Package ‘digitalDLSorteR’

February 7, 2024

Type Package

Title Deconvolution of Bulk RNA-Seq Data Based on Deep Learning

Version 1.0.1

Maintainer Diego Mañanes <dmananesc@cnic.es>

Description Deconvolution of bulk RNA-Seq data using context-specific deconvolution models based on Deep Neural Networks using scRNA-Seq data as input. These models are able to make accurate estimates of the cell composition of bulk RNA-Seq samples from the same context using the advances provided by Deep Learning and the meaningful information provided by scRNA-Seq data. See Torroja and Sanchez-Cabo (2019) <doi:10.3389/fgene.2019.00978> for more details.

License GPL-3

BugReports https://github.com/diegommcc/digitalDLSorteR/issues

Encoding UTF-8

Depends R (>= 4.0.0)

Imports rlang, grr, Matrix, methods, tidyr, SingleCellExperiment, SummarizedExperiment, zinbwave, stats, pbapply, S4Vectors, dplyr, tools, reshape2, gtools, reticulate, keras, tensorflow, ggplot2, ggpubr, scran, scuttle

Suggests knitr, rmarkdown, BiocParallel, rhdf5, DelayedArray,DelayedMatrixStats, HDF5Array, testthat

SystemRequirements Python (>= 2.7.0), TensorFlow

RoxygenNote 7.2.3

Collate 'AllClasses.R' 'AllGenerics.R' 'digitalDLSorteR.R'

'dnnModel.R' 'evalMetrics.R' 'loadData.R' 'simBulk.R'

'simSingleCell.R' 'utils.R'

VignetteBuilder knitr

NeedsCompilation no
R topics documented:

barErrorPlot ... 3
barPlotCellTypes 5
blandAltmanLehPlot 7
bulk.simul ... 10
calculateEvalMetrics 10
cell.names ... 12
cell.types ... 13
corrExpPredPlot 13
createDDLSSequentialPlot 16
deconv.data ... 20
deconv.results 21
deconvDDLSSequentialObj 21
deconvDigitalDLsorter 24
digitalDLsorter 27
DigitalDLsorter-class 28
DigitalDLsorterDNN-class 29
distErrorPlot .. 30
estimateZinbwaveParams 33
features ... 36
generateBulkCellMatrix 36
getProbMatrix ... 39
installTFpython 40
listToDDLSSequential 41
listToDDLSDNN ... 42
loadDeconvData 42
loadTrainedModelFromH5 43
method ... 44
model .. 44
plots .. 45
plotTrainingHistory 45
preparingToSave 46
prob.cell.types 47
prob.matrix .. 47
ProbMatrixCellTypes-class 48
project ... 49
saveRDS ... 49
saveTrainedModelAsH5 50
set .. 51
set.list .. 52
barErrorPlot

Generate bar error plots by cell type (CellType) or by number of different cell types (nCellTypes) on test pseudo-bulk samples.

Usage

```r
barErrorPlot(
  object,
  error = "MSE",
  by = "CellType",
  dispersion = "se",
  filter.sc = TRUE,
  title = NULL,
  angle = NULL,
  theme = NULL
)
```

Arguments

- **object**: DigitalDLSorter object with trained.model slot containing metrics in test.deconv.metrics slot.
- **error**: 'MAE' or 'MSE'.
- **by**: Variable used to display errors. Available options are: 'nCellTypes', 'CellType'.
- **dispersion**: Standard error ('se') or standard deviation ('sd'). The former is the default.
- **filter.sc**: Boolean indicating whether single-cell profiles are filtered out and only correlation of results associated with bulk samples are displayed (TRUE by default).
barErrorPlot

title
Title of the plot.

angle
Angle of ticks.

theme
ggplot2 theme.

Value
A ggplot object with the mean and dispersion of the errors.

See Also

`calculateEvalMetrics` `corrExpPredPlot` `distErrorPlot` `blandAltmanLehPlot`

Examples

```r
## Not run:
set.seed(123)
sce <- SingleCellExperiment::SingleCellExperiment(
  assays = list(  
    counts = matrix(  
      rpois(30, lambda = 5), nrow = 15, ncol = 20,  
      dimnames = list(paste0("Gene", seq(15)), paste0("RHC", seq(20)))  
    ),
  ),
  colData = data.frame(  
    Cell_ID = paste0("RHC", seq(20)),  
    Cell_Type = sample(x = paste0("CellType", seq(6)), size = 20,  
      replace = TRUE)
  ),
  rowData = data.frame(  
    Gene_ID = paste0("Gene", seq(15))
  )
)
DDLS <- createDDLSobject(  
  sc.data = sce,  
  sc.cell.ID.column = "Cell_ID",  
  sc.gene.ID.column = "Gene_ID",  
  sc.filt.genes.cluster = FALSE,  
  sc.log.FC = FALSE
)
probMatrixValid <- data.frame(  
  Cell_Type = paste0("CellType", seq(6)),  
  from = c(1, 1, 1, 15, 15, 30),  
  to = c(15, 15, 30, 50, 50, 70)
)
DDLS <- generateBulkCellMatrix(  
  object = DDLS,  
  cell.ID.column = "Cell_ID",  
  cell.type.column = "Cell_Type",  
  prob.design = probMatrixValid,  
  num.bulk.samples = 50,  
  verbose = TRUE
)
```
training of DDLS model
tensorflow::tf$compat$v1$disable_eager_execution()

DDLS <- trainDDLSModel(
 object = DDLS,
 on.the.fly = TRUE,
 batch.size = 15,
 num.epochs = 5
)

evaluation using test data
DDLS <- calculateEvalMetrics(
 object = DDLS
)

bar error plots
barErrorPlot(
 object = DDLS,
 error = "MSE",
 by = "CellType"
)

barErrorPlot(
 object = DDLS,
 error = "MAE",
 by = "nCellTypes"
)

End(Not run)

barPlotCellTypes
Bar plot of deconvoluted cell type proportions in bulk RNA-Seq samples

Description

Bar plot of deconvoluted cell type proportions in bulk RNA-Seq samples.

Usage

```r
barPlotCellTypes(
  data,
  colors = NULL,
  simplify = NULL,
  color.line = NA,
  x.label = "Bulk samples",
  rm.x.text = FALSE,
  title = "Results of deconvolution",
  legend.title = "Cell types",
  angle = 90,
  theme = NULL,
  ...
)```

## S4 method for signature 'DigitalDLSorter'
barPlotCellTypes(
  data,
  colors = NULL,
  simplify = NULL,
  color.line = NA,
  x.label = "Bulk samples",
  rm.x.text = FALSE,
  title = "Results of deconvolution",
  legend.title = "Cell types",
  angle = 90,
  theme = NULL,
  name.data = NULL
)

## S4 method for signature 'ANY'
barPlotCellTypes(
  data,
  colors,
  color.line = NA,
  x.label = "Bulk samples",
  rm.x.text = FALSE,
  title = "Results of deconvolution",
  legend.title = "Cell types",
  angle = 90,
  theme = NULL
)

### Arguments

**data**  
DigitalDLSorter object with deconv.results slot or a data frame/matrix with cell types as columns and samples as rows.

**colors**  
Vector of colors to be used.

**simplify**  
Type of simplification performed during deconvolution. Can be simpli.set or simpli.maj (NULL by default). It is only for DigitalDLSorter objects.

**color.line**  
Color of the border bars.

**x.label**  
Label of x-axis.

**rm.x.text**  
Logical value indicating whether to remove x-axis ticks (name of samples).

**title**  
Title of the plot.

**legend.title**  
Title of the legend plot.

**angle**  
Angle of text ticks.

**theme**  
**ggplot2** theme.

...  
Other arguments for specific methods.

**name.data**  
If a DigitalDLSorter is given, name of the element that stores the results in the deconv.results slot.
Value

A ggplot object with the provided cell proportions represented as a bar plot.

See Also

decovDigitalDLSorter deconvDDLSObj

Examples

# matrix of simulated proportions (same structure as deconvolution results)
deconvResults <- gtools::rdirichlet(n = 20, alpha = c(1, 1, 1, 0.5, 0.1))
colnames(deconvResults) <- paste("CellType", seq(ncol(deconvResults)))
rownames(deconvResults) <- paste("BulkSample", seq(nrow(deconvResults)))
barPlotCellTypes(deconvResults)

# Using a DigitalDLSorter object
DDLS <- DigitalDLSorter(deconv.results = list(Example = deconvResults))
barPlotCellTypes(DDLS)

blandAltmanLehPlot

Generate Bland-Altman agreement plots between predicted and expected cell type proportions from test data results

Description

Generate Bland-Altman agreement plots between predicted and expected cell type proportions from test data results. The Bland-Altman agreement plots can be displayed all mixed or split by cell type (CellType) or the number of cell types present in samples (nCellTypes). See the facet.by argument and examples for more information.

Usage

blandAltmanLehPlot(
  object,
  colors,
  color.by = "CellType",
  facet.by = NULL,
  log.2 = FALSE,
  filter.sc = TRUE,
  density = TRUE,
  color.density = "darkblue",
  size.point = 0.05,
  alpha.point = 1,
  ncol = NULL,
  nrow = NULL,
  title = NULL,
  theme = NULL,
...)

Arguments

object DigitalDLSorter object with trained.model slot containing metrics in test.deconv.metrics slot.

colors Vector of colors to be used. Only vectors with a number of colors equal to or greater than the levels of color.by will be accepted. By default a custom color list is used.

color.by Variable used to color data. Options are nCellTypes and CellType.

facet.by Variable used to display the data in different panels. If NULL, the plot is not split into different panels. Options are nCellTypes (by number of different cell types) and CellType (by cell type).

log.2 Whether to display the Bland-Altman agreement plot in log2 space (FALSE by default).

filter.sc Boolean indicating whether single-cell profiles are filtered out and only correlations of results associated with bulk samples are displayed (TRUE by default).

density Boolean indicating whether density lines must be displayed (TRUE by default).

color.density Color of density lines if the density argument is TRUE.

size.point Size of the points (0.1 by default).

alpha.point Alpha of the points (0.1 by default).

ncol Number of columns if facet.by is used.

nrow Number of rows if facet.by is used.

title Title of the plot.

theme ggplot2 theme.

Value

A ggplot object with Bland-Altman agreement plots between expected and actual proportions.

See Also

calculateEvalMetrics corrExpPredPlot distErrorPlot barErrorPlot

Examples

## Not run:
set.seed(123)
sce <- SingleCellExperiment::SingleCellExperiment(
  assays = list(
    counts = matrix(
      rpois(30, lambda = 5), nrow = 15, ncol = 20,
      dimnames = list(paste0("Gene", seq(15)), paste0("RHC", seq(20))))
)
colData = data.frame(
  Cell_ID = paste0("RHC", seq(20)),
  Cell_Type = sample(x = paste0("CellType", seq(6)), size = 20,
    replace = TRUE)
),
rowData = data.frame(
  Gene_ID = paste0("Gene", seq(15))
)

DDLS <- createDDLSobject(
  sc.data = sce,
  sc.cell.ID.column = "Cell_ID",
  sc.gene.ID.column = "Gene_ID",
  sc.filt.genes.cluster = FALSE,
  sc.log.FC = FALSE
)

probMatrixValid <- data.frame(
  Cell_Type = paste0("CellType", seq(6)),
  from = c(1, 1, 1, 15, 15, 30),
  to = c(15, 15, 30, 50, 50, 70)
)

DDLS <- generateBulkCellMatrix(
  object = DDLS,
  cell.ID.column = "Cell_ID",
  cell.type.column = "Cell_Type",
  prob.design = probMatrixValid,
  num.bulk.samples = 50,
  verbose = TRUE
)

# training of DDLS model
tensorflow::tf$compat$v1$disable_eager_execution()
DDLS <- trainDDLSModel(
  object = DDLS,
  on.the.fly = TRUE,
  batch.size = 15,
  num.epochs = 5
)

# evaluation using test data
DDLS <- calculateEvalMetrics(
  object = DDLS
)

# Bland-Altman plot by cell type
blandAltmanLehPlot(
  object = DDLS,
  facet.by = "CellType",
  color.by = "CellType"
)

# Bland-Altman plot of all samples mixed
blandAltmanLehPlot(
  object = DDLS,
  facet.by = NULL,
calculateEvalMetrics

```r
color.by = "CellType",
alpha.point = 0.3,
log2 = TRUE
)

End(Not run)
```

bulk.simul

*Get and set bulk.simul slot in a DigitalDLSorter object*

**Description**

Get and set bulk.simul slot in a **DigitalDLSorter** object.

**Usage**

```r
bulk.simul(object, type.data = "both")

bulk.simul(object, type.data = "both") <- value
```

**Arguments**

- **object**  
  **DigitalDLSorter** object.

- **type.data**  
  Element of the list. Can be 'train', 'test' or 'both' (the last by default).

- **value**  
  List with two elements, train and test, each one being a **SummarizedExperiment** object with simulated bulk RNA-Seq samples.

**calculateEvalMetrics**  
*Calculate evaluation metrics for bulk RNA-Seq samples from test data*

**Description**

Calculate evaluation metrics for bulk RNA-seq samples from test data to understand model performance. By default, absolute error (AbsErr), proportional absolute error (ppAbsErr), squared error (SqrErr) and proportional squared error (ppSqrErr) are calculated for each test sample. In addition, each of these metrics is aggregated using their mean values according to three criteria: each cell type (CellType), probability bins in ranges of 0.1 (pBin) and number of different cell types present in the sample nCellTypes. Finally, the process is repeated only considering bulk samples (filtering out single-cell profiles from the evaluation). The evaluation metrics will be available in the test.deconv.metrics slot of the **DigitalDLSorterDNN** object (trained.model slot of the **DigitalDLSorter** object).

**Usage**

