Package ‘directPA’

November 16, 2020

Type Package
Title Direction Analysis for Pathways and Kinases
Version 1.5
Date 2020-11-16
Author Pengyi Yang & Ellis Patrick
Maintainer Pengyi Yang <yangpy7@gmail.com>
License GPL-3
Depends R (>= 3.10.0),
Imports grDevices, graphics, stats, plotly, calibrate
NeedsCompilation no
Repository CRAN
Date/Publication 2020-11-16 05:10:02 UTC
RoxygenNote 7.1.1

R topics documented:

directPA-package .. 2
directExplorer2d .. 3
directPA .. 4
geneStats .. 5
HEK ... 6
kinasePA .. 6
Pathways.KEGG ... 8
Pathways.reactome .. 8
pathwayStats ... 8
perturbPlot2d .. 9
perturbPlot3d .. 10
directPA-package

Description

The directPA-package is designed for analysing pathways in experiments with multiple perturbations. The combination effects of different treatments are tested by rotating polar coordinates in two-dimensional space when the experiment contains two perturbations and corresponding controls, or spherical coordinates in three-dimensional space when the experiment contains three perturbations and corresponding controls.

Details

Package: directPA
Type: Package
Version: 1.0
Date: 2013-10-21
License: GPL-3

Author(s)

Pengyi Yang <yangpy7@gmail.com> & Ellis Patrick <epatrick87@gmail.com>

References

Pengyi Yang, Ellis Patrick, Shi-Xiong Tan, Daniel J. Fazakerley, James Burchfield, Christopher Gribben, Matthew J. Prior, David E. James, Yee Hwa Yang. Direction pathway analysis of large-scale proteomics data reveals novel features of the insulin action pathway, submitted.
directExplorer2d

Batch Direction Analysis in 2-dimensional space

Description

Rotate to the direction of interest in polar coordinates by degree (e.g. \(\pi/4\)).

Usage

```r
directExplorer2d(Tc, annotation=NULL, gene.method="OSP", path.method="Stouffer", top=10, nd=8, ...)
```

Arguments

- `Tc` a numeric matrix with 2 columns. The rows are genes or phosphorylation sites and the columns are treatments vs control statistics.
- `annotation` a list with names correspond to pathways or kinases and elements correspond to genes or substrates belong to each pathway or kinase, respectively.
- `gene.method` the method to be used for integrating statistics across treatments for each gene or phosphorylation site. Available methods are Stouffer, OSP, Fisher, and maxP. Default method is OSP.
- `path.method` the method to be used for integrating statistics of all genes or phosphorylation sites that belongs to a pathway or kinase. Available methods are Stouffer, OSP, Fisher, and maxP. Default method is Stouffer.
- `top` the number of entries to be highlighted in the plot.
- `nd` the number of directions to plot (4 or 8)
- `...` parameters for controlling the plot.

Value

The the list of enrichment analysis in tables.

Examples

```r
# load the phosphoproteomics dataset
data(HEK)

# load the kinase-substrate annoations
data(PhosphoSite)

# test enrichment on 8 directions in polar coordinate system.
bda <- directExplorer2d(Tc=HEK, annotation=PhosphoSite.mouse)

# the direction are denoted as follow for the two treatments vs control:
# ++: up-regulated in both treatments
# +*: up-regulated in the first treatment and unchanged in the second treatment
```
+*: up-regulated in the first treatment and down-regulated in the second treatment
*+: unchanged in the first treatment and up-regulated in the second treatment
--: down-regulated in both treatments
*-: down-regulated in the first treatment and unchanged in the second treatment
-+: down-regulated in the first treatment and up-regulated in the second treatment

sort the most enriched phosphorylation sites and kinases on down-regulation from both treatments (i.e. "--") and display the top-10 entries
bda$gene.tab[order(bda$gene.tab[,"--"],)[1:10],]
bda$path.tab[order(bda$path.tab[,"--"],)[1:10],]

directPA
Direction Analysis for Pathways

Description
The main function of direction Analysis. This function takes in a matrix of test statistics with two (2-dimensional space) or three (3-dimensional space) columns, the direction of interests, and the annotation list such as pathway annotation, and test for enrichment of pathways on the specified direction.

Usage
directPA(Tc, direction, annotation, minSize=5, gene.method="OSP", path.method="Stouffer", visualize=TRUE, ...)

