FE
- **error**: Random error component
- **te**: Static treatment effect = te
- **te_dynamic**: Dynamic treatment effect = te_m
- **state**: State that unit is in
- **group**: String name for group

df_hom

Simulated data with two treatment groups and homogenous effects

Description

Generated using the following call: `did2s::gen_data(panel = c(1990, 2020), g1 = 2000, g2 = 2010, g3 = 0, te1 = 2, te2 = 2, te3 = 0, te_m1 = 0, te_m2 = 0, te_m3 = 0)`

Usage

`df_hom`

Format

A data frame with 31000 rows and 15 variables:

- **unit**: individual in panel data
- **year**: time in panel data
- **g**: the year that treatment starts
- **dep_var**: outcome variable
- **treat**: T/F variable for when treatment is on
- **rel_year**: year relative to treatment start. Inf = never treated.
- **rel_year_binned**: year relative to treatment start, but <=-6 and >=6 are binned.
unit_fe Unit FE
year_fe Year FE
error Random error component
te Static treatment effect = te
te_dynamic Dynamic treatment effect = te_m
group String name for group
state State that unit is in
weight Weight from runif()

did2s Calculate two-stage difference-in-differences following Gardner (2021)

Description
Calculate two-stage difference-in-differences following Gardner (2021)

Usage
did2s(
data,
yname,
first_stage,
second_stage,
treatment,
cluster_var,
weights = NULL,
bootstrap = FALSE,
n_bootstraps = 250,
return_bootstrap = FALSE,
verbose = TRUE
)

Arguments
data The dataframe containing all the variables
yname Outcome variable
first_stage Fixed effects and other covariates you want to residualize with in first stage. Formula following fixest::feols. Fixed effects specified after "|".
second_stage Second stage, these should be the treatment indicator(s) (e.g. treatment variable or event-study leads/lags). Formula following fixest::feols. Use i() for factor variables, see fixest::i.
treatment A variable that = 1 if treated, = 0 otherwise
cluster_var What variable to cluster standard errors. This can be IDs or a higher aggregate level (state for example)
weights Optional. Variable name for regression weights.
bootstrap Optional. Should standard errors be calculated using bootstrap? Default is FALSE.
n_bootstraps Optional. How many bootstraps to run. Default is 250.
return_bootstrap Optional. Logical. Will return each bootstrap second-stage estimate to allow for manual use, e.g. percentile standard errors and empirical confidence intervals.
verbose Optional. Logical. Should information about the two-stage procedure be printed back to the user? Default is TRUE.

Value
fixest object with adjusted standard errors (either by formula or by bootstrap). All the methods from fixest package will work, including fixest::esttable and fixest::coefplot

Examples
Load example dataset which has two treatment groups and homogeneous treatment effects

Load Example Dataset
data("df_hom")

Static TWFE:
You can run a static TWFE fixed effect model for a simple treatment indicator

static <- did2s(df_hom,
 yname = "dep_var", treatment = "treat", cluster_var = "state",
 first_stage = ~ 0 | unit + year,
 second_stage = ~ i(treat, ref=FALSE))
#> Running Two-stage Difference-in-Differences
#> - first stage formula `~ 0 | unit + year`
#> - second stage formula `~ i(treat, ref = FALSE)`
#> - The indicator variable that denotes when treatment is on is `treat`
#> - Standard errors will be clustered by `state`

fixest::esttable(static)
#> static
#> Dependent Var.: dep_var
#> treat = TRUE 2.005*** (0.0202)
#> ________________________________
#> S.E. type Custom
#> Observations 46,500
#> R2 0.47520
#> Adj. R2 0.47520
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Event Study:
Or you can use relative-treatment indicators to estimate an event study estimate

```r
es <- did2s(df_hom,
    yname = "dep_var", treatment = "treat", cluster_var = "state",
    first_stage = ~ 0 | unit + year,
    second_stage = ~ i(rel_year, ref = c(-1, Inf)))
```

#> Running Two-stage Difference-in-Differences
#> - first stage formula`~ 0 | unit + year`
#> - second stage formula`~ i(rel_year, ref = c(-1, Inf))`
#> - The indicator variable that denotes when treatment is on is `treat`
#> - Standard errors will be clustered by `state`

```r
fixest::esttable(es)
```