```r
calculateEvalMetrics(object, metrics = c("MAE", "MSE"))
```
calculateEvalMetrics

Arguments

- **object**: `DigitalDLSorter` object with a trained model in the `trained.model` slot and the actual cell proportions of pseudo-bulk samples in `prob.cell.matrix` slot.
- **metrics**: Metrics used to evaluate the model performance. Mean absolute error ("MAE") and mean squared error ("MSE") by default.

Value

A `DigitalDLSorter` object with the `trained.model` slot containing a `DigitalDLSorterDNN` object with the `test.deconv.metrics` slot. The last contains the metrics calculated.

See Also

- `distErrorPlot`
- `corrExpPredPlot`
- `blandAltmanLehPlot`
- `barErrorPlot`

Examples

```r
Not run:
set.seed(123)
sce <- SingleCellExperiment::SingleCellExperiment(
 assays = list(
 counts = matrix(
 rpois(30, lambda = 5), nrow = 15, ncol = 20,
 dimnames = list(paste0("Gene", seq(15)), paste0("RHC", seq(20))
)
),
 colData = data.frame(
 Cell_ID = paste0("RHC", seq(20)),
 Cell_Type = sample(x = paste0("CellType", seq(6)), size = 20,
 replace = TRUE)
),
 rowData = data.frame(
 Gene_ID = paste0("Gene", seq(15))
)
)
DDLS <- createDDLSobject(
 sc.data = sce,
 sc.cell.ID.column = "Cell_ID",
 sc.gene.ID.column = "Gene_ID",
 sc.filt.genes.cluster = FALSE,
 sc.log.FC = FALSE
)
probMatrixValid <- data.frame(
 Cell_Type = paste0("CellType", seq(6)),
 from = c(1, 1, 1, 15, 15, 30),
 to = c(15, 15, 30, 50, 50, 70)
)
DDLS <- generateBulkCellMatrix(
 object = DDLS,
 cell.ID.column = "Cell_ID",
 cell.type.column = "Cell_Type",
```
cell.names

Get and set cell.names slot in a ProbMatrixCellTypes object

Description

Get and set cell.names slot in a ProbMatrixCellTypes object

Usage

cell.names(object)

cell.names(object) <- value

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>ProbMatrixCellTypes object.</td>
</tr>
<tr>
<td>value</td>
<td>Matrix containing the name of the pseudo-bulk samples to be simulated as rows and the cells to be used to simulate them as columns (n.cell argument)</td>
</tr>
</tbody>
</table>
cell.types

Get and set cell.types slot in a DigitalDLSorterDNN object

Description
Get and set cell.types slot in a DigitalDLSorterDNN object

Usage

```r
cell.types(object)
cell.types(object) <- value
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>DigitalDLSorterDNN object.</td>
</tr>
<tr>
<td>value</td>
<td>Vector with cell types considered by the Deep Neural Network model.</td>
</tr>
</tbody>
</table>

corrExpPredPlot

Generate correlation plots between predicted and expected cell type proportions from test data

Description
Generate correlation plot between predicted and expected cell type proportions from test data. Correlation plots can be displayed all mixed or split by cell type (CellType) or number of cell types present in the samples (nCellTypes). See the facet.by argument and examples for more information. Moreover, a user-selected correlation value is displayed as an annotation on the plots. See the corr argument for details.

Usage

```r
corrExpPredPlot(
 object, colors,
 facet.by = NULL, color.by = "CellType",
 corr = "both", filter.sc = TRUE,
 pos.x.label = 0.01, pos.y.label = 0.95,
 sep.labels = 0.15, size.point = 0.1,
 alpha.point = 1, ncol = NULL,
)```
Arguments

- `object` : DigitalDLSorter object with trained.model slot containing metrics in the test.deconv.metrics slot of a DigitalDLSorterDNN object.
- `colors` : Vector of colors to be used. Only vectors with a number of colors equal to or greater than the levels of color.by will be accepted. By default, a custom color list is used.
- `facet.by` : Variable used to display data in different panels. If NULL, the plot is not split into different panels. Options are nCellTypes (by number of different cell types) and CellType (by cell type).
- `color.by` : Variable used to color data. Options are nCellTypes and CellType.
- `corr` : Correlation value displayed as an annotation on the plot. Available metrics are Pearson's correlation coefficient ('pearson') and concordance correlation coefficient ('ccc'). The argument can be 'pearson', 'ccc' or 'both' (by default).
- `filter.sc` : Boolean indicating whether single-cell profiles are filtered out and only errors associated with pseudo-bulk samples are displayed (TRUE by default).
- `pos.x.label` : X-axis position of correlation annotations (0.95 by default).
- `pos.y.label` : Y-axis position of correlation annotations (0.1 by default).
- `sep.labels` : Space separating annotations if corr is equal to 'both' (0.15 by default).
- `size.point` : Size of points (0.1 by default).
- `alpha.point` : Alpha of points (0.1 by default).
- `ncol` : Number of columns if facet.by is other than NULL.
- `nrow` : Number of rows if facet.by is different from NULL.
- `title` : Title of the plot.
- `theme` : ggplot2 theme.
- `...` : Additional arguments for the facet_wrap function from ggplot2 if facet.by is not NULL.

Value

A ggplot object with the correlation plots between expected and actual proportions.

See Also

calculateEvalMetrics distErrorPlot blandAltmanLehPlot barErrorPlot
Examples

```r
## Not run:
set.seed(123)
sce <- SingleCellExperiment::SingleCellExperiment(
  assays = list(
    counts = matrix(
      rpois(30, lambda = 5), nrow = 15, ncol = 20,
      dimnames = list(paste0("Gene", seq(15)), paste0("RHC", seq(20))))
  ),
  colData = data.frame(
    Cell_ID = paste0("RHC", seq(20)),
    Cell_Type = sample(x = paste0("CellType", seq(6)), size = 20,
                       replace = TRUE)
  ),
  rowData = data.frame(
    Gene_ID = paste0("Gene", seq(15))
  )
)
DDLS <- createDDLSobject(
  sc.data = sce,
  sc.cell.ID.column = "Cell_ID",
  sc.gene.ID.column = "Gene_ID",
  sc.filt.genes.cluster = FALSE,
  sc.log.FC = FALSE
)
probMatrixValid <- data.frame(
  Cell_Type = paste0("CellType", seq(6)),
  from = c(1, 1, 1, 15, 15, 30),
  to = c(15, 15, 30, 50, 50, 70)
)
DDLS <- generateBulkCellMatrix(
  object = DDLS,
  cell.ID.column = "Cell_ID",
  cell.type.column = "Cell_Type",
  prob.design = probMatrixValid,
  num.bulk.samples = 50,
  verbose = TRUE
)
# training of DDLS model
tensorflow::tf$compat$v1$disable_eager_execution()
DDLS <- trainDDLSModel(
  object = DDLS,
  on.the.fly = TRUE,
  batch.size = 15,
  num.epochs = 5
)
# evaluation using test data
DDLS <- calculateEvalMetrics(
  object = DDLS
)
# correlations by cell type
```
createDDLSObject

Create a DigitalDLSorter object from single-cell RNA-seq and bulk RNA-seq data

Description

This function creates a DigitalDLSorter object from single-cell RNA-seq (SingleCellExperiment object) and bulk RNA-seq data to be deconvoluted (bulk.data parameter) as a SummarizedExperiment object.

Usage

createDDLSObject(
 sc.data,
 sc.cell.ID.column,
 sc.gene.ID.column,
 sc.cell.type.column,
 bulk.data,
 bulk.sample.ID.column,
 bulk.gene.ID.column,
 bulk.name.data = "Bulk.DT",
 filter.mt.genes = "^mt-",
 sc.filt.genes.cluster = TRUE,
 sc.min.mean.counts = 1,
 sc.n.genes.per.cluster = 300,
 top.n.genes = 2000,
 sc.log.FC = TRUE,
 sc.min.counts = 1,
 sc.min.cells = 1,
createDDLSObject

bulk.min.counts = 1,
bulk.min.samples = 1,
shared.genes = TRUE,
sc.name.dataset.h5 = NULL,
sc.file.backend = NULL,
sc.name.dataset.backend = NULL,
sc.compression.level = NULL,
sc.chunk.dims = NULL,
sc.block.processing = FALSE,
verbose = TRUE,
project = "DigitalDLSorter-Project"
)

Arguments

sc.data Single-cell RNA-seq profiles to be used as reference. If data are provided from files, single.cell.real must be a vector of three elements: single-cell counts, cells metadata and genes metadata. On the other hand, if data are provided from a SingleCellExperiment object, single-cell counts must be present in the assay slot, cells metadata in the colData slot, and genes metadata in the rowData slot.

sc.cell.ID.column Name or number of the column in cells metadata corresponding to cell names in expression matrix (single-cell RNA-seq data).

sc.gene.ID.column Name or number of the column in genes metadata corresponding to the names used for features/genes (single-cell RNA-seq data).

sc.cell.type.column Name or column number corresponding to cell types in cells metadata.

bulk.data Bulk transcriptomics data to be deconvoluted. It has to be a SummarizedExperiment object.

bulk.sample.ID.column Name or column number corresponding to sample IDs in samples metadata (bulk transcriptomics data).

bulk.gene.ID.column Name or number of the column in the genes metadata corresponding to the names used for features/genes (bulk transcriptomics data).

bulk.name.data Name of the bulk RNA-seq dataset ("Bulk.DT" by default).

filter.mt.genes Regular expression matching mitochondrial genes to be ruled out (^mt- by default). If NULL, no filtering is performed.

sc.filt.genes.cluster Whether to filter single-cell RNA-seq genes according to a minimum threshold of non-zero average counts per cell type (sc.min.mean.counts). TRUE by default.

sc.min.mean.counts Minimum non-zero average counts per cluster to filter genes. 1 by default.
createDDLSobject

sc.n.genes.per.cluster
Top n genes with the highest logFC per cluster (300 by default). See Details section for more details.

top.n.genes
Maximum number of genes used for downstream steps (2000 by default). In case the number of genes after filtering is greater than top.n.genes, these genes will be set according to variability across the whole single-cell dataset.

sc.log.FC
Whether to filter genes with a logFC less than 0.5 when sc.filt.genes.cluster = TRUE.

sc.min.counts
Minimum gene counts to filter (1 by default; single-cell RNA-seq data).

sc.min.cells
Minimum of cells with more than min.counts (1 by default; single-cell RNA-seq data).

bulk.min.counts
Minimum gene counts to filter (1 by default; bulk transcriptomics data).

bulk.min.samples
Minimum of samples with more than min.counts (1 by default; bulk transcriptomics data).

shared.genes
If set to TRUE, only genes present in both the single-cell and spatial transcriptomics data will be retained for further processing (TRUE by default).

sc.name.dataset.h5
Name of the data set if HDF5 file is provided for single-cell RNA-seq data.

sc.file.backend
Valid file path where to store the loaded for single-cell RNA-seq data as HDF5 file. If provided, data are stored in a HDF5 file as back-end using the DelayedArray and HDF5Array packages instead of being loaded into RAM. This is suitable for situations where you have large amounts of data that cannot be stored in memory. Note that operations on these data will be performed by blocks (i.e subsets of determined size), which may result in longer execution times. NULL by default.

sc.name.dataset.backend
Name of the HDF5 file dataset to be used. Note that it cannot exist. If NULL (by default), a random dataset name will be generated.

sc.compression.level
The compression level used if sc.file.backend is provided. It is an integer value between 0 (no compression) and 9 (highest and slowest compression). See ?getHDF5DumpCompressionLevel from the HDF5Array package for more information.

sc.chunk.dims
Specifies dimensions that HDF5 chunk will have. If NULL, the default value is a vector of two items: the number of genes considered by DigitalDLSorter object during the simulation, and only one sample in order to increase read times in the following steps. A larger number of columns written in each chunk may lead to longer read times.

sc.block.processing
Boolean indicating whether single-cell RNA-seq data should be treated as blocks (only if data are provided as HDF5 file). FALSE by default. Note that using this functionality is suitable for cases where it is not possible to load data into RAM and therefore execution times will be longer.
createDDLSobject

| verbose | Show informative messages during the execution (TRUE by default). |
| project | Name of the project for DigitalDLSorter object. |

Details

Filtering genes

In order to reduce the number of dimensions used for subsequent steps, createSpatialDDLSobject implements different strategies aimed at removing useless genes for deconvolution:

- Filtering at the cell level: genes less expressed than a determined cutoff in N cells are removed. See sc.min.cells/bulk.min.samples and sc.min.counts/bulk.min.counts parameters.
- Filtering at the cluster level (only for scRNA-seq data): if sc.filt.genes.cluster == TRUE, createDDLSobject sets a cutoff of non-zero average counts per cluster (sc.min.mean.counts parameter) and take only the sc.n.genes.per.cluster genes with the highest logFC per cluster. LogFCs are calculated using normalized logCPM of each cluster with respect to the average in the whole dataset). Finally, if the number of remaining genes is greater than top.n.genes, genes are ranked based on variance and the top.n.genes most variable genes are used for downstream analyses.

Single-cell RNA-seq data

Single-cell RNA-seq data can be provided from files (formats allowed: tsv, tsv.gz, mtx (sparse matrix) and hdf5) or a SingleCellExperiment object. The data provided should consist of three pieces of information:

- Single-cell counts: genes as rows and cells as columns.
- Cells metadata: annotations (columns) for each cell (rows).
- Genes metadata: annotations (columns) for each gene (rows).

If the data is provided from files, single.cell.real argument must be a vector of three elements ordered so that the first file corresponds to the count matrix, the second to the cells metadata and the last to the genes metadata. On the other hand, if the data is provided as a SingleCellExperiment object, it must contain single-cell counts in the assay slot, cells metadata in the colData slot and genes metadata in the rowData. The data must be provided without any transformation (e.g. log-transformation) and raw counts are preferred.

Bulk transcriptomics data

It must be a SummarizedExperiment object (or a list of them if samples from different experiments are going to be deconvoluted) containing the same information as the single-cell RNA-seq data: the count matrix, samples metadata (with IDs is enough), and genes metadata. Please, make sure the gene identifiers used in the bulk and single-cell transcriptomics data are consistent.

Value

A DigitalDLSorter object with the single-cell RNA-seq data provided loaded into the single.cell.real slot as a SingleCellExperiment object. If bulk transcriptomics data are provided, they will be stored in the deconv.data slot.

See Also

estimateZinbwaveParams generateBulkCellMatrix
Examples

set.seed(123) # reproducibility
sce <- SingleCellExperiment::SingleCellExperiment(
 assays = list(
 counts = matrix(
 rpois(100, lambda = 5), nrow = 40, ncol = 30,
 dimnames = list(paste0("Gene", seq(40)), paste0("RHC", seq(30)))
),
),
 colData = data.frame(
 Cell_ID = paste0("RHC", seq(30)),
 Cell_Type = sample(x = paste0("CellType", seq(4)), size = 30,
 replace = TRUE)
),
 rowData = data.frame(
 Gene_ID = paste0("Gene", seq(40))
)
)
DDLS <- createDDLSoberet(
 sc.data = sce,
 sc.cell.ID.column = "Cell_ID",
 sc.gene.ID.column = "Gene_ID",
 sc.min.cells = 0,
 sc.min.counts = 0,
 sc.log.FC = FALSE,
 sc.filt.genes.cluster = FALSE,
 project = "Simul_example"
)

deconv.data

Get and set deconv.data slot in a DigitalDLSorter object

Description

Get and set deconv.data slot in a DigitalDLSorter object

Usage

deconv.data(object, name.data = NULL)
deconv.data(object, name.data = NULL) <- value

Arguments

object DigitalDLSorter object.
name.data Name of the data. If NULL (by default), all data contained in the deconv.data slot are returned.
value List whose names are the reference of the stored data.
deconv.results

Get and set deconv.results slot in a DigitalDLSorter object

Description

Get and set deconv.results slot in a DigitalDLSorter object

Usage

deconv.results(object, name.data = NULL)

deconv.results(object, name.data = NULL) <- value

Arguments

object DigitalDLSorter object.
name.data Name of the data. If NULL (by default), all results contained in the deconv.results slot are returned.
value List whose names are the reference of the stored results.

deconvDDLSObj Deconvolute bulk gene expression samples (bulk RNA-Seq)

Description

Deconvolute bulk gene expression samples (bulk RNA-Seq). This function requires a DigitalDLSorter object with a trained Deep Neural Network model (trained.model slot) and the new bulk RNA-Seq samples to be deconvoluted in the deconv.data slot. See ?loadDeconvData for more details.

Usage

deconvDDLSObj(
 object,
 name.data = "Bulk.DT",
 normalize = TRUE,
 scaling = "standardize",
 simplify.set = NULL,
 simplify.majority = NULL,
 use.generator = FALSE,
 batch.size = 64,
 verbose = TRUE
)
Arguments

object DigitalDLSorter object with trained.data and deconv.data data.
name.data Name of the data stored in the DigitalDLSorter object. If not provided, the first data set will be used.
normalize Normalize data before deconvolution (TRUE by default).
scale How to scale data before training. It may be: "standardize" (values are centered around the mean with a unit standard deviation) or "rescale" (values are shifted and rescaled so that they end up ranging between 0 and 1). If normalize = FALSE, data is not scaled.
simplify.set List specifying which cell types should be compressed into a new label whose name will be the list item. See examples for details. If provided, results are stored in a list with 'raw' and 'simp.set' results.
simplify.majority List specifying which cell types should be compressed into the cell type with the highest proportion in each sample. Unlike simplify.set, it allows to maintain the complexity of the results while compressing the information, as no new labels are created. If provided, the results are stored in a list with 'raw' and 'sim.majority' results.
use.generator Boolean indicating whether to use generators for prediction (FALSE by default).
batch.size Number of samples per batch. Only when use.generator = TRUE.
verbose Show informative messages during the execution.

Details

This function is intended for users who have built a devonvolution model using their own single-cell RNA-Seq data. If you want to use a pre-trained model to deconvolute your samples, see ?deconvDigitalDLSorter.

Value

DigitalDLSorter object with deconv.results slot. The resulting information is a data frame with samples (i) as rows and cell types (j) as columns. Each entry represents the proportion of j cell type in i sample. If simplify.set or/and simplify.majority are provided, the deconv.results slot will contain a list with raw and simplified results.

References

See Also

trainDDLSModel DigitalDLSorter
Examples

