Package ‘discretefit’

October 13, 2022

Title Simulated Goodness-of-Fit Tests for Discrete Distributions

Version 0.1.2

Description Implements fast Monte Carlo simulations for
goodness-of-fit (GOF) tests for discrete distributions. This
includes tests based on the Chi-squared statistic, the
log-likelihood-ratio (G^2) statistic, the Freeman-Tukey
(Hellinger-distance) statistic, the Kolmogorov-Smirnov
statistic, the Cramer-von Mises statistic as described in
and the root-mean-square statistic, see Perkins,

License MIT + file LICENSE

URL https://github.com/josh-mc/discretefit

BugReports https://github.com/josh-mc/discretefit/issues

Encoding UTF-8

RoxygenNote 7.1.1

LinkingTo Rcpp

Imports Rcpp

Suggests knitr, dgof, cvmdisc, bench, testthat (>= 3.0.0), rmarkdown

Config/testthat/edition 3

VignetteBuilder knitr

SystemRequirements C++11

NeedsCompilation yes

Author Josh McCormick [aut, cre]

Maintainer Josh McCormick <josh.mccormick@aya.yale.edu>

Repository CRAN

Date/Publication 2022-01-25 23:52:50 UTC
R topics documented:

chisq_gof ... 2
cvm_gof .. 3
ft_gof ... 4
g_gof ... 5
ks_gof .. 6
rms_gof .. 7

Index 8

chisq_gof Simulated Chi-squared goodness-of-fit test

Description

The chisq_gof() function implements Monte Carlo simulations to calculate p-values based on the
Chi-squared statistic for goodness-of-fit tests for discrete distributions.

Usage

chisq_gof(x, p, reps = 10000, tolerance = 64 * .Machine$double.eps)

Arguments

x a numeric vector that contains observed counts for each bin/category.
p a vector of probabilities of the same length of x. An error is given if any entry
of p is negative or if the sum of p does not equal one.
reps an integer specifying the number of Monte Carlo simulations. The default is set
to 10,000 which may be appropriate for exploratory analysis. A higher number
of simulation should be selected for more precise results.
tolerance sets an upper bound for rounding errors when evaluating whether a statistic for a
simulation is greater than or equal to the statistic for the observed data. The de-
fault is identical to the tolerance set for simulations in the chisq.test function
from the stats package in base R.

Value

A list with class "htest" containing the following components:

statistic the value of the Chi-squared test statistic
p.value the simulated p-value for the test
method a character string describing the test
data.name a character string give the name of the data
cvm_gof

Examples

```r
x <- c(15, 36, 17)
p <- c(0.25, 0.5, 0.25)
chisq_gof(x, p)
```

cvm_gof

Simulated Cramer-von Mises goodness-of-fit test

Description

The `cvm_gof()` function implements Monte Carlo simulations to calculate p-values based on the Cramer-von Mises statistic (W^2) for goodness-of-fit tests for discrete distributions.

Usage

```r
cvm_gof(x, p, reps = 10000, tolerance = 64 * .Machine$double.eps)
```

Arguments

- `x`: a numeric vector that contains observed counts for each bin/category.
- `p`: a vector of probabilities of the same length of `x`. An error is given if any entry of `p` is negative or if the sum of `p` does not equal one.
- `reps`: an integer specifying the number of Monte Carlo simulations. The default is set to 10,000 which may be appropriate for exploratory analysis. A higher number of simulation should be selected for more precise results.
- `tolerance`: sets an upper bound for rounding errors when evaluating whether a statistic for a simulation is greater than or equal to the statistic for the observed data. The default is identical to the tolerance set for simulations in the `chisq.test` function from the `stats` package in base R.

Value

A list with class "htest" containing the following components:

- `statistic`: the value of the Cramer-von Mises test statistic (W^2)
- `p.value`: the simulated p-value for the test
- `method`: a character string describing the test
- `data.name`: a character string give the name of the data

Examples

```r
x <- c(15, 36, 17)
p <- c(0.25, 0.5, 0.25)
cvm_gof(x, p)
```
Simulated Freeman-Tukey (Hellinger-distance) goodness-of-fit test

Description

The ft_gof() function implements Monte Carlo simulations to calculate p-values based on the Freeman-Tukey statistic for goodness-of-fit tests for discrete distributions. This statistic is also referred to as the Hellinger-distance. Asymptotically, the Freeman-Tukey GOF test is identical to the Chi-squared GOF test, but for smaller n, results may vary significantly.

