Package ‘discAUC’

March 17, 2023

Type Package

Title Linear and Non-Linear AUC for Discounting Data

Description Area under the curve (AUC; Myerson et al., 2001) is a popular measure used in discounting research. Although the calculation of AUC is standardized, there are differences in AUC based on some assumptions. For example, Myerson et al. (2001) assumed that (with delay discounting data) a researcher would impute an indifference point at zero delay equal to the value of the larger, later outcome. However, this practice is not clearly followed. This imputed zero-delay indifference point plays an important role in log and ordinal versions of AUC. Ordinal and log versions of AUC are described by Borges et al. (2016). The package can calculate all three versions of AUC [and includes a new version: IHS(AUC)], impute indifference points when x = 0, calculate ordinal AUC in the case of Halton sampling of x-values, and account for probability discounting AUC.

Version 1.0.0

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

Suggests knitr, rmarkdown, testthat

Imports dplyr, tibble, rlang, glue

Depends R (>= 4.2)

VignetteBuilder knitr

NeedsCompilation no

Author Jonathan E. Friedel [aut, cre]

Maintainer Jonathan E. Friedel <jfriedel@georgiasouthern.edu>

Repository CRAN

Date/Publication 2023-03-17 15:40:12 UTC
R topics documented:

AUC ... 2
AUC_zeros ... 3
examp_DD ... 4
examp_PD ... 5
prep_AUC ... 6
prep_log_AUC ... 7
prep_odds_against ... 8
prep_ordinal ... 9
prep_ordinal_all .. 10

Index 12

AUC Area Under the Curve for Discounting Data

Description

Area Under the Curve for Discounting Data

Usage

AUC(
 dat,
 indiff,
 x_axis,
 prob_disc = FALSE,
 max_x_axis = NULL,
 amount,
 groupings = NULL,
 imp_zero = TRUE,
 type = "linear",
 log_base = 2
)

Arguments

dat Discounting data tibble
indiff Indifference points Variable in dat
x_axis Delays/probabilities/social distance variable in dat
prob_disc Boolean for whether data are probability discounting
max_x_axis Numeric; Maximum possible value in x_axis. If left NULL, the function will
determine and use the maximum value in the x_axis variable. Useful for com-
paring AUC across non-standard data sets where the maximum x_axis value is
not shared.
amount Numeric; Maximum amount of indifference points. (A in discounting models.)
AUC_zeros

- **groupings**: Variables for grouping (e.g., subject, experimental group) as a character or vector of characters
- **imp_zero**: Boolean for whether indifference points at $x_{axis} = 0$ (e.g., delay = 0, odds against = 0, etc.) should be added to the data.
- **type**: String for the type of AUC that should be calculated. Acceptable values are one of c("linear", "log", "ordinal")
- **log_base**: If using logarithmic, what is the base of the log

Value

Tibble or with AUC by all grouping factors. If no grouping factor specified then a tibble with one AUC will be returned.

Examples

```r
AUC(examp_DD,
   indiff = "prop_indiff",
   x_axis = "delay_months",
   amount = 1,
   type = "linear",
   prob_disc = FALSE,
   groupings = c("subject", "outcome")
)
```

Description

As defined by Myerson et al. (2001) the indifference point at 0 delay (100% likelihood) is set to 0. This function will add that indifference point, wherever it is missing. If the 0 delay (100% likelihood) is included in the data then it will not be overwritten.

Usage

```r
AUC_zeros(dat, indiff, x_axis, amount, groupings = NULL, prob_disc = FALSE)
```

Arguments

- **dat**: Discounting data tibble
- **indiff**: Indifference points Variable
- **x_axis**: Delays/probabilities/social distance variable
- **amount**: Amount of the larger delayed/probablistic/etc. outcome (A in discounting formulas)
- **groupings**: Variables for grouping (e.g., subject, experimental group) as a character or vector of characters
- **prob_disc**: Boolean for probability discounting, if set to true function will calculate and report odds against x_axis
Value

Tibble that is grouped by groupings but in the same order as supplied to the function. If prob_disc == FALSE, then the function will add indifference points of amount at x_axis = 0. If prob_disc == TRUE, then the function will add indifference points of amount at x_axis = 1. Additionally, a orig column will be added to indicate whether the indifference point was included in the data or was imputed.

Examples

```r
AUC_zeros(
  examp_DD,
  indiff = "prop_indiff",
  x_axis = "delay_months",
  amount = 1,
  groupings = c("subject", "outcome")
)

AUC_zeros(
  examp_PD,
  indiff = "prop_indiff",
  x_axis = "prob",
  amount = 1,
  groupings = c("subject", "outcome"),
  prob_disc = TRUE
)
```

Description

Delay discounting data with repeated measures for subjects across delayed outcomes. Data were obtained from a subset of data from DeHart et al. (2020).