```r
## Not run:
set.seed(123)
sce <- SingleCellExperiment::SingleCellExperiment(
  assays = list(
    counts = matrix(
      rpois(30, lambda = 5), nrow = 15, ncol = 20,
      dimnames = list(paste0("Gene", seq(15)), paste0("RHC", seq(20)))
    ),
    colData = data.frame(
      Cell_ID = paste0("RHC", seq(20)),
      Cell_Type = sample(x = paste0("CellType", seq(6)), size = 20, replace = TRUE)
    ),
    rowData = data.frame(
      Gene_ID = paste0("Gene", seq(15))
    )
  ),
  sc.data = sce,
  sc.cell.ID.column = "Cell_ID",
  sc.gene.ID.column = "Gene_ID",
  sc.filt.genes.cluster = FALSE,
  sc.log.FC = FALSE
)

probMatrixValid <- data.frame(
  Cell_Type = paste0("CellType", seq(6)),
  from = c(1, 1, 1, 15, 15, 30),
  to = c(15, 15, 30, 50, 50, 70)
)

DDLS <- generateBulkCellMatrix(
  object = DDLS,
  cell.ID.column = "Cell_ID",
  cell.type.column = "Cell_Type",
  prob.design = probMatrixValid,
  num.bulk.samples = 50,
  verbose = TRUE
)

# training of DDLS model
tensorflow::tf$compat$v1$disable_eager_execution()
DDLS <- trainDDLSModel(
  object = DDLS,
  on.the.fly = TRUE,
  batch.size = 15,
  num.epochs = 5
)

# simulating bulk RNA-Seq data
countsBulk <- matrix(
  stats::rpois(100, lambda = sample(seq(4, 10), size = 100, replace = TRUE)),
  nrow = 40, ncol = 15,
  dimnames = list(paste0("Gene", seq(40)), paste0("Bulk", seq(15))
)```
Deconvolute bulk RNA-Seq samples using a pre-trained DigitalDL-Sorter model

Description

Deconvolute bulk gene expression samples (bulk RNA-Seq) to enumerate and quantify the proportion of cell types present in a bulk sample using Deep Neural Network models. This function is intended for users who want to use pre-trained models integrated in the package. So far, the available models allow to deconvolute the immune infiltration of breast cancer (using data from Chung et al., 2017) and the immune infiltration of colorectal cancer (using data from Li et al., 2017) samples. For the former, two models are available at two different levels of specificity: specific cell types (breast.chung.specific) and generic cell types (breast.chung.generic). See breast.chung.generic, breast.chung.specific, and colorectal.li documentation from the digitalDLSorteRdata package for more details.

Usage

decovDigitalDLSorter(
  data,
  model = NULL,
  normalize = TRUE,
  scaling = "standardize",
  simplify.set = NULL,
  simplify.majority = NULL,
  use.generator = FALSE,
  batch.size = 64,
  verbose = TRUE
)
Arguments

data  Matrix or data frame with bulk RNA-Seq samples with genes as rows in SYMBOL notation and samples as columns.

model  Pre-trained DNN model to use to deconvolute data. Up to now, the available models are intended to deconvolute samples from breast cancer (breast.chung.generic and breast.chung.specific) and colorectal cancer (colorectal.li). These pre-trained models are stored in the digitalDLSorterData package, so it must be installed together with digitalDLSorter to use this function.

normalize  Normalize data before deconvolution (TRUE by default).

scaling  How to scale data before training. It may be: "standardize" (values are centered around the mean with a unit standard deviation) or "rescale" (values are shifted and rescaled so that they end up ranging between 0 and 1). If normalize = FALSE, data is not scaled.

simplify.set  List specifying which cell types should be compressed into a new label whose name will be the list name item. See examples and vignettes for details.

simplify.majority  List specifying which cell types should be compressed into the cell type with the highest proportion in each sample. Unlike simplify.set, this argument allows to maintain the complexity of the results while compressing the information, as no new labels are created.

use.generator  Boolean indicating whether to use generators for prediction (FALSE by default).

batch.size  Number of samples per batch. Only when use.generator = TRUE.

verbose  Show informative messages during execution.

Details

This function is intended for users who want to use digitalDLSorter to deconvolute their bulk RNA-Seq samples using pre-trained models. For users who want to build their own models from other scRNA-Seq datasets, see the createDDLSObject and deconvDDLSObj functions.

Value

A data frame with samples (i) as rows and cell types (j) as columns. Each entry represents the predicted proportion of cell type j in sample i.

References


See Also

deconvDDLSObj
## Examples

```r
Not run:
set.seed(123)
sce <- SingleCellExperiment::SingleCellExperiment(
 assays = list(
 counts = matrix(
 rpois(30, lambda = 5), nrow = 15, ncol = 20,
 dimnames = list(paste0("Gene", seq(15)), paste0("RHC", seq(20))))
),
 colData = data.frame(
 Cell_ID = paste0("RHC", seq(20)),
 Cell_Type = sample(x = paste0("CellType", seq(6)), size = 20,
 replace = TRUE)
),
 rowData = data.frame(
 Gene_ID = paste0("Gene", seq(15))
)
)
DDLS <- createDDLSObject(
 sc.data = sce,
 sc.cell.ID.column = "Cell_ID",
 sc.gene.ID.column = "Gene_ID",
 sc.filt.genes.cluster = FALSE,
 sc.log.FC = FALSE
)
probMatrixValid <- data.frame(
 Cell_Type = paste0("CellType", seq(6)),
 from = c(1, 1, 1, 15, 15, 30),
 to = c(15, 15, 30, 50, 50, 70)
)
DDLS <- generateBulkCellMatrix(
 object = DDLS,
 cell.ID.column = "Cell_ID",
 cell.type.column = "Cell_Type",
 prob.design = probMatrixValid,
 num.bulk.samples = 50,
 verbose = TRUE
)
training of DDLS model
tensorflow::tf$compat$v1$disable_eager_execution()
DDLS <- trainDDLSModel(
 object = DDLS,
 on.the.fly = TRUE,
 batch.size = 15,
 num.epochs = 5
)
simulating bulk RNA-Seq data
countsBulk <- matrix(
 stats::rpois(100, lambda = sample(seq(4, 10), size = 100, replace = TRUE)),
 nrow = 40, ncol = 15,
 dimnames = list(paste0("Gene", seq(40)), paste0("Bulk", seq(15)))
```

# this is only an example. See vignettes to see how to use pre-trained models
# from the digitalDLSorteRmodels data package
results1 <- deconvDigitalDLSorter(
  data = countsBulk,
  model = trained.model(DDLS),
  normalize = TRUE
)

# simplify arguments
simplify <- list(CellGroup1 = c("CellType1", "CellType2", "CellType4"),
                 CellGroup2 = c("CellType3", "CellType5"))

# in this case the names of the list will be the new labels
results2 <- deconvDigitalDLSorter(
  countsBulk,
  model = trained.model(DDLS),
  normalize = TRUE,
  simplify.set = simplify
)

# in this case the cell type with the highest proportion will be the new label
results3 <- deconvDigitalDLSorter(
  countsBulk,
  model = trained.model(DDLS),
  normalize = TRUE,
  simplify.majority = simplify
)

## End(Not run)

---

digitalDLSorteR: an R package to deconvolute bulk RNA-Seq samples using single-cell RNA-Seq data and Deep Learning

**Description**

*digitalDLSorteR* is an R package that allows to deconvolute bulk RNA-Seq data using context-specific deconvolution models based on single-cell RNA-Seq data and Deep Neural Networks. These models are able to make accurate estimates of the cell composition of bulk RNA-Seq samples from the same context using the advances provided by Deep Learning and the meaningful information provided by scRNA-Seq data. See Torroja and Sanchez-Cabo (2019) (doi:10.3389/fgene.2019.00978) for more details.

**Details**

The foundation of the method consists of a process that starts from single-cell RNA-Seq data and, after a few steps, a Deep Neural Network (DNN) model is trained with simulated pseudo-bulk RNA-Seq samples whose cell composition is known. These trained models are able to deconvolute any bulk RNA-Seq sample from the same biological context by determining the proportion of present cell types. The main advantage is the possibility to build deconvolution models trained with real data.
from certain biological environments. For example, to quantify the proportion of tumor infiltrated lymphocytes (TILs) in breast cancer, a specific model for this type of samples can be obtained by using this package. This overcomes the limitation of other methods, since stromal and immune cells may significantly change their transcriptional profiles depending on tissue and disease context.