<table>
<thead>
<tr>
<th>rel_year</th>
<th>coefficient</th>
<th>std.error</th>
</tr>
</thead>
<tbody>
<tr>
<td>-20</td>
<td>0.0043</td>
<td>0.0322</td>
</tr>
<tr>
<td>-19</td>
<td>0.0222</td>
<td>0.0296</td>
</tr>
<tr>
<td>-18</td>
<td>-0.0358</td>
<td>0.0308</td>
</tr>
<tr>
<td>-17</td>
<td>0.0043</td>
<td>0.0337</td>
</tr>
<tr>
<td>-16</td>
<td>-0.0186</td>
<td>0.0353</td>
</tr>
<tr>
<td>-15</td>
<td>-0.0045</td>
<td>0.0346</td>
</tr>
<tr>
<td>-14</td>
<td>-0.0393</td>
<td>0.0384</td>
</tr>
<tr>
<td>-13</td>
<td>0.0453</td>
<td>0.0323</td>
</tr>
<tr>
<td>-12</td>
<td>0.0324</td>
<td>0.0309</td>
</tr>
<tr>
<td>-11</td>
<td>-0.0245</td>
<td>0.0349</td>
</tr>
<tr>
<td>-10</td>
<td>-0.0017</td>
<td>0.0241</td>
</tr>
<tr>
<td>-9</td>
<td>0.0155</td>
<td>0.0242</td>
</tr>
<tr>
<td>-8</td>
<td>-0.0073</td>
<td>0.0210</td>
</tr>
<tr>
<td>-7</td>
<td>-0.0513</td>
<td>0.0202</td>
</tr>
<tr>
<td>-6</td>
<td>0.0269</td>
<td>0.0237</td>
</tr>
<tr>
<td>-5</td>
<td>0.0136</td>
<td>0.0237</td>
</tr>
<tr>
<td>-4</td>
<td>0.0381</td>
<td>0.0223</td>
</tr>
<tr>
<td>-3</td>
<td>-0.0228</td>
<td>0.0284</td>
</tr>
<tr>
<td>-2</td>
<td>0.0041</td>
<td>0.0228</td>
</tr>
<tr>
<td>0</td>
<td>1.971***</td>
<td>0.0470</td>
</tr>
<tr>
<td>1</td>
<td>2.050***</td>
<td>0.0466</td>
</tr>
<tr>
<td>2</td>
<td>2.033***</td>
<td>0.0441</td>
</tr>
<tr>
<td>3</td>
<td>1.966***</td>
<td>0.0400</td>
</tr>
<tr>
<td>4</td>
<td>1.965***</td>
<td>0.0430</td>
</tr>
<tr>
<td>5</td>
<td>2.030***</td>
<td>0.0456</td>
</tr>
<tr>
<td>6</td>
<td>2.040***</td>
<td>0.0447</td>
</tr>
<tr>
<td>7</td>
<td>1.995***</td>
<td>0.0370</td>
</tr>
<tr>
<td>8</td>
<td>2.019***</td>
<td>0.0485</td>
</tr>
<tr>
<td>9</td>
<td>1.955***</td>
<td>0.0468</td>
</tr>
<tr>
<td>10</td>
<td>1.950***</td>
<td>0.0455</td>
</tr>
<tr>
<td>11</td>
<td>2.117***</td>
<td>0.0664</td>
</tr>
<tr>
<td>12</td>
<td>2.132***</td>
<td>0.0741</td>
</tr>
</tbody>
</table>
Example from Cheng and Hoekstra (2013):
Here’s an example using data from Cheng and Hoekstra (2013)

```r
# Castle Data
castle <- haven::read_dta("https://github.com/scunning1975/mixtape/raw/master/castle.dta")

did2s(
  data = castle,
  yname = "l_homicide",
  first_stage = ~ 0 | sid + year,
  second_stage = ~ i(post, ref=0),
  treatment = "post",
  cluster_var = "state", weights = "popwt"
)
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

```r
# plot rel_year coefficients and standard errors
fixest::coefplot(es, keep = "rel_year::(.*)")
```

Notes

- **rel_year = 13**: 2.019*** (0.0640)
- **rel_year = 14**: 2.013*** (0.0522)
- **rel_year = 15**: 1.961*** (0.0605)
- **rel_year = 16**: 1.916*** (0.0584)
- **rel_year = 17**: 1.938*** (0.0607)
- **rel_year = 18**: 2.070*** (0.0666)
- **rel_year = 19**: 2.066*** (0.0609)
- **rel_year = 20**: 1.964*** (0.0612)

S.E. type: Custom
Observations: 46,500
R2: 0.47577
Adj. R2: 0.47533

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

plot rel_year coefficients and standard errors
fixest::coefplot(es, keep = "rel_year::(.*)")

Example from Cheng and Hoekstra (2013):

Here’s an example using data from Cheng and Hoekstra (2013)