Usage

```r
examp_DD
```

Format

A data frame with 360 rows and 4 variables:

- **subject** Subject ID. Positive values are experimentally obtained. -987.987 are median indifference points. -1 and -2 values have indifference points of all 0 and all 1, respectively. These extra data were added for testing and debugging to ensure that AUC calculations will result in 0 when all indifference points are zero and 1 when all indifference points are 1.
- **delay_months** Delay to receiving the outcome, in months
- **outcome** Delayed outcome type (all were scaled to $100)
- **prop_indiff** Indifference point scaled to the maximum amount of each outcome. The maximum amount was the number of servings of each outcome worth $100.
Details

Note: The DD data shares the same indifference points used in the PD data. The PD data were created by using the DD data and using probabilities instead of delays. The PD was created to demonstrate features of the discAUC package and does not represent real data.

Source

doi:10.1002/jeab.623

examp_PD

Probability discounting data

Description

Probability discounting data with repeated measures for subjects across unlikely outcomes.

Usage

examp_PD

Format

A data frame with 360 rows and 4 variables:

- **subject**: Subject ID. Positive values are experimentally obtained. -987.987 are median indifference points. -1 and -2 values have indifference points of all 0 and all 1, respectively. These extra data were added for testing and debugging to ensure that AUC calculations will result in 0 when all indifference points are zero and 1 when all indifference points are 1.

- **prob**: Probability of receiving the outcome

- **outcome**: Delayed outcome type (all were scaled to $100)

- **prop_indiff**: Indifference point scaled to the maximum amount of each outcome. The maximum amount was the number of servings of each outcome worth $100.

Details

Note: The PD data shares the same indifference points used in the DD data. The PD data were created by using the DD data and using probabilities instead of delays. The PD was created to demonstrate features of the discAUC package and does not represent real data.

Source

doi:10.1002/jeab.623
prep_AUC

AUC data preprocessing helper function

Description

Helper function to take AUC tibble and preprocess for other AUC calculations

Usage

prep_AUC(dat, indiff = NULL, x_axis, groupings = NULL, prob_disc = FALSE)

Arguments

dat Discounting data tibble
indiff Indifference points Variable
x_axis Delays/probabilities/social distance variable
groupings Variables for grouping (e.g., subject, experimental group) as a character or vector of characters
prob_disc Boolean for probability discounting (MAYBE NOT NECESSARY PULLED OUT ODDS AGAINST TO DIFFERENT FUNCTION)

Value

Tibble that is grouped and arranged by groupings and x_axis (or x_axis_against, if probability discounting)

Examples

library(dplyr)

Prep single set of data
DD <- tibble(
 delay = c(1 / 7, 1, 2, 4, 26, 52),
 indiff = c(95, 75, 50, 20, 5, 1)
) %>%
 arrange(delay)

prep_AUC(dat = DD, indiff = "indiff", x_axis = "delay")
Prep multiple subject data

Create DD data disorganize by delay
DD <- tibble(
 delay = rep(c(1 / 7, 1, 2, 4, 26, 52), 2),
 indiff = c(c(95, 75, 50, 20, 5, 1), c(95, 75, 50, 20, 5, 1) + .25),
 sub = c(rep(1, 6), rep(2, 6))
) %>%
 arrange(delay)
Group by subject and organize by subject and delay
prep_AUC(dat = DD, indiff = "indiff", x_axis = "delay", groupings = "sub")

Probability discounting with subjects and different outcomes

Create PD data and disorganize by probability
PD <- tibble(
prob = rep(c(.1, 1 / 100, 1 / 300, 1 / 750, 1 / 1000, 1 / 3000), 4),
value = rep(c(c(95, 75, 50, 20, 5, 1), c(95, 75, 50, 20, 5, 1) + .25), 2),
sub = rep(c(rep(1, 6), rep(2, 6)), 2),
outcome = c(rep("money", 12), rep("cigarettes", 12))
) %>%
 arrange(prob)

Calculate odds against, organize by subject, outcome, odds against
prep_AUC(PD,
 indiff = "value",
 x_axis = "prob",
 groupings = c("sub", "outcome"),
 prob_disc = TRUE
)

prep_log_AUC

Calculate log x_axis values for AUClog

Description

Calculate log x_axis values for AUClog

Usage

```r
prep_log_AUC(
  dat,
  x_axis,
  log_base = 2,
  type = "adjust",
  correction = 1,
  dec_offset = TRUE
)
```

Arguments

- **dat**
 - Discounting data tibble. AUC_zeroes should be run first if zero values on the x_axis will need to be included.
- **x_axis**
 - Delays/probabilities/social distance variable
- **log_base**
 - Base of the logarithm
prep_odds_against

type Type of correction to handle 0 values on x_axis. Acceptable values are "corr", "adjust", and "IHS". "Corr" adds a set value to each x_axis value and then takes the log of those values. "Adjust" implements increasing the x_axis values by the average difference between the log values on the x_axis. "IHS" calculates the inverse hyperbolic sine, which is different than the logarithm but is highly correlated with log transformed values. The IHS transformation does not require corrections.

correction If type == "corr" this value is what is added to the x_axis prior to taking the log values.

dec_offset If TRUE, offsets the log x_axis values if the lowest non-zero x_axis value is a decimal. This calculation is preferred because if x_axis values are negative then the log values will be negative. The negative log values can cause inconsistencies in how AUC is calculated.