The package can be used in two ways: deconvoluting bulk RNA-Seq samples using pre-trained models available on the digitalDLSorterRmodels R package or building your own models trained with your own single-cell RNA-Seq data. These new models may be published to make them available for other users working with similar data. So far, available models allow deconvoluting breast and colorectal cancer samples. See vignettes and https://diegommcc.github.io/digitalDLSorter/ for more details.

---

**DigitalDLSorter-class**  
*The DigitalDLSorter Class*

**Description**

The DigitalDLSorter object is the core of digitalDLSorter. This object stores different intermediate data resulting from the creation of new context-specific deconvolution models from single-cell data. It is only used in the case of building new deconvolution models. To deconvolute bulk samples using pre-trained models, see `deconvDigitalDLSorter` function and the package `digitalDLSorterRdata`.

**Details**

This object uses other classes to store the different types of data produced during the process:

- `SingleCellExperiment` class for single-cell RNA-Seq data, using sparse matrix from the `Matrix` package (`dgCMatrix` class) or `HDF5Array` class in the case of using HDF5 files as back-end (see below for more information).
- `ZinbModel` class with estimated parameters for the simulation of new single-cell profiles.
- `SummarizedExperiment` class for large bulk RNA-Seq data storage.
- `ProbMatrixCellTypes` class for the compositional cell matrices constructed during the process. See `?ProbMatrixCellTypes` for details.
- `DigitalDLSorterDNN` class to store the information related to Deep Neural Network models. This step is performed using keras. See `?DigitalDLSorterDNN` for details.

**digitalDLSorter** can be used in two ways: to build new deconvolution models from single-cell RNA-Seq data or to deconvolute bulk RNA-Seq samples using pre-trained models available at `digitalDLSorterRdata` package. If you want to build new models, see `createDDLSobject` function. On the other hand, if you want to use pre-trained models, see `deconvDigitalDLSorter` function.

In order to provide a way to work with large amounts of data on RAM-constrained machines, we provide the possibility to use HDF5 files as back-end to store count matrices of both real/simulated single-cell and bulk RNA-Seq profiles. For this, the package uses the `HDF5Array` and `DelayedArray` classes from the homonymous packages.

Once the Deep Neural Network model has been trained, it is possible to save it as RDS or HDF5 files. Please see `DigitalDLSorterDNN` for more details.
**DigitalDLSorterDNN-class**

**Slots**

- **single.cell.real**  Real single-cell data stored in a SingleCellExperiment object. The count matrix is stored as dgCMatrix or HDF5Array objects.
- **deconv.data**  List of SummarizedExperiment objects where it is possible to store new bulk RNA-Seq experiments for deconvolution. The name of the entries corresponds to the name of the data provided. See trainDDLModel for details.
- **zinb.params**  ZinbModel object with estimated parameters for the simulation of new single-cell expression profiles.
- **single.cell.simul**  Simulated single-cell expression profiles from the ZINB-WaVE model.
- **prob.cell.types**  ProbMatrixCellTypes class with cell composition matrices built for the simulation of pseudo-bulk RNA-Seq profiles with known cell composition.
- **bulk.simul**  A list of simulated train and test bulk RNA-Seq samples. Each entry is a SummarizedExperiment object. The count matrices can be stored as HDF5Array files using HDF5 files as back-end in case of RAM limitations.
- **trained.model**  DigitalDLSorterDNN object with all the information related to the trained model. See ?DigitalDLSorterDNN for more details.
- **deconv.results**  Slot containing the deconvolution results of applying the deconvolution model to the data present in the deconv.data slot. It is a list in which the names corresponds to the data from which they come.
- **project**  Name of the project.
- **version**  Version of DigitalDLSorter this object was built under.

---

**DigitalDLSorterDNN-class**

*The DigitalDLSorterDNN Class*

**Description**

The DigitalDLSorterDNN object stores all the information related to Deep Neural Network models. It contains the trained model, the training history and the results of prediction on test data. After running calculateEvalMetrics, it is possible to find the performance evaluation of the model on test data (see ?calculateEvalMetrics for details).

**Details**

The steps related to Deep Learning are carried out using the keras package which uses the R6 classes system. If you want to save the object as an RDS file, digitalDLSorterR provides a saveRDS generic function that transforms the model stored as an R6 object into a native valid R object. Specifically, the model is converted into a list with the architecture of the network and the weights learned during training. That is the minimum information needed to use the model as predictor. If you want to keep the optimizer state, see ?saveTrainedModelAsH5. If you want to store DigitalDLSorter object on disk as an RDA file, see ?preparingToSave.
Slots

model Trained Deep Neural Network. This slot can contain an R6 Keras.engine.sequential.Sequential object or a list with two elements: the architecture of the model and the resulting weights after training.

training.history List with the evolution of the selected metrics during training.

test.metrics Performance of the model on test data.

test.pred Deconvolution results on test data. Columns are cell types, rows are samples and each entry corresponds to the proportion of this cell type in this sample.

cell.types Vector with cell types to deconvolute.

features Vector with the features used during training. These features will be used in subsequent predictions (the nomenclature used in new bulk RNA-Seq samples must be the same).

test.deconv.metrics Performance of the model on each sample of test data compared to known cell proportions. This slot is used after calculateEvalMetrics (see ?calculateEvalMetrics for more details).

distErrorPlot

Generate violin plots or box plots to show how the errors are distributed by proportion bins of 0.1.

Errors can be displayed all mixed or split by cell type (CellType) or number of cell types present in the samples (nCellTypes). See the facet.by argument and examples for more details.

Usage

distErrorPlot(
  object, error, colors, x.by = "pBin", facet.by = NULL, color.by = "nCellTypes", filter.sc = TRUE, error.label = FALSE, pos.x.label = 4.6, pos.y.label = NULL, size.point = 0.1, alpha.point = 1, type = "violinplot", ylimit = NULL, nrow = NULL, ncol = NULL, title = NULL)
theme = NULL, 
... 
)

Arguments

object  DigitalDLSorter  object with trained.model slot containing metrics in the test.deconv.metrics slot of a DigitalDLSorterDNN object.
error  The error to be represented. Available errors are absolute error ('AbsErr'), proportional absolute error ('ppAbsErr'), squared error ('SqrErr') and proportional squared error ('ppSqrErr').
colors  Vector of colors to be used. Only vectors with a number of colors equal to or greater than the levels of color.by will be accepted. By default, a custom color list is used.
x.by  Variable used for the X-axis. When facet.by is not NULL, the best choice is pBin (probability bins). The options are nCellTypes (number of different cell types), CellType (cell type) and pBin.
facet.by  Variable used to display data in different panels. If NULL, the plot is not split into different panels. Options are nCellTypes (number of different cell types) and CellType (cell type).
color.by  Variable used to color the data. Options are nCellTypes and CellType.
filter.sc  Boolean indicating whether single-cell profiles are filtered out and only errors associated with pseudo-bulk samples are displayed (TRUE by default).
error.label  Boolean indicating whether to display the average error as a plot annotation (FALSE by default).
pos.x.label  X-axis position of error annotations.
pos.y.label  Y-axis position of error annotations.
size.point  Size of points (0.1 by default).
alpha.point  Alpha of points (0.1 by default).
type  Type of plot: 'boxplot' or 'violinplot'. The latter by default.
ylim  Upper limit in Y-axis if it is required (NULL by default).
nrow  Number of rows if facet.by is not NULL.
ncol  Number of columns if facet.by is not NULL.
title  Title of the plot.
theme  ggplot2 theme.
...  Additional arguments for the facet_wrap function from ggplot2 if facet.by is not NULL.

Value

A ggplot object with the representation of the desired errors.

See Also

calculateEvalMetrics corrExpPredPlot blandAltmanLehPlot barErrorPlot
Examples

```r
Not run:
set.seed(123)
sce <- SingleCellExperiment::SingleCellExperiment(
 assays = list(
 counts = matrix(
 rpois(30, lambda = 5), nrow = 15, ncol = 20,
 dimnames = list(paste0("Gene", seq(15)), paste0("RHC", seq(20))))
),
 colData = data.frame(
 Cell_ID = paste0("RHC", seq(20)),
 Cell_Type = sample(x = paste0("CellType", seq(6)), size = 20,
 replace = TRUE)
),
 rowData = data.frame(
 Gene_ID = paste0("Gene", seq(15))
)
)
DDLS <- createDDLSobject(
 sc.data = sce,
 sc.cell.ID.column = "Cell_ID",
 sc.gene.ID.column = "Gene_ID",
 sc.filt.genes.cluster = FALSE,
 sc.log.FC = FALSE
)
probMatrixValid <- data.frame(
 Cell_Type = paste0("CellType", seq(6)),
 from = c(1, 1, 1, 15, 15, 30),
 to = c(15, 15, 30, 50, 50, 70)
)
DDLS <- generateBulkCellMatrix(
 object = DDLS,
 cell.ID.column = "Cell_ID",
 cell.type.column = "Cell_Type",
 prob.design = probMatrixValid,
 num.bulk.samples = 50,
 verbose = TRUE
)
training of DDLS model
tensorflow::tf$compat$v1$disable_eager_execution()
DDLS <- trainDDLSModel(
 object = DDLS,
 on.the.fly = TRUE,
 batch.size = 15,
 num.epochs = 5
)
evaluation using test data
DDLS <- calculateEvalMetrics(
 object = DDLS
)
representation, for more examples, see the vignettes
```
estimateZinbwaveParams

Estimate the parameters of the ZINB-WaVE model to simulate new single-cell RNA-Seq expression profiles

Description

Estimate the parameters of the ZINB-WaVE model using a real single-cell RNA-Seq data set as reference to simulate new single-cell profiles and increase the signal of underrepresented cell types. This step is optional, only is needed if the size of you dataset is too small or there are underrepresented cell types in order to train the Deep Neural Network model in a more balanced way. After this step, the simSCProfiles function will use the estimated parameters to simulate new single-cell profiles. See ?simSCProfiles for more information.

Usage

```r
estimateZinbwaveParams(
 object,
 cell.type.column,
 cell.ID.column,
 gene.ID.column,
 cell.cov.columns,
 gene.cov.columns,
 subset.cells = NULL,
 proportional = TRUE,
 set.type = "All",
 threads = 1,
 verbose = TRUE
)
```
**estimateZinbwaveParams**

### Arguments

- **object** (*DigitalDLSorter* object with a `single.cell.real` slot)
- **cell.type.column** Name or column number corresponding to the cell type of each cell in cells metadata.
- **cell.ID.column** Name or column number corresponding to the cell names of expression matrix in cells metadata.
- **gene.ID.column** Name or column number corresponding to the notation used for features/genes in genes metadata.
- **cell.cov.columns** Name or column number(s) in cells metadata to be used as covariates during model fitting (if no covariates are used, set to empty or `NULL`).
- **gene.cov.columns** Name or column number(s) in genes metadata that will be used as covariates during model fitting (if no covariates are used, set to empty or `NULL`).
- **subset.cells** Number of cells to fit the ZINB-WaVE model. Useful when the original data set is too large to fit the model. Set a value according to the original data set and the resources available on your computer. If `NULL` (by default), all cells will be used. Must be an integer greater than or equal to the number of cell types considered and less than or equal to the total number of cells.
- **proportional** If `TRUE`, the original cell type proportions in the subset of cells generated by `subset.cells` will not be altered as far as possible. If `FALSE`, all cell types will have the same number of cells as far as possible (`TRUE` by default).
- **set.type** Cell type(s) to evaluate (`'All'` by default). It is recommended fitting the model to all cell types rather than using only a subset of them to capture the total variability present in the original experiment even if only a subset of cell types is simulated.
- **threads** Number of threads used for estimation (1 by default). To set up the parallel environment, the *BiocParallel* package must be installed.
- **verbose** Show informative messages during the execution (`TRUE` by default).

### Details

ZINB-WaVE is a flexible model for zero-inflated count data. This function carries out the model fit to real single-cell data modeling $Y_{ij}$ (the count of feature $j$ for sample $i$) as a random variable following a zero-inflated negative binomial (ZINB) distribution. The estimated parameters will be used for the simulation of new single-cell expression profiles by sampling a negative binomial distribution and inserting dropouts from a binomial distribution. To do so, *digitalDLSorter* uses the *zinbFit* function from the *zinbwave* package (Risso et al., 2018). For more details about the model, see Risso et al., 2018.

### Value

A *DigitalDLSorter* object with `zinb.params` slot containing a `ZinbParametersModel` object. This object contains a slot with the estimated ZINB-WaVE parameters from the real single-cell RNA-Seq data.
References


See Also

simSCProfiles

Examples

```r
set.seed(123) # reproducibility
sce <- SingleCellExperiment::SingleCellExperiment(
 assays = list(
 counts = matrix(
 rpois(30, lambda = 5), nrow = 15, ncol = 10,
 dimnames = list(paste0("Gene", seq(15)), paste0("RHC", seq(10)))
),
),
 colData = data.frame(
 Cell_ID = paste0("RHC", seq(10)),
 Cell_Type = sample(x = paste0("CellType", seq(2)), size = 10,
 replace = TRUE)
),
 rowData = data.frame(
 Gene_ID = paste0("Gene", seq(15))
)
)
DDLS <- createDDLSobject(
 sc.data = sce,
 sc.cell.ID.column = "Cell_ID",
 sc.gene.ID.column = "Gene_ID",
 sc.filt.genes.cluster = FALSE,
 sc.log.FC = FALSE
)
DDLS <- estimateZinbwaveParams(
 object = DDLS,
 cell.type.column = "Cell_Type",
 cell.ID.column = "Cell_ID",
 gene.ID.column = "Gene_ID",
 subset.cells = 2,
 verbose = TRUE
)
```
features

Get and set features slot in a DigitalDLSorterDNN object

Description

Get and set features slot in a DigitalDLSorterDNN object

Usage

features(object)

features(object) <- value

Arguments

object DigitalDLSorterDNN object.
value Vector with features (genes) considered by the Deep Neural Network model.

generateBulkCellMatrix

Generate training and test cell composition matrices

Description

Generate training and test cell composition matrices for the simulation of pseudo-bulk RNA-Seq samples with known cell composition using single-cell expression profiles. The resulting ProbMatrixCellTypes object contains a matrix that determines the proportion of the different cell types that will compose the simulated pseudo-bulk samples. In addition, this object also contains other information relevant for the process. This function does not simulate pseudo-bulk samples, this task is performed by the simBulkProfiles or trainDDLSModel functions (see Documentation).