Arguments
Tc a numeric matrix. Rows are genes and columns are treatments vs control statistics.
direction the direction to be tested for enrichment. Either specified as a degree for two-dimensional analysis or as contrast (in a triplet) for three-dimensional analysis.
annotation a list with names correspond to pathways and elements correspond to genes belong to each pathway, respectively.
minSize the size of annotation groups to be considered for calculating enrichment. Groups that are smaller than the minSize will be removed from the analysis.
gene.method the method to be used for integrating statistics across treatments for each gene.
Available methods are Stouffer, OSP, Fisher, and maxP. Default method is OSP.
path.method the method to be used for integrating statistics of all genes that belongs to a pathway. Available methods are Stouffer, OSP, Fisher, and maxP. Default method is Stouffer.
visualize whether to visualize the plot.
... other visualization parameters to pass on.
GeneStats

Value

a list that contains directional p-values for each gene and directional enrichment for each pathway.

Examples

```r
# load the proteomics dataset
data(PM)

# load pathway annotations
data(Pathways)

# display reactome pathways. Could be replaced by any other pathway databases
Pathways.reactome[1:5]

# direction pathway analysis in 3-dimensional space. Implemented as rotating by contrast
# (1) test combined effect of all 3 treatments (stimulation and inhibitions) vs control (basal)
# on the original direction.
dPA <- directPA(Tc=PM, direction=c(1,1,1), annotation=Pathways.reactome)
dPA$gst[order(unlist(dPA$gst[,1])),][1:20,]
  # rank substrates on the direction of interest
  sort(dPA$gene.pvalues)[1:20]

# (2) test combined effect of all 3 treatments vs controls on direction c(1,-1, 0)
# this rotates Ins by 0 degree, Wmn by 90 degree, and MK by 45 degree.
dPA <- directPA(Tc=PM, direction=c(1,-1,0), annotation=Pathways.reactome)
dPA$gst[order(unlist(dPA$gst[,1])),][1:20,]

# (3) test combined effect of all 3 perturbations vs controls on direction c(1,-1, 1)
# this rotates Ins by 0 degree, Wmn by 90 degree, and MK by 0 degree.
dPA <- directPA(Tc=PM, direction=c(1,-1,1), annotation=Pathways.reactome)
dPA$gst[order(unlist(dPA$gst[,1])),][1:20,]
```

geneStats

Molecule Level Statistics

Description

Takes a vector of statistics with each element corresponds to a treatment vs control comparison, and calculates a combined statistics across multiple treatments.

Usage

geneStats(T, method="OSP")
Arguments

T a vector of statistics (z-scores converted) with each element correspond to a treatment vs control comparison.

method the p-value integration method for combining across multiple treatments. Available methods are Stouffer, OSP, Fisher, and maxP. The default method is OSP.

Value

a p-value after integration across treatments.

Examples

```r
# load the example data
data(PM)

# convert statistics into z-scores
PM.zscores <- apply(PM, 2, function(x){qnorm(rank(x)/(nrow(PM)+1)))})

# rotate the matrix by contrast 1, -1, -1 (i.e. up-regulation, down-regulation, dow-regulation).
PM.rotated <- rotate3d(PM.zscores, contrast = c(1, -1, -1))

# combine rotated statistics across treatments
gene.pvalues <- apply(PM.rotated, 1, geneStats)
```

HEK

Phosphoproteomics of HEK-293E

Description

The data object contains all quantified phosphorylation sites in HEK-293E cells with Rapamycin or Torin1 treatment vs insulin stimulation. See Hsu et al. Science, 332(6035), 1317-1322, 2011, for more details.

kinasePA

Direction Analysis for Kinases

Description

This is a wrapper for running directPA for kinase perturbation analysis (kinasePA)

Usage

```r
kinasePA(Tc, direction, annotation, minSize=5, substrate.method="OSP",
kinase.method="Stouffer", visualize=TRUE, ...)
```
Arguments

Tc a numeric matrix. The columns are phosphorylation sites and the columns are treatments vs control statistics.
direction the direction to be tested for enrichment. Either specified as a degree for two-dimensional analysis or as contrast (in a triplet) for three-dimensional analysis.
annotation a list with names correspond to kinases and elements correspond to substrates belong to each kinase, respectively.
minSize the size of annotation groups to be considered for calculating enrichment. Groups that are smaller than the minSize will be removed from the analysis.
substrate.method the method to be used for integrating statistics across treatments for each substrate (phosphorylation site). Available methods are Stouffer, OSP, Fisher, and maxP. Default method is OSP.
kinase.method the method to be used for integrating statistics of all phosphorylation sites that belongs to a kinase. Available methods are Stouffer, OSP, Fisher, and maxP. Default method is Stouffer.
visualize whether to visualize the plot.
... other visualization parameters to pass on.