```r
# Castle Data
castle <- haven::read_dta("https://github.com/scunning1975/mixtape/raw/master/castle.dta")

did2s(
  data = castle,
  yname = "l_homicide",
  first_stage = ~ 0 | sid + year,
  second_stage = ~ i(post, ref=0),
  treatment = "post",
  cluster_var = "state", weights = "popwt"
)
```
event_study

Estimate event-study coefficients using TWFE and 5 proposed improvements.

Description

Uses the estimation procedures recommended from Borusyak, Jaravel, Spiess (2021); Callaway and Sant’Anna (2020); Gardner (2021); Roth and Sant’Anna (2021); Sun and Abraham (2020)

Usage

```r
event_study(
  data,
  yname,
  idname,
  gname,
  tname,
  xformla = NULL,
  weights = NULL,
  estimator = c("all", "TWFE", "did2s", "did", "impute", "sunab", "staggered")
)
```

```r
plot_event_study(out, separate = TRUE, horizon = NULL)
```

Arguments

data The dataframe containing all the variables

yname Variable name for outcome variable

idname Variable name for unique unit id

gname Variable name for unit-specific date of initial treatment (never-treated should be zero or NA)

tname Variable name for calendar period

xformla A formula for the covariates to include in the model. It should be of the form ~ \(X_1 + X_2 \). Default is NULL.

weights Variable name for estimation weights. This is used in estimating \(Y(0) \) and also augments treatment effect weights

estimator Estimator you would like to use. Use "all" to estimate all. Otherwise see table to know advantages and requirements for each of these.

out Output from `event_study()`

separate Logical. Should the estimators be on separate plots? Default is TRUE.

horizon Numeric. Vector of length 2. First element is min and second element is max of event_time to plot
Value

event_study returns a data.frame of point estimates for each estimator
plot_event_study returns a ggplot object that can be fully customized

Examples

out = event_study(
 data = did2s::df_het, yname = "dep_var", idname = "unit",
 tname = "year", gname = "g", estimator = "all"
)
plot_event_study(out)

Description

Generate TWFE data

Usage

gen_data(
 g1 = 2000,
 g2 = 2010,
 g3 = 0,
 panel = c(1990, 2020),
 te1 = 2,
 te2 = 2,
 te3 = 2,
 te_m1 = 0,
 te_m2 = 0,
 te_m3 = 0,
 n = 1500
)

Arguments

g1 treatment date for group 1. For no treatment, set g = 0.
g2 treatment date for group 2. For no treatment, set g = 0.
g3 treatment date for group 3. For no treatment, set g = 0.
panel numeric vector of size 2, start and end years for panel
te1 treatment effect for group 1. Will ignore for that group if g = 0.
te2 treatment effect for group 1. Will ignore for that group if g = 0.
te3 treatment effect for group 1. Will ignore for that group if g = 0.
te_m1 treatment effect slope per year
te_m2 treatment effect slope per year
te_m3 treatment effect slope per year
n number of individuals in sample

Value
Dataframe of generated data

Examples
Homogeneous treatment effect
df_hom <- gen_data(panel = c(1990, 2020),
 g1 = 2000, g2 = 2010, g3 = 0,
 te1 = 2, te2 = 2, te3 = 0,
 te_m1 = 0, te_m2 = 0, te_m3 = 0)
Heterogeneous treatment effect
df_het <- gen_data(panel = c(1990, 2020),
 g1 = 2000, g2 = 2010, g3 = 0,
 te1 = 2, te2 = 1, te3 = 0,
 te_m1 = 0.05, te_m2 = 0.15, te_m3 = 0)
Index

* datasets
 castle, 2
 df_het, 2
 df_hom, 3

castle, 2
df_het, 2
df_hom, 3
did2s, 4

event_study, 8
event_study(), 8

fixest::coefplot, 5
fixest::esttable, 5
fixest::feols, 4
fixest::i, 4

gen_data, 9

plot_event_study(event_study), 8