Usage

generateBulkCellMatrix(
  object,
  cell.ID.column,
  cell.type.column,
  prob.design,
  num.bulk.samples,
  n.cells = 100,
  train.freq.cells = 3/4,
  train.freq.bulk = 3/4,
  proportion.method = c(10, 5, 20, 15, 35, 15),
  prob.sparsity = 0.5,
  min.zero.prop = NULL,
)
generateBulkCellMatrix

balanced.type.cells = FALSE,
verbose = TRUE
)

Arguments

object DigitalDLSorter object with single.cell.real slot and, optionally, with
single.cell.simul slot.
cell.ID.column Name or column number corresponding to the cell names of expression matrix
in cells metadata.
cell.type.column Name or column number corresponding to the cell type of each cell in cells metadata.
prob.design Data frame with the expected frequency ranges for each cell type present in
the experiment. This information can be estimated from literature or from the
single-cell experiment itself. This data frame must be constructed by three
columns with specific headings (see examples):
  • A cell type column with the same name of the cell type column in cells
    metadata (cell.type.column). If the name of the column is not the same,
    the function will return an error. All cell types must appear in the cells
    metadata.
  • A second column called 'from' with the start frequency for each cell type.
  • A third column called 'to' with the ending frequency for each cell type.
num.bulk.samples Number of bulk RNA-Seq sample proportions (and thus simulated bulk RNA-
Seq samples) to be generated taking into account training and test data. We rec-
ommend setting this value according to the number of single-cell profiles avail-
able in DigitalDLSorter object avoiding an excessive re-sampling, but generat-
ing a large number of samples for better training.
n.cells Number of cells that will be aggregated in order to simulate one bulk RNA-Seq
sample (100 by default).
train.freq.cells Proportion of cells used to simulate training pseudo-bulk samples (2/3 by de-
fault).
train.freq.bulk Proportion of bulk RNA-Seq samples to the total number (num.bulk.samples)
used for the training set (2/3 by default).
proportion.method Vector of six integers that determines the proportions of bulk samples generated
by the different methods (see Details and Torroja and Sanchez-Cabo, 2019. for
more information). This vector represents proportions, so its entries must add
up 100. By default, a majority of random samples will be generated without
using predefined ranges.
prob.sparsity It only affects the proportions generated by the first method (Dirichlet distribution).
It determines the probability of having missing cell types in each sim-
ulated spot, as opposed to a mixture of all cell types. A higher value for this
parameter will result in more sparse simulated samples.
**generateBulkCellMatrix**

**min.zero.prop**  This parameter controls the minimum number of cell types that will be absent in each simulated spot. If NULL (by default), this value will be half of the total number of different cell types, but increasing it will result in more spots composed of fewer cell types. This helps to create more sparse proportions and cover a wider range of situations during model training.

**balanced.type.cells**  Boolean indicating whether the training and test cells will be split in a balanced way considering the cell types (FALSE by default).

**verbose**  Show informative messages during the execution (TRUE by default).

**Details**

First, the available single-cell profiles are split into training and test subsets (2/3 for training and 1/3 for test by default (see train.freq.cells)) to avoid falsifying the results during model evaluation. Next, num.bulk.samples bulk samples proportions are built and the single-cell profiles to be used to simulate each pseudo-bulk RNA-Seq sample are set, being 100 cells per bulk sample by default (see n.cells argument). The proportions of training and test pseudo-bulk samples are set by train.freq.bulk (2/3 for training and 1/3 for testing by default). Finally, in order to avoid biases due to the composition of the pseudo-bulk RNA-Seq samples, cell type proportions \( (w_1, \ldots, w_k) \), where \( k \) is the number of cell types available in single-cell profiles) are randomly generated by using six different approaches:

1. Cell proportions are randomly sampled from a truncated uniform distribution with predefined limits according to a priori knowledge of the abundance of each cell type (see prob.design argument). This information can be inferred from the single-cell experiment itself or from the literature.
2. A second set is generated by randomly permuting cell type labels from a distribution generated by the previous method.
3. Cell proportions are randomly sampled as by method 1 without replacement.
4. Using the last method for generating proportions, cell types labels are randomly sampled.
5. Cell proportions are randomly sampled from a Dirichlet distribution.
6. Pseudo-bulk RNA-Seq samples composed of the same cell type are generated in order to provide 'pure' pseudo-bulk samples.

If you want to inspect the distribution of cell type proportions generated by each method during the process, they can be visualized by the showProbPlot function (see Documentation).

**Value**

A DigitalDLSorter object with prob.cell.types slot containing a list with two ProbMatrixCellTypes objects (training and test). For more information about the structure of this class, see ?ProbMatrixCellTypes.

**References**

getProbMatrix

**See Also**

`simBulkProfiles`, `ProbMatrixCellTypes`

**Examples**

```r
set.seed(123) # reproducibility
simulated data
case <- SingleCellExperiment::SingleCellExperiment(
 assays = list(
 counts = matrix(
 rpois(30, lambda = 5), nrow = 15, ncol = 10,
 dimnames = list(paste0("Gene", seq(15)), paste0("RHC", seq(10)))
),
),
colData = data.frame(
 Cell_ID = paste0("RHC", seq(10)),
 Cell_Type = sample(x = paste0("CellType", seq(2)), size = 10,
 replace = TRUE)
),
rowData = data.frame(
 Gene_ID = paste0("Gene", seq(15))
)
)
DDLS <- createDDLSobject(
 sc.data = case,
 sc.cell.ID.column = "Cell_ID",
 sc.gene.ID.column = "Gene_ID",
 sc.filt.genes.cluster = FALSE,
 sc.log.FC = FALSE
)
probMatrixValid <- data.frame(
 Cell_Type = paste0("CellType", seq(2)),
 from = c(1, 30),
 to = c(15, 70)
)
DDLS <- generateBulkCellMatrix(
 object = DDLS,
 cell.ID.column = "Cell_ID",
 cell.type.column = "Cell_Type",
 prob.design = probMatrixValid,
 num.bulk.samples = 10,
 verbose = TRUE
)
```

---

**getProbMatrix**

*Getter function for the cell composition matrix*
**Description**

Getter function for the cell composition matrix. This function allows to access to the cell composition matrix of simulated training or test pseudo-bulk RNA-Seq data.

**Usage**

`getProbMatrix(object, type.data)`

**Arguments**

- `object`: `DigitalDLSorter` object with `prob.cell.types` slot.
- `type.data`: Subset of data to be shown: `train` or `test`.

**Value**

A matrix object with the desired cell proportion matrix.

**See Also**

`generateBulkCellMatrix`

---

**installTFpython**

*Install Python dependencies for digitalDLSorter*

**Description**

This is a helper function to install Python dependencies needed: a Python interpreter with TensorFlow Python library and its dependencies. It is performed using the `reticulate` package and the installer of the `tensorflow` R package. The available options are virtual or conda environments. The new environment is called digitaldlsorter-env. In any case, this installation can be manually done as it is explained in [https://diegommcc.github.io/digitalDLSorter/articles/kerasIssues.html](https://diegommcc.github.io/digitalDLSorter/articles/kerasIssues.html), but we recommend using this function.

**Usage**

`installTFpython(conda = "auto", install.conda = FALSE, miniconda.path = NULL)`

**Arguments**

- `conda`: Path to a conda executable. Use "auto" (by default) allows `reticulate` to automatically find an appropriate conda binary.
- `install.conda`: Boolean indicating if install miniconda automatically using `reticulate`. If TRUE, conda argument is ignored. FALSE by default.
- `miniconda.path`: If `install.conda` is TRUE, you can set the path where miniconda will be installed. If NULL, conda will find automatically the proper place.
**Details**

This function is intended to make easier the installation of the requirements needed to use digitalDLSorter. It will automatically install Miniconda (if wanted, see Parameters) and create an environment called 'digitaldlsorter-env'. If you want to use other python/conda environment, see ?tensorflow::use_condaenv and/or the vignettes.

**Value**

No return value, called for side effects: installation of conda environment with a Python interpreter and Tensorflow

**Examples**

```r
Not run:
notesInstallation <- installTFpython(
 method = "auto", conda = "auto", install.conda = TRUE
)
End(Not run)
```

---

**listToDDLS**

Transform DigitalDLSorter-like list into an actual DigitalDLSorterDNN object

**Description**

Transform DigitalDLSorter-like list into an actual DigitalDLSorter object. This function allows to generate the examples and the vignettes of digitalDLSorter package as these are the data used. These data are stored in the digitalDLSorterData package.

**Usage**

```r
listToDDLS(listTo)
```

**Arguments**

- `listTo` A list in which each element must correspond to each slot of an DigitalDLSorter object. The names must be the same as the slot names.

**Value**

DigitalDLSorter object the data provided in the original list.

**See Also**

- listToDDLSDDNN
listToDDLSDNN  
Transform DigitalDLSorterDNN-like list into an actual DigitalDLSorterDNN object

Description

Transform DigitalDLSorterDNN-like list into an actual DigitalDLSorterDNN object. This function allows to use pre-trained models in the digitalDLSorter package. These models are stored in the digitalDLSorter/models package.

Usage

listToDDLSDNN(listTo)

Arguments

listTo  
A list in which each element must correspond to each slot of a DigitalDLSorterDNN object. The names must be the same as the slot names.

Value

DigitalDLSorterDNN object with the data provided in the original list.

See Also

listToDDLS

loadDeconvData  
Load data to be deconvoluted into a DigitalDLSorter object

Description

Load data to be deconvoluted. Data can be provided from a file path of a tabulated text file (tsv and tsv.gz formats are accepted) or a SummarizedExperiment object.

Usage

loadDeconvData(object, data, name.data = NULL)

## S4 method for signature 'DigitalDLSorter,character'
loadDeconvData(object, data, name.data = NULL)

## S4 method for signature 'DigitalDLSorter,SummarizedExperiment'
loadDeconvData(object, data, name.data = NULL)
loadTrainedModelFromH5

Arguments

- **object**: DigitalDLSorter object with trained.model slot.
- **data**: File path where the data is stored or a SummarizedExperiment object.
- **name.data**: Name under which the data is stored in the DigitalDLSorter object. When data is a file path and name.data is not provided, the base name of file will be used.

Value

A DigitalDLSorter object with deconv.data slot with the new bulk-RNA-Seq samples loaded.

See Also

trainGDLSModel deconvGDLSObj

Description

Load from an HDF5 file a trained Deep Neural Network model into a DigitalDLSorter object.

Note that HDF5 file must be a valid trained model (keras object).

Usage

loadTrainedModelFromH5(object, file.path, reset.slot = FALSE)

Arguments

- **object**: DigitalDLSorter object with trained.model slot.
- **file.path**: Valid file path where the model are stored.
- **reset.slot**: Deletes trained.slot if it already exists. A new DigitalDLSorterDNN object will be formed, but will not contain other slots (FALSE by default).

Value

DigitalDLSorter object with trained.model slot with the new keras DNN model incorporated.

See Also

trainGDLSModel deconvGDLSObj saveTrainedModelAsH5
**method**

*Get and set method slot in a ProbMatrixCellTypes object*

**Description**

Get and set method slot in a ProbMatrixCellTypes object

**Usage**

```r
method(object)

method(object) <- value
```

**Arguments**

- **object**
  - ProbMatrixCellTypes object.
- **value**
  - Vector with names of cells present in the object.

---

**model**

*Get and set model slot in a DigitalDLSorterDNN object*

**Description**

Get and set model slot in a DigitalDLSorterDNN object

**Usage**

```r
model(object)

model(object) <- value
```

**Arguments**

- **object**
  - DigitalDLSorterDNN object.
- **value**
  - keras.engine.sequential.Sequential object with a trained Deep Neural Network model.
plots

Get and set plots slot in a ProbMatrixCellTypes object

Description

Get and set plots slot in a ProbMatrixCellTypes object

Usage

plots(object)

plots(object) <- value

Arguments

object ProbMatrixCellTypes object.
value List of lists with plots showing the distribution of the cell proportions generated by each method during the process.

plotTrainingHistory

Plot training history of a trained DigitalDLSorter Deep Neural Network model

Description

Plot training history of a trained DigitalDLSorter Deep Neural Network model.

Usage

plotTrainingHistory(
  object,
  title = "History of metrics during training",
  metrics = NULL
)

Arguments

object DigitalDLSorter object with trained.model slot.
title Title of plot.
metrics Metrics to be plotted. If NULL (by default), all metrics available in the DigitalDLSorterDNN object will be plotted.