Value

a list that contains directional p-values for each substrate and directional enrichment for each kinase.

Examples

load the phosphoproteomics dataset
data(HEK)

load the kinase-substrate annotations
data(PhosphoSite)

direction pathway analysis in 2-dimensional space. Implemented as rotating by degree
(1) test combined effect of Torin1 and Rapamycin vs insulin both on "down-regulation"
(180 degree to original direction)
kPA <- kinasePA(Tc=HEK, direction=pi, annotation=PhosphoSite.mouse)
kPA$kinase[order(unlist(kPA$kinase[,1])),][1:20,]
rank substrates on the direction of interest
sort(kPA$substrate.pvalues)[1:20]

(2) test combined effect of Torin1 and Rapamycin vs insulin on "no change and down-regulation"
(135 degree to the original direction)
kPA <- kinasePA(Tc=HEK, direction=pi*3/4, annotation=PhosphoSite.mouse)
kPA$kinase[order(unlist(kPA$kinase[,1])),][1:20,]

(3) test combined effect of Torin1 and Rapamycin vs insulin on "down-regulation and no change"
(225 degree to the original direction)
kPA <- kinasePA(Tc=HEK, direction=pi*5/4, annotation=PhosphoSite.mouse)
Pathways.KEGG \(\text{KEGG pathway annotations} \)

Description

The data object contains the annotations of KEGG pathways.

Pathways.reactome \(\text{Reactome pathway annotations} \)

Description

The data object contains the annotations of reactome pathways.

pathwayStats \(\text{Pathway Level Statistics} \)

Description

Takes a vector of statistics with each element corresponds to a gene or phosphorylation site, and calculates a combined statistics for those that belong to the same pathway or kinase.

Usage

```
pathwayStats(PGs, T, minSize=5, method="Stouffer")
```

Arguments

- **PGs**: an array of names indicating genes or substrates that belong to a given pathway or kinase.
- **T**: a vector of statistics (z-scores converted) with each element correspond to a gene or phosphorylation site that belong to the same pathway or kinase.
- **minSize**: the size of annotation groups to be considered for calculating enrichment. Groups that are smaller than the minSize will be removed from the analysis.
- **method**: the p-value integration method for combining across multiple treatments. Available methods are Stouffer, OSP, Fisher, and maxP. The default method is Stouffer.
Value

a doublet corresponding to the enrichment after integration across all genes or substrates that belong to the same pathway or kinase, and the size of the mapped genes or substrates to that pathway or kinase.

Examples

load the example data
data(PM)

load pathway annotations
data(Pathways)

convert statistics into z-scores
PM.zscores <- apply(PM, 2, function(x){qnorm(rank(x)/(nrow(PM)+1)))})

Rotate the matrix by contrast 1, -1, -1 (i.e. up-regulation, down-regulation, dow-regulation).
PM.rotated <- rotate3d(PM.zscores, contrast = c(1, -1, -1))

combine rotated statistics across treatments
gene.pvalues <- apply(PM.rotated, 1, geneStats)

compute statistics for all reactome pathways
gene.zscores <- qnorm(gene.pvalues, lower.tail = FALSE)
gst <- t(sapply(Pathways.reactome, pathwayStats, gene.zscores))

perturbPlot2d Perturbation Plot

Description

This function takes in a matrix of test statistics with two columns (2-dimensional space) and the annotation list such as pathway annotation or kinase-substrate annotation, and visualize the enrichment of pathways or kinases in direction specific manner.

Usage

perturbPlot2d(Tc, annotation, minSize=5, ...)

Arguments

Tc a numeric matrix. The columns are genes or phosphorylation sites and the columns are treatments vs control statistics.
annotation a list with names correspond to pathways or kinases and elements correspond to genes or substrates belong to each pathway or kinase, respectively.
minSize the size of annotation groups to be considered for calculating enrichment. Groups that are smaller than the minSize will be removed from the analysis.
... parameters for controlling the plot.
perturbPlot3d

Value

a list of coordinates for pathways or kinases

Examples

load the phosphoproteomics dataset
data(HEK)

load the kinase-substrate annotations
data(PhosphoSite)

perturbPlot2d(Tc=HEK, annotation=PhosphoSite.mouse, cex=3)

description

This function takes in a matrix of test statistics with two columns (3-dimensional space) and the annotation list such as pathway annotation or kinase-substrate annotation, and visualize the enrichment of pathways or kinases in direction specific manner.