Usage

ft_gof(x, p, reps = 10000, tolerance = 64 * .Machine$double.eps)

Arguments

x a numeric vector that contains observed counts for each bin/category.
p a vector of probabilities of the same length of x. An error is given if any entry of p is negative or if the sum of p does not equal one.
reps an integer specifying the number of Monte Carlo simulations. The default is set to 10,000 which may be appropriate for exploratory analysis. A higher number of simulation should be selected for more precise results.
tolerance sets an upper bound for rounding errors when evaluating whether a statistic for a simulation is greater than or equal to the statistic for the observed data. The default is identical to the tolerance set for simulations in the chisq.test function from the stats package in base R.

Value

A list with class "htest" containing the following components:

- statistic the value of the Freeman-Tukey test statistic (W2)
- p.value the simulated p-value for the test
- method a character string describing the test
- data.name a character string give the name of the data

Examples

x <- c(15, 36, 17)
p <- c(0.25, 0.5, 0.25)
ft_gof(x, p)
Description

The `g_gof()` function implements Monte Carlo simulations to calculate p-values based on the log-likelihood-ratio statistic for goodness-of-fit tests for discrete distributions. In this context, the log-likelihood-ratio statistic is often referred to as the G^2 statistic. Asymptotically, the G^2 GOF test is identical to the Chi-squared GOF test, but for smaller n, results may vary significantly.

Usage

```r
  g_gof(x, p, reps = 10000, tolerance = 64 * .Machine$double.eps)
```

Arguments

- `x`: a numeric vector that contains observed counts for each bin/category.
- `p`: a vector of probabilities of the same length of `x`. An error is given if any entry of `p` is negative or if the sum of `p` does not equal one.
- `reps`: an integer specifying the number of Monte Carlo simulations. The default is set to 10,000 which may be appropriate for exploratory analysis. A higher number of simulation should be selected for more precise results.
- `tolerance`: sets an upper bound for rounding errors when evaluating whether a statistic for a simulation is greater than or equal to the statistic for the observed data. The default is identical to the tolerance set for simulations in the `chisq.test` function from the `stats` package in base R.

Value

A list with class "htest" containing the following components:

- `statistic`: the value of the log-likelihood-ratio test statistic (G^2)
- `p.value`: the simulated p-value for the test
- `method`: a character string describing the test
- `data.name`: a character string give the name of the data

Examples

```r
  x <- c(15, 36, 17)
  p <- c(0.25, 0.5, 0.25)
  g_gof(x, p)
```
ks_gof
Simulated Kolmogorov-Smirnov goodness-of-fit test

Description

The `ks_gof()` function implements Monte Carlo simulations to calculate p-values based on the Kolmogorov-Smirnov statistic for goodness-of-fit tests for discrete distributions. The p-value expressed by `ks_gof()` is based on a two-sided alternative hypothesis.

Usage

```r
ks_gof(x, p, reps = 10000, tolerance = 64 * .Machine$double.eps)
```

Arguments

- `x`
 a numeric vector that contains observed counts for each bin/category.

- `p`
 a vector of probabilities of the same length of `x`. An error is given if any entry of `p` is negative or if the sum of `p` does not equal one.

- `reps`
 an integer specifying the number of Monte Carlo simulations. The default is set to 10,000 which may be appropriate for exploratory analysis. A higher number of simulation should be selected for more precise results.

- `tolerance`
 sets an upper bound for rounding errors when evaluating whether a statistic for a simulation is greater than or equal to the statistic for the observed data. The default is identical to the tolerance set for simulations in the `chisq.test` function from the `stats` package in base R.

Value

A list with class "htest" containing the following components:

- `statistic`
 the value of the Kolmogorov-Smirnov test