Value

A ggplot object with the progression of the selected metrics during training.
Preparing to Save

Prepare DigitalDLSorter object to be saved as an RDA file

**Description**

Prepare a DigitalDLSorter object that has a DigitalDLSorterDNN object with a trained DNN model. Keras models cannot be stored natively as R objects (e.g., RData or RDS files). By saving the structure as a JSON-like character object and the weights as a list, it is possible to retrieve the model and make predictions. **Note:** with this option, the state of optimizer is not saved, only the architecture and weights.

**Usage**

preparingToSave(object)

**Arguments**

- object: DigitalDLSorter object with the trained.data slot.

**Details**

It is possible to save the entire model as an HDF5 file with the `saveTrainedModelAsH5` function and to load it into a DigitalDLSorter object with the `loadTrainedModelFromH5` function.

It is also possible to save a DigitalDLSorter object as an RDS file with the `saveRDS` function without any preparation.

**Value**

A DigitalDLSorter or DigitalDLSorterDNN object with its trained keras model transformed from a keras.engine.sequential.Sequential class into a list with the architecture as a JSON-like character object and the weights as a list.

**See Also**

`saveRDS` `saveTrainedModelAsH5`
### prob.cell.types

Get and set prob.cell.types slot in a DigitalDLSorter object

**Description**

Get and set `prob.cell.types` slot in a `DigitalDLSorter` object

**Usage**

```r
prob.cell.types(object, type.data = "both")
prob.cell.types(object, type.data = "both") <- value
```

**Arguments**

- `object` : DigitalDLSorter object.
- `type.data` : Element of the list. Can be `'train'`, `'test'` or `'both'` (the last by default).
- `value` : List with two elements, train and test, each one with a `ProbMatrixCellTypes` object.

### prob.matrix

Get and set `prob.matrix` slot in a `ProbMatrixCellTypes` object

**Description**

Get and set `prob.matrix` slot in a `ProbMatrixCellTypes` object

**Usage**

```r
prob.matrix(object)
prob.matrix(object) <- value
```

**Arguments**

- `object` : `ProbMatrixCellTypes` object.
- `value` : Matrix with cell types as columns and samples as rows.
The Class ProbMatrixCellTypes

Description

The ProbMatrixCellTypes class is a data storage class that contains information related to the cell composition matrices used for the simulation of pseudo-bulk RNA-Seq samples. The matrix is stored in the prob.matrix slot. The other of slots contain additional information generated during the process and required in subsequent steps.

Details

As described in Torroja and Sanchez-Cabo, 2019, the proportions are constructed using six different methods in order to avoid biases due to the composition of the simulated bulk samples. In plots slot, plots are stored that visually represent the distribution of these probabilities in order to provide a way to monitor the different sets of samples generated. These plots can be shown using the showProbPlot function (see ?showProbPlot for more details).

Slots

prob.matrix Matrix of cell proportions generated for the simulation of bulk samples. Rows correspond to the bulk samples to be generated (i), columns are the cell types present in the provided single-cell data (j) and each entry is the proportion of j cell type in i sample.

cell.names Matrix containing the names of the cells that will make up each simulated pseudo-bulk sample.

set.list List of cells sorted according to the cell type they belong to.

set Vector containing the cell names present in the object.

plots List of lists with plots showing the distribution of the cell proportions generated by each method during the process. In each list, boxplot, violinplot, linesplot or ncelltypes can be found. Please see showProbPlot for more details.

type.data Character with the type of data contained: training or test.

References

### project

Get and set project slot in a DigitalDLSorter object

**Description**

Get and set project slot in a DigitalDLSorter object

**Usage**

```r
project(object)
```

```r
project(object) <- value
```

**Arguments**

- **object**: DigitalDLSorter object.
- **value**: Character indicating the name of the project.

---

### saveRDS

Save DigitalDLSorter objects as RDS files

**Description**

Save DigitalDLSorter and DigitalDLSorterDNN objects as RDS files. keras models cannot be stored natively as R objects (e.g. RData or RDS files). By saving the structure as a JSON-like character object and the weights as a list, it is possible to retrieve the model and make predictions. If the trained.model slot is empty, the function will behave as usual. **Note**: with this option, the state of optimizer is not saved, only the architecture and weights. It is possible to save the entire model as an HDF5 file with the saveTrainedModelAsH5 function and to load it into a DigitalDLSorter object with the loadTrainedModelFromH5 function. See documentation for details.

**Usage**

```r
saveRDS(
 object,
 file,
 ascii = FALSE,
 version = NULL,
 compress = TRUE,
 refhook = NULL
)
```

```r
S4 method for signature 'DigitalDLSorterDNN'
saveRDS(
 object,
 file,
 ascii = FALSE,
 version = NULL,
 compress = TRUE,
 refhook = NULL
)
```
saveTrainedModelAsH5

```r
saveTrainedModelAsH5

S4 method for signature 'DigitalDLSorter'
saveRDS(
 object,
 file,
 ascii = FALSE,
 version = NULL,
 compress = TRUE,
 refhook = NULL
)

Arguments

- **object**: `DigitalDLSorter` or `DigitalDLSorterDNN` object to be saved
- **file**: File path where the object will be saved
- **ascii**: a logical. If TRUE or NA, an ASCII representation is written; otherwise (default), a binary one is used. See the comments in the help for `save`.
- **version**: the workspace format version to use. NULL specifies the current default version (3). The only other supported value is 2, the default from R 1.4.0 to R 3.5.0.
- **compress**: a logical specifying whether saving to a named file is to use "gzip" compression, or one of "gzip", "bzip2" or "xz" to indicate the type of compression to be used. Ignored if file is a connection.
- **refhook**: a hook function for handling reference objects.

Value

No return value, saves a `DigitalDLSorter` object as an RDS file on disk.

See Also

`DigitalDLSorter` saveTrainedModelAsH5

saveTrainedModelAsH5 Save a trained `DigitalDLSorter` Deep Neural Network model to disk as an HDF5 file

Description

Save a trained `DigitalDLSorter` Deep Neural Network model to disk as an HDF5 file. Note that this function does not save the `DigitalDLSorterDNN` object, but the trained keras model. This is the alternative to the `saveRDS` and `preparingToSave` functions if you want to keep the state of the optimizer.
set

Usage

saveTrainedModelAsH5(object, file.path, overwrite = FALSE)

Arguments

object DigitalDLSorter object with trained.model slot.
file.path Valid file path where to save the model to.
overwrite Overwrite file if it already exists.

Value

No return value, saves a keras DNN trained model as HDF5 file on disk.

See Also

trainDDLSModel loadTrainedModelFromH5

set Get and set slot in a ProbMatrixCellTypes object

Description

Get and set slot in a ProbMatrixCellTypes object

Usage

set(object)
set(object) <- value

Arguments

object ProbMatrixCellTypes object.
value Vector with names of cells present in the object.
set.list

Get and set set.list slot in a ProbMatrixCellTypes object

Description

Get and set set.list slot in a ProbMatrixCellTypes object

Usage

set.list(object)

set.list(object) <- value

Arguments

object ProbMatrixCellTypes object.
value List of cells sorted according to the cell type to which they belong.

showProbPlot

Show distribution plots of the cell proportions generated by generateBulkCellMatrix

Description

Show distribution plots of the cell proportions generated by generateBulkCellMatrix. These frequencies will determine the proportion of different cell types used during the simulation of pseudo-bulk RNA-Seq samples. There are 6 subsets of proportions generated by different approaches that can be visualized in three ways: box plots, violin plots and lines plots. You can also plot the probabilities based on the number of different cell types present in the samples by setting type.plot = 'ncelltypes'.

Usage

showProbPlot(object, type.data, set, type.plot = "boxplot")

Arguments

object DigitalDLSorter object with prob.cell.types slot with plot slot.
type.data Subset of data to show: train or test.
set Integer determining which of the 6 different subsets to display.
type.plot Character determining which type of visualization to display. It can be 'boxplot', 'violinplot', 'linesplot' or 'ncelltypes'. See Description for more information.
showProbPlot

Details

These plots are only for diagnostic purposes. This is the reason because they are generated without any parameter introduced by the user.

Value

A ggplot object.

See Also

generateBulkCellMatrix

Examples

simulating data
set.seed(123) # reproducibility
sce <- SingleCellExperiment::SingleCellExperiment(
 assays = list(
 counts = matrix(
 rpois(100, lambda = 5), nrow = 40, ncol = 30,
 dimnames = list(paste0("Gene", seq(40)), paste0("RHC", seq(30))))
),
 colData = data.frame(
 Cell_ID = paste0("RHC", seq(30)),
 Cell_Type = sample(x = paste0("CellType", seq(4)), size = 30,
 replace = TRUE)
),
 rowData = data.frame(
 Gene_ID = paste0("Gene", seq(40))
)
)
DDLS <- createDDLSoobject(
 sc.data = sce,
 sc.cell.ID.column = "Cell_ID",
 sc.gene.ID.column = "Gene_ID",
 sc.filt.genes.cluster = FALSE,
 sc.log.FC = FALSE
)
probMatrix <- data.frame(
 Cell_Type = paste0("CellType", seq(4)),
 from = c(1, 1, 1, 30),
 to = c(15, 15, 50, 70)
)
DDLS <- generateBulkCellMatrix(
 object = DDLS,
 cell.ID.column = "Cell_ID",
 cell.type.column = "Cell_Type",
 prob.design = probMatrix,
 num.bulk.samples = 60
)
lapply(

\[X = 1:6, \text{FUN} = \text{function(x) \{}} \]

\[
\text{showProbPlot(}
\text{DLS,}
\text{type.data = "train",}
\text{set = x,}
\text{type.plot = "boxplot"}
\text{)}
\text{)}
\]

simBulkProfiles

Simulate training and test pseudo-bulk RNA-Seq profiles

Description

Simulate training and test pseudo-bulk RNA-Seq profiles using the cell composition matrices generated by the `generateBulkCellMatrix` function. The samples are generated under the assumption that the expression level of the \(i \) gene in the \(j \) bulk sample is given by the sum of the expression levels of the cell types \(X_{ijk} \) that make them up weighted by the proportions of these \(k \) cell types in each sample. In practice, as described in Torroja and Sanchez-Cabo, 2019, these profiles are generated by summing a number of cells of different cell types determined by proportions from a matrix of known cell composition. The number of simulated pseudo-bulk RNA-Seq samples and the number of cells composing each sample are determined by `generateBulkCellMatrix` (see Documentation) **Note**: this step can be avoided by using the `on.the.fly` argument in the `trainDDLSModel` function. See Documentation for more information.

Usage

```r
simBulkProfiles(
  object,
  type.data = "both",
  pseudobulk.function = "AddRawCount",
  file.backend = NULL,
  compression.level = NULL,
  block.processing = FALSE,
  block.size = 1000,
  chunk.dims = NULL,
  threads = 1,
  verbose = TRUE
)
```

Arguments

- **object**: `DigitalDLSorter` object with `single.cell.real/single.cell.simul` and `prob.cell.types` slots.
- **type.data**: Type of data to generate between 'train', 'test' or 'both' (the last by default).
simBulkProfiles

pseudobulk.function

Function used to build pseudo-bulk samples. It may be:

- "MeanCPM": single-cell profiles (raw counts) are transformed into CPMs and cross-cell averages are calculated. Then, \(\log_2(CPM + 1) \) is calculated.
- "AddCPM": single-cell profiles (raw counts) are transformed into CPMs and are added up across cells. Then, log-CPMs are calculated.
- "AddRawCount": single-cell profiles (raw counts) are added up across cells. Then, log-CPMs are calculated.

file.backend

Valid file path to store the simulated single-cell expression profiles as an HDF5 file (NULL by default). If provided, the data is stored in HDF5 files used as back-end by using the DelayedArray, HDF5Array and rhdf5 packages instead of loading all data into RAM memory. This is suitable for situations where you have large amounts of data that cannot be loaded into memory. Note that operations on this data will be performed in blocks (i.e. subsets of determined size) which may result in longer execution times.

compression.level

The compression level used if file.backend is provided. It is an integer value between 0 (no compression) and 9 (highest and slowest compression). See ?getHDF5DumpCompressionLevel from the HDF5Array package for more information.

block.processing

Boolean indicating whether the data should be simulated in blocks (only if file.backend is used, FALSE by default). This functionality is suitable for cases where it is not possible to load all data into memory and it leads to larger execution times.

block.size

Only if block.processing = TRUE. Number of pseudo-bulk expression profiles that will be simulated in each iteration during the process. Larger numbers result in higher memory usage but shorter execution times. Set according to available computational resources (1000 by default).

chunk.dims

Specifies the dimensions that HDF5 chunk will have. If NULL, the default value is a vector of two items: the number of genes considered by DigitalDLSorter object during the simulation, and a single sample to reduce read times in the following steps. A larger number of columns written in each chunk can lead to longer read times.

threads

Number of threads used during the simulation of pseudo-bulk samples (1 by default). Set according to computational resources and avoid it if block.size will be used.

verbose

Show informative messages during the execution (TRUE by default).

Details

digitalDLSorteR allows the use of HDF5 files as back-end to store the resulting data using the DelayedArray and HDF5Array packages. This functionality allows to work without keeping the data loaded into RAM, which could be of vital importance during some computationally heavy steps such as neural network training on RAM-limited machines. You must provide a valid file path in the file.backend argument to store the resulting file with the '.h5' extension. The data will be accessible from R without being loaded into memory. This option slightly slows down execution...
times, as subsequent transformations of the data will be done in blocks rather than using all the data. We recommend this option according to the computational resources available and the number of pseudo-bulk samples to be generated.

Note that if you use the `file.backend` argument with `block.processing = FALSE`, all pseudo-bulk profiles will be simulated in one step and, therefore, loaded into RAM. Then, the data will be written to an HDF5 file. To avoid the RAM collapse, pseudo-bulk profiles can be simulated and written to HDF5 files in blocks of `block.size` size by setting `block.processing = TRUE`.

It is possible to avoid this step by using the `on.the.fly` argument in the `trainDDLSModel` function. In this way, data is generated 'on the fly' during the neural network training. For more details, see ?`trainDDLSModel`.

Value

A `DigitalDLSorter` object with `bulk.simul` slot containing a list with one or two entries (depending on selected `type.data` argument): 'train' and 'test'. Each entry contains a `SummarizedExperiment` object with simulated bulk samples in the `assay` slot, sample names in the `colData` slot and feature names in the `rowData` slot.

References

See Also

generateBulkCellMatrix ProbMatrixCellTypes trainDDLSModel

Examples