Usage

perturbPlot3d(Tc, annotation, minSize=5, ...)

Arguments

Tc a numeric matrix. The columns are genes or phosphorylation sites and the columns are treatments vs control statistics.

annotation a list with names correspond to pathways or kinases and elements correspond to genes or substrates belong to each pathway or kinase, respectively.

minSize the size of annotation groups to be considered for calculating enrichment. Groups that are smaller than the minSize will be removed from the analysis.

... parameters for controlling the plot.

Value

a list of coordinates for pathways or kinases
PhosphoELM.human

PhosphoELM annotations for human

Description

PhosphoELM.mouse

PhosphoELM annotations for mouse

Description

PhosphoSite.human

PhosphoSitePlus annotations for human

Description

The data object contains the annotations of kinases and their corresponding substrates as phosphorylation sites in human. It is extracted from the PhosphoSitePlus database. For details of PhosphoSitePlus, please refer to the article: Hornbeck et al. Nucleic Acids Res., 40:D261-70, 2012.

PhosphoSite.mouse

PhosphoSitePlus annotations for mouse

Description

The data object contains the annotations of kinases and their corresponding substrates as phosphorylation sites in mouse. It is extracted from the PhosphoSitePlus database. For details of PhosphoSitePlus, please refer to the article: Hornbeck et al. Nucleic Acids Res., 40:D261-70, 2012.
PM

Plasma Membrane Proteomics Data

Description

The data object contains all quantified plasma membrane proteins with insulin simulation with and without prior treatments of MK or Wmn vs basal condition in mouse 3T3L1 cell lines. Please refer to the article: Yang et al. Bioinformatics, 30(6):808-14, 2014.

rotate2d

Polar Coordinates Rotation

Description

Rotate to the direction of interest in polar coordinates by degree (e.g. pi/4).

Usage

```r
rotate2d(T, degree = 0)
```

Arguments

- `T` a numeric matrix (normally z-score converted) with 2 columns. The rows are genes or phosphorylation sites and the columns are treatments vs control statistics.
- `degree` the direction to be tested for enrichment. Specified as degree from to the original direction.

Value

A rotated matrix with respect to the direction of interest.

Examples

```r
# load the phosphoproteomics dataset
data(HEK)

# convert statistics into z-scores
HEK.zscores <- apply(HEK, 2, function(x){qnorm(rank(x)/(nrow(HEK)+1)))}

# Rotate the matrix by 1/2 pi (i.e. down-regulation, dow-regulation).
HEK.rotated <- rotate2d(HEK.zscores, degree = pi/2)
```
rotate3d

Spherical Coordinates Rotation

Description

Rotate to the direction of interest in spherical coordinates by contrasts (e.g. 1, -1, -1).

Usage

```
rotate3d(T, contrast)
```

Arguments

- `T`: a numeric matrix (normally z-score converted) with 3 columns. The rows are genes or phosphorylation sites and the columns are treatments vs control statistics.
- `contrast`: the direction to be tested for enrichment. Specified as contrast in a triplet (see example).

Value

A rotated matrix with respect to the direction of interest.

Examples

```
# load the example data
data(PM)

# convert statistics into z-scores
PM.zscores <- apply(PM, 2, function(x){qnorm(rank(x)/(nrow(PM)+1))})

# Rotate the matrix by contrast 1, -1, -1 (i.e. up-regulation, down-regulation, dow-regulation).
PM.rotated <- rotate3d(PM.zscores, contrast = c(1, -1, -1))
```
Index

directExplorer2d, 3
directPA, 4
directPA-package, 2
geneStats, 5

HEK, 6

kinasePA, 6

Pathways.KEGG, 8
Pathways.reactome, 8
pathwayStats, 8
perturbPlot2d, 9
perturbPlot3d, 10
PhosphoELM.human, 11
PhosphoELM.mouse, 11
PhosphoSite.human, 11
PhosphoSite.mouse, 11
PM, 12

rotate2d, 12
rotate3d, 13