Value

Original data frame (a tibble) that includes an appended column with log scale version of x_axis

Correction types for handling zero x-axis values

"Corr" adds a set correction value to each x_axis value and then takes the log of those values. "Adjust" implements increasing the x_axis values by the average difference between the log values on the x_axis. "IHS" calculates the inverse hyperbolic sine for the x_axis, which is different than the logarithm but is highly correlated with log transformed values. The IHS transformation does not require adjustments because IHS(0) == 0.

Examples

```r
prep_log_AUC(
  dat = examp_DD,
  x_axis = "delay_months",
  log_base = 10,
  dec_offset = TRUE,
  type = "adjust",
  correction = 1
)
```

prep_odds_against
Calculate odds against values for x_axis for probability discounting

Description

Calculate odds against values for x_axis for probability discounting

Usage

```r
prep_odds_against(dat, x_axis, groupings = NULL)
```
prep_ordinal

Arguments

- **dat**
 - Discounting data tibble. AUC_zeroes should be run first if zero values on the x_axis will need to be included.

- **x_axis**
 - Probabilities distance variable

- **groupings**
 - Variables for grouping (e.g., subject, experimental group) as a character or vector of characters

Value

- Original data frame (a tibble) that includes an appended column odds against

Examples

```r
prep_odds_against(examp_PD, 
  "prob", 
  groupings = c("subject", "outcome")
)
```

Description

Helper function to create ordinal values for x-axis variable. This helper function is designed to be used if the x-axis values are identical across every set of indifference points or if you desire ordinal x-axis values by subject. For the second case, if one subject was exposed to delays of 1 day and 1 month and a second subject was exposed to delays of 1 week and 1 month. In such a case, prep_ordinal() would return ordinal delays of (1, 2) for subject 1 and ordinal delays of (1, 2) for subject 2. If zeroes exist, will code as ordinal 0.

Usage

```r
prep_ordinal(dat, x_axis, groupings = NULL, prob_disc = FALSE)
```

Arguments

- **dat**
 - Discounting data tibble

- **x_axis**
 - Delays/probabilities/social distance variable

- **groupings**
 - Variables for grouping (e.g., subject, expeirmental group)

- **prob_disc**
 - Boolean for probability discounting, if set to true function will calculate ordinals based on descending x_axis values which would be in line with increasing odds against.

Value

- Tibble that has ordinal values for each x_axis value based on all possible x_axis values. Output tibble is arranged in the same order as original tibble.
Examples

library(dplyr)

PD <- tibble(
 prob = c(
 c(.05, 1/100, 1/300, 1/750, 1/1000, 1/3000),
 c(.1, 1/100, 1/300, 1/750, 1/1000, 1/4000)
),
 indiff = c(c(95, 75, 50, 20, 5, 1), c(95, 75, 50, 20, 5, 1) + .25),
 sub = c(rep(1, 6), rep(2, 6))
)

Scramble data to demonstrate preserved original order
PD <- PD %>%
 mutate(scramble = rnorm(NROW(PD), 0, 1)) %>%
 arrange(scramble)

PD

prep_ordinal(PD, "prob", prob_disc = TRUE, "sub")

prep_ordinal_all

Shared ordinal x-axis

Description

Helper function to create ordinal values for x-axis variable. This helper function is designed to be used if the x-axis values are not identical across every set of indifference points. For example, if one subject was exposed to delays of 1 day and 1 month and a second subject was exposed to delays of 1 week and 1 month. In such a case, prep_ordinal_all() would return ordinal delays of (1, 3) for subject 1 and ordinal delays of (2, 3) for subject 2. If 0 exists, will be coded as 0.

Usage

prep_ordinal_all(dat, x_axis, prob_disc = FALSE)

Arguments

dat Discounting data tibble
x_axis Delays/probabilities/social distance variable
prob_disc Boolean for probability discounting, if set to true function will calculate ordinals based on descending x_axis values which would be in line with increasing odds against.

Value

Tibble that has ordinal values for each x_axis value based on all possible x_axis values.
Examples

```r
library(dplyr)

PD <- tibble(
  prob = c(
    c(.05, 1 / 100, 1 / 300, 1 / 750, 1 / 1000, 1 / 3000),
    c(.1, 1 / 100, 1 / 300, 1 / 750, 1 / 1000, 1 / 4000)
  ),
  indiff = c(c(95, 75, 50, 20, 5, 1), c(95, 75, 50, 20, 5, 1) + .25),
  sub = c(rep(1, 6), rep(2, 6))
)

prep_ordinal_all(PD, "prob", prob_disc = TRUE)
```
Index

* datasets
 examp_DD, 4
 examp_PD, 5

AUC, 2
AUC_zeros, 3

examp_DD, 4
examp_PD, 5

prep_AUC, 6
prep_log_AUC, 7
prep_odds_against, 8
prep_ordinal, 9
prep_ordinal_all, 10