```r
set.seed(123) # reproducibility
# simulated data
sce <- SingleCellExperiment::SingleCellExperiment(
  assays = list(
    counts = matrix(
      rpois(30, lambda = 5), nrow = 15, ncol = 10,
      dimnames = list(paste0("Gene", seq(15)), paste0("RHC", seq(10))))
  ),
  colData = data.frame(
    Cell_ID = paste0("RHC", seq(10)),
    Cell_Type = sample(x = paste0("CellType", seq(2)), size = 10,
      replace = TRUE)
  ),
  rowData = data.frame(
    Gene_ID = paste0("Gene", seq(15))
  )
)
DDLS <- createDDLSobject(
  sce, simBulkProfiles = TRUE, file.backend = "hdf5",
  block.processing = TRUE, block.size = 128,
  type.data = "irrelevant", n.samples = 1000,
  n.traits = 1000, n.traits.test = 100
)
sc.data = sce,
sc.cell.ID.column = "Cell_ID",
sc.gene.ID.column = "Gene_ID",
sc.filt.genes.cluster = FALSE,
sc.log.FC = FALSE
)
probMatrixValid <- data.frame(
  Cell_Type = paste0("CellType", seq(2)),
  from = c(1, 30),
  to = c(15, 70)
)
DDLS <- generateBulkCellMatrix(
  object = DDLS,
  cell.ID.column = "Cell_ID",
  cell.type.column = "Cell_Type",
  prob.design = probMatrixValid,
  num.bulk.samples = 10,
  verbose = TRUE
)
DDLS <- simBulkProfiles(DDLS, verbose = TRUE)

---

**Description**

Simulate single-cell expression profiles by randomly sampling from a negative binomial distribution and inserting dropouts by sampling from a binomial distribution using the ZINB-WaVE parameters estimated by the `estimateZinbwaveParams` function.

**Usage**

```r
simSCProfiles(
 object,
 cell.ID.column, cell.type.column, n.cells, suffix.names = "_Simul",
 cell.types = NULL, file.backend = NULL, name.dataset.backend = NULL,
 compression.level = NULL, block.processing = FALSE, block.size = 1000,
 chunk.dims = NULL, verbose = TRUE
)
```
Arguments

object

DigitalDLSorter object with single.cell.real and zinb.params slots.

cell.ID.column

Name or column number corresponding to the cell names of expression matrix in cells metadata.

cell.type.column

Name or column number corresponding to the cell type of each cell in cells metadata.

n.cells

Number of simulated cells generated per cell type (i.e. if you have 10 different cell types in your dataset, if n.cells = 100, then 1000 cell profiles will be simulated).

suffix.names

Suffix used on simulated cells. This suffix must be unique in the simulated cells, so make sure that this suffix does not appear in the real cell names.

cell.types

Vector indicating the cell types to simulate. If NULL (by default), n.cells single-cell profiles for all cell types will be simulated.

file.backend

Valid file path to store the simulated single-cell expression profiles as an HDF5 file (NULL by default). If provided, the data is stored in HDF5 files used as back-end by using the DelayedArray, HDF5Array and rhdf5 packages instead of loading all data into RAM memory. This is suitable for situations where you have large amounts of data that cannot be loaded into memory. Note that operations on this data will be performed in blocks (i.e subsets of determined size) which may result in longer execution times.

name.dataset.backend

Name of the dataset in HDF5 file to be used. Note that it cannot exist. If NULL (by default), a random dataset name will be used.

compression.level

The compression level used if file.backend is provided. It is an integer value between 0 (no compression) and 9 (highest and slowest compression). See ?getHDF5DumpCompressionLevel from the HDF5Array package for more information.

block.processing

Boolean indicating whether the data should be simulated in blocks (only if file.backend is used, FALSE by default). This functionality is suitable for cases where it is not possible to load all data into memory and it leads to larger execution times.

block.size

Only if block.processing = TRUE. Number of single-cell expression profiles that will be simulated in each iteration during the process. Larger numbers result in higher memory usage but shorter execution times. Set according to available computational resources (1000 by default). Note that it cannot be greater than the total number of simulated cells.

chunk.dims

Specifies the dimensions that HDF5 chunk will have. If NULL, the default value is a vector of two items: the number of genes considered by the ZINB-WaVE model during the simulation and a single sample in order to reduce read times in the following steps. A larger number of columns written in each chunk can lead to longer read times in subsequent steps. Note that it cannot be greater than the dimensions of the simulated matrix.

verbose

Show informative messages during the execution (TRUE by default).
Details

Before this step, see \texttt{estimateZinbwaveParams}. As described in Torroja and Sanchez-Cabo, 2019, this function simulates a given number of transcriptional profiles for each cell type provided by randomly sampling from a negative binomial distribution with $\mu$ and $\theta$ estimated parameters and inserting dropouts by sampling from a binomial distribution with probability $p_i$. All parameters are estimated from single-cell real data using the \texttt{estimateZinbwaveParams} function. It uses the ZINB-WaVE model (Risso et al., 2018). For more details about the model, see \texttt{estimateZinbwaveParams} and Risso et al., 2018.

The \texttt{file.backend} argument allows to create a HDF5 file with simulated single-cell profiles to be used as back-end to work with data stored on disk instead of loaded into RAM. If the \texttt{file.backend} argument is used with \texttt{block.processing = FALSE}, all the single-cell profiles will be simulated in one step and, therefore, loaded into in RAM memory. Then, data will be written in HDF5 file. To avoid to collapse RAM memory if too many single-cell profiles are simulated, single-cell profiles can be simulated and written to HDF5 files in blocks of \texttt{block.size} size by setting \texttt{block.processing = TRUE}.

Value

A \texttt{DigitalDLSorter} object with \texttt{single.cell.simul} slot containing a \texttt{SingleCellExperiment} object with the simulated single-cell expression profiles.

References


See Also

\texttt{estimateZinbwaveParams}

Examples

```r
set.seed(123) # reproducibility
sce <- SingleCellExperiment::SingleCellExperiment(
 assays = list(
 counts = matrix(
 rpois(30, lambda = 5), nrow = 15, ncol = 10,
 dimnames = list(paste0("Gene", seq(15)), paste0("RHC", seq(10))))
),
 colData = data.frame(
 Cell_ID = paste0("RHC", seq(10)),
 Cell_Type = sample(x = paste0("CellType", seq(2)), size = 10, replace = TRUE)
)
)
```
rowData = data.frame(
    Gene_ID = paste0("Gene", seq(15))
)
)

DDLS <- createDDLSobject(
    sc.data = sce,
    sc.cell.ID.column = "Cell_ID",
    sc.gene.ID.column = "Gene_ID",
    sc.filt.genes.cluster = FALSE,
    sc.log.FC = FALSE
)

DDLS <- estimateZinbwaveParams(
    object = DDLS,
    cell.type.column = "Cell_Type",
    cell.ID.column = "Cell_ID",
    gene.ID.column = "Gene_ID",
    subset.cells = 4,
    verbose = FALSE
)

DDLS <- simSCProfiles(
    object = DDLS,
    cell.ID.column = "Cell_ID",
    cell.type.column = "Cell_Type",
    n.cells = 2,
    verbose = TRUE
)

---

**single.cell.real**

Get and set single.cell.real slot in a DigitalDLSorter object

**Description**

Get and set single.cell.real slot in a DigitalDLSorter object

**Usage**

```r
single.cell.real(object)

single.cell.real(object) <- value
```

**Arguments**

- **object** : DigitalDLSorter object.
- **value** : SingleCellExperiment object with real single-cell profiles.
**single.cell.simul**

*Get and set single.cell.simul slot in a DigitalDLSorter object*

**Description**

Get and set single.cell.simul slot in a DigitalDLSorter object

**Usage**

```r
single.cell.simul(object)
```

```r
single.cell.simul(object) <- value
```

**Arguments**

- **object**: DigitalDLSorter object.
- **value**: SingleCellExperiment object with simulated single-cell profiles.

---

**test.deconv.metrics**

*Get and set test.deconv.metrics slot in a DigitalDLSorterDNN object*

**Description**

Get and set test.deconv.metrics slot in a DigitalDLSorterDNN object

**Usage**

```r
test.deconv.metrics(object, metrics = "All")
```

```r
test.deconv.metrics(object, metrics = "All") <- value
```

**Arguments**

- **object**: DigitalDLSorterDNN object.
- **metrics**: Metrics to show ('All' by default)
- **value**: List with evaluation metrics used to assess the performance of the model on each sample of test data.
test.metrics  

**Description**

Get and set `test.metrics` slot in a `DigitalDLSorterDNN` object

**Usage**

```r
test.metrics(object)
```

```r
test.metrics(object) <- value
```

**Arguments**

- `object`  
  DigitalDLSorterDNN object.
- `value`  
  List object with the resulting metrics after prediction on test data with the Deep Neural Network model.

---

test.pred  

**Description**

Get and set `test.pred` slot in a `DigitalDLSorterDNN` object

**Usage**

```r
test.pred(object)
```

```r
test.pred(object) <- value
```

**Arguments**

- `object`  
  DigitalDLSorterDNN object.
- `value`  
  Matrix object with the prediction results on test data.
trainDDLSModel

Train Deep Neural Network model

Description

Train a Deep Neural Network model using the training data from DigitalDLSorter object. In addition, the trained model is evaluated with test data and prediction results are computed to determine its performance (see ?calculateEvalMetrics). Training and evaluation can be performed using simulated profiles stored in the DigitalDLSorter object or 'on the fly' by simulating the pseudo-bulk profiles at the same time as the training/evaluation is performed (see Details).

Usage

trainDDLSModel(
  object,
  type.data.train = "bulk",
  type.data.test = "bulk",
  batch.size = 64,
  num.epochs = 60,
  num.hidden.layers = 2,
  num.units = c(200, 200),
  activation.fun = "relu",
  dropout.rate = 0.25,
  loss = "kullback_leibler_divergence",
  metrics = c("accuracy", "mean_absolute_error", "categorical_accuracy"),
  normalize = TRUE,
  scaling = "standardize",
  norm.batch.layers = TRUE,
  custom.model = NULL,
  shuffle = TRUE,
  use.generator = FALSE,
  on.the.fly = FALSE,
  pseudobulk.function = "AddRawCount",
  threads = 1,
  view.metrics.plot = TRUE,
  verbose = TRUE
)

Arguments

object DigitalDLSorter object with single.cell.real/single.cell.simul, prob.cell.matrix and bulk.simul slots.

type.data.train Type of profiles to be used for training. It can be 'both', 'single-cell' or 'bulk' ('bulk' by default).

type.data.test Type of profiles to be used for evaluation. It can be 'both', 'single-cell' or 'bulk' ('bulk' by default).
trainDDLSModel

- **batch.size**: Number of samples per gradient update. If not specified, batch.size will default to 64.

- **num.epochs**: Number of epochs to train the model (10 by default).

- **num.hidden.layers**: Number of hidden layers of the neural network (2 by default). This number must be equal to the length of num.units argument.

- **num.units**: Vector indicating the number of neurons per hidden layer (c(200, 200) by default). The length of this vector must be equal to num.hidden.layers argument.

- **activation.fun**: Activation function to use ('relu' by default). See the keras documentation to know available activation functions.

- **dropout.rate**: Float between 0 and 1 indicating the fraction of the input neurons to drop in layer dropouts (0.25 by default). By default, digitalDLSorteR implements 1 dropout layer per hidden layer.

- **loss**: Character indicating loss function selected for model training ('kullback_leibler_divergence' by default). See the keras documentation to know available loss functions.

- **metrics**: Vector of metrics used to assess model performance during training and evaluation (c("accuracy", "mean_absolute_error", "categorical_accuracy") by default). See the keras documentation to know available performance metrics.

- **normalize**: Whether to normalize data using logCPM (TRUE by default). This parameter is only considered when the method used to simulate mixed transcriptional profiles (simMixedProfiles function) was "AddRawCount". Otherwise, data were already normalized.

- **scaling**: How to scale data before training. It may be: "standardize" (values are centered around the mean with a unit standard deviation) or "rescale" (values are shifted and rescaled so that they end up ranging between 0 and 1).

- **norm.batch.layers**: Whether to include batch normalization layers between each hidden dense layer (TRUE by default).

- **custom.model**: It allows to use a custom neural network. It must be a keras.engine.sequential.Sequential object in which the number of input neurons is equal to the number of considered features/genes, and the number of output neurons is equal to the number of cell types considered (NULL by default). If provided, the arguments related to the neural network architecture will be ignored.

- **shuffle**: Boolean indicating whether data will be shuffled (TRUE by default). Note that if bulk.simul is not NULL, the data already has been shuffled and shuffle will be ignored.

- **use.generator**: Boolean indicating whether to use generators during training and test. Generators are automatically used when on.the.fly = TRUE or HDF5 files are used, but it can be activated by the user on demand (FALSE by default).

- **on.the.fly**: Boolean indicating whether data will be generated 'on the fly' during training (FALSE by default).

- **pseudobulk.function**: Function used to build pseudo-bulk samples. It may be:
• "MeanCPM": single-cell profiles (raw counts) are transformed into CPMs and cross-cell averages are calculated. Then, $\log_2(\text{CPM} + 1)$ is calculated.

• "AddCPM": single-cell profiles (raw counts) are transformed into CPMs and are added up across cells. Then, log-CPMs are calculated.

• "AddRawCount": single-cell profiles (raw counts) are added up across cells. Then, log-CPMs are calculated.

threads Number of threads used during simulation of pseudo-bulk samples if on.the.fly = TRUE (1 by default).

view.metrics.plot Boolean indicating whether to show plots of loss and metrics progression during training (TRUE by default). keras for R allows to see the progression of the model during training if you are working in RStudio.

verbose Boolean indicating whether to display model progression during training and model architecture information (TRUE by default).

Details

Keras/Tensorflow environment

All Deep Learning related steps in the digitalDLSorter package are performed by using the keras package, an API in R for keras in Python available on CRAN. We recommend using the installTFpython function included in the package.

Simulation of bulk RNA-Seq profiles 'on the fly'

trainDDLSModel allows to avoid storing bulk RNA-Seq profiles by using on.the.fly argument. This functionality aims to avoid execution times and memory usage of the simBulkProfiles function, as the simulated pseudo-bulk profiles are built in each batch during training/evaluation.

Neural network architecture

By default, trainDDLSModel implements the architecture selected in Torroja and Sánchez-Cabo, 2019. However, as the default architecture may not produce good results depending on the dataset, it is possible to change its parameters by using the corresponding argument: number of hidden layers, number of neurons for each hidden layer, dropout rate, activation function and loss function. For more customized models, it is possible to provide a pre-built model in the custom.model argument (a keras.engine.sequential.Sequential object) where it is necessary that the number of input neurons is equal to the number of considered features/genes and the number of output neurons is equal to the number of considered cell types.

Value

A DigitalDLSorter object with trained.model slot containing a DigitalDLSorterDNN object. For more information about the structure of this class, see ?DigitalDLSorterDNN.

References

See Also

plotTrainingHistory deconvDigitalDLSorter deconvDDLSObj

Examples

```r
Not run:
set.seed(123) # reproducibility
sce <- SingleCellExperiment::SingleCellExperiment(
 assays = list(
 counts = matrix(
 rpois(30, lambda = 5), nrow = 15, ncol = 10,
 dimnames = list(paste0("Gene", seq(15)), paste0("RHC", seq(10))
),
 colData = data.frame(
 Cell_ID = paste0("RHC", seq(10)),
 Cell_Type = sample(x = paste0("CellType", seq(2)), size = 10,
 replace = TRUE)
),
 rowData = data.frame(
 Gene_ID = paste0("Gene", seq(15))
)
),
 sc.data = sce,
 sc.cell.ID.column = "Cell_ID",
 sc.gene.ID.column = "Gene_ID",
 sc.filt.genes.cluster = FALSE,
 sc.log.FC = FALSE
)
DDLS <- createDDLSobject(
 object = DDLS,
 cell.ID.column = "Cell_ID",
 cell.type.column = "Cell_Type",
 prob.design = probMatrixValid,
 num.bulk.samples = 30,
 verbose = TRUE
)
training of DDLS model
tensorflow::tf$compat$v1$disable_eager_execution()
DDLS <- trainDDLSModel(
 object = DDLS,
 on.the.fly = TRUE,
 batch.size = 12,
 num.epochs = 5
)
```
trained.model

## End(Not run)

### trained.model

Get and set trained.model slot in a DigitalDLSorter object

#### Description

Get and set trained.model slot in a DigitalDLSorter object

#### Usage

```r
trained.model(object)

trained.model(object) <- value
```

#### Arguments

- **object**: DigitalDLSorter object.
- **value**: DigitalDLSorterDNN object.

### training.history

Get and set training.history slot in a DigitalDLSorterDNN object

#### Description

Get and set training.history slot in a DigitalDLSorterDNN object

#### Usage

```r
training.history(object)

training.history(object) <- value
```

#### Arguments

- **object**: DigitalDLSorterDNN object.
- **value**: keras_training_history object with the training history of the Deep Neural Network model.
ZinbParametersModel-class

Description

Get and set zinb.params slot in a DigitalDLSorter object

Usage

zinb.params(object)

zinb.params(object) <- value

Arguments

object DigitalDLSorter object.
value ZinbParametersModel object with a valid ZinbModel object.

ZinbParametersModel-class

The Class ZinbParametersModel

Description

The ZinbParametersModel class is a wrapper class of the ZinbModel class from zinbwave package.

Details

This is a wrapper class of the ZinbModel class. It consists of only one slot (zinbwave.mode) that contains the ZinbModel object.

Slots

zinbwave.model A valid ZinbModel object.

References


**zinbwave.model**

Get and set zinbwave.model slot in a ZinbParametersModel object

---

**Description**

Get and set zinbwave.model slot in a ZinbParametersModel object

**Usage**

```r
zinbwave.model(object)
zinbwave.model(object) <- value
```

**Arguments**

<table>
<thead>
<tr>
<th>argument</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>ZinbParametersModel object.</td>
</tr>
<tr>
<td>value</td>
<td>ZinbModel object with the estimated parameters.</td>
</tr>
</tbody>
</table>
Index

barErrorPlot, 3, 8, 11, 14, 31
barPlotCellTypes, 5
barPlotCellTypes, ANY-method (barPlotCellTypes), 5
barPlotCellTypes, DigitalDLSorter-method (barPlotCellTypes), 5
blandAltmanLehPlot, 4, 7, 11, 14, 31
bulk.simul, 10
bulk.simul, DigitalDLSorter-method (bulk.simul), 10
bulk.simul <- (bulk.simul), 10
bulk.simul <-, DigitalDLSorter-method (bulk.simul), 10
calculateEvalMetrics, 4, 8, 10, 14, 29–31, 63
cell.names, 12
cell.names, ProbMatrixCellTypes-method (cell.names), 12
cell.names <- (cell.names), 12
cell.names <-, ProbMatrixCellTypes-method (cell.names), 12
cell.types, 13
cell.types, DigitalDLSorterDNN-method (cell.types), 13
cell.types <- (cell.types), 13
cell.types <-, DigitalDLSorterDNN-method (cell.types), 13
corrExpPredPlot, 4, 8, 11, 13, 31
createDDLSObject, 16, 25, 28
deconv.data, 20, 29
deconv.data, DigitalDLSorter-method (deconv.data), 20
deconv.data <- (deconv.data), 20
deconv.data <-, DigitalDLSorter-method (deconv.data), 20
deconv.results, 21
deconv.results, DigitalDLSorter-method (deconv.results), 21
deconv.results <- (deconv.results), 21
deconv.results <-, DigitalDLSorter-method (deconv.results), 21
deconvDDLSObj, 7, 21, 25, 43, 46, 66
deconvDigitalDLSorter, 7, 22, 24, 28, 66
dgCMatrix, 28, 29
DigitalDLSorter, 6, 8, 10, 11, 14, 16, 18–22, 29, 31, 34, 37, 38, 40, 43, 45–47, 49–52, 54–56, 58–61, 63, 65, 67, 68
DigitalDLSorter (DigitalDLSorter-class), 28
digitalDLSorter, 27
DigitalDLSorter-class, 28
DigitalDLSorterDNN, 10, 11, 13, 14, 28, 29, 31, 36, 43–46, 49, 50, 61, 62, 65, 67
DigitalDLSorterDNN (DigitalDLSorterDNN-class), 29
DigitalDLSorterDNN-class, 29
distErrorPlot, 4, 8, 11, 14, 30
estimateZinbwaveParams, 19, 33, 57, 59
facet_wrap, 14, 31
features, 36
features, DigitalDLSorterDNN-method (features), 36
features <- (features), 36
features <-, DigitalDLSorterDNN-method (features), 36
generateBulkCellMatrix, 19, 36, 40, 52–54, 56
getHDF5DumpCompressionLevel, 18, 55, 58
getProbMatrix, 39
installTFpython, 40
listToDDLS, 41, 42
listToDDLSNN, 41, 42
loadDeconvData, 27, 42

70
loadDeconvData, DigitalDLSorter, character-method
  object<-, DigitalDLSorter-method
  (project), 42
loadDeconvData, DigitalDLSorter, SummarizedExperiment-method
  (loadDeconvData), 42
loadTrainedModelFromH5, 43, 49, 51
method, 44
method, ProbMatrixCellTypes-method
  (method), 44
method<-(method), 44
method<-, ProbMatrixCellTypes-method
  (method), 44
model, 44
model, DigitalDLSorterDNN-method
  (model), 44
model<-(model), 44
model<-, DigitalDLSorterDNN-method
  (model), 44
plots, 45
plots, ProbMatrixCellTypes-method
  (plots), 45
plots<-(plots), 45
plots<-, ProbMatrixCellTypes-method
  (plots), 45
plotTrainingHistory, 45, 66
preparingToSave, 29, 46, 50
prob.cell.types, 47
prob.cell.types, DigitalDLSorter-method
  (prob.cell.types), 47
prob.cell.types<-(prob.cell.types), 47
prob.cell.types<-, DigitalDLSorter-method
  (prob.cell.types), 47
prob.matrix, 47
prob.matrix, ProbMatrixCellTypes-method
  (prob.matrix), 47
prob.matrix<-(prob.matrix), 47
prob.matrix<-, ProbMatrixCellTypes-method
  (prob.matrix), 47
ProbMatrixCellTypes, 12, 28, 29, 36, 38, 39, 44, 43, 47, 51, 52, 56
ProbMatrixCellTypes
  (ProbMatrixCellTypes-class), 48
ProbMatrixCellTypes-class, 48
project, 49
project, DigitalDLSorter-method
  (project), 49
project<-(project), 49
save, 50
saveRDS, 46, 49, 50
saveRDS, DigitalDLSorter-method
  (saveRDS), 49
saveRDS, DigitalDLSorterDNN-method
  (saveRDS), 49
saveRDS, saveRDS-method (saveRDS), 49
saveTrainedModelAsH5, 29, 43, 46, 49, 50, 50
set, 51
set, ProbMatrixCellTypes-method (set), 51
set.list, 52
set.list, ProbMatrixCellTypes-method
  (set.list), 52
set.list<-(set.list), 52
set.list<-, ProbMatrixCellTypes-method
  (set.list), 52
set<-(set), 51
set<-, ProbMatrixCellTypes-method (set), 51
showProbPlot, 38, 48, 52
simBulkProfiles, 36, 39, 54
simSCProfiles, 33, 35, 57
single.cell.real, 60
single.cell.real, DigitalDLSorter-method
  (single.cell.real), 60
single.cell.real<-(single.cell.real), 60
single.cell.real<-, DigitalDLSorter-method
  (single.cell.real), 60
single.cell.simul, 61
single.cell.simul, DigitalDLSorter-method
  (single.cell.simul), 61
single.cell.simul<-(single.cell.simul), 61
single.cell.simul<-, DigitalDLSorter-method
  (single.cell.simul), 61
SingleCellExperiment, 16, 17, 19, 28, 59–61
SummarizedExperiment, 10, 16, 17, 19, 28, 29, 42, 43, 56
test.deconv.metrics, 61
test.deconv.metrics, DigitalDLSorterDNN-method
  (test.deconv.metrics), 61
test.deconv.metrics<-(test.deconv.metrics), 61
test.deconv.metrics<-,.DigitalDLSorterDNN-method
   (test.deconv.metrics), 61
   test.metrics, 62
   test.metrics,.DigitalDLSorterDNN-method
   (test.metrics), 62
   test.metrics<-(test.metrics), 62
   test.metrics<-.DigitalDLSorterDNN-method
   (test.metrics), 62
   test.pred, 62
   test.pred,.DigitalDLSorterDNN-method
   (test.pred), 62
   test.pred<-(test.pred), 62
   test.pred<-.DigitalDLSorterDNN-method
   (test.pred), 62
   trainDDLSModel, 22, 29, 36, 43, 46, 51, 54, 56, 63, 65
   trained.model, 21, 67
   trained.model,.DigitalDLSorter-method
   (trained.model), 67
   trained.model<-(trained.model), 67
   trained.model<-.DigitalDLSorter-method
   (trained.model), 67
   training.history, 67
   training.history,.DigitalDLSorterDNN-method
   (training.history), 67
   training.history<-(training.history), 67
   training.history<-.DigitalDLSorterDNN-method
   (training.history), 67
   zinb.params, 68
   zinb.params,.DigitalDLSorter-method
   (zinb.params), 68
   zinb.params<-(zinb.params), 68
   zinb.params<-.DigitalDLSorter-method
   (zinb.params), 68
   zinbFit, 34
   ZinbModel, 28, 29, 68, 69
   ZinbParametersModel, 34, 68, 69
   ZinbParametersModel
   (ZinbParametersModel-class), 68
   ZinbParametersModel-class, 68
   zinbwave.model, 69
   zinbwave.model,.ZinbParametersModel-method
   (zinbwave.model), 69
   zinbwave.model<-(zinbwave.model), 69
   zinbwave.model<-.ZinbParametersModel-method
   (zinbwave.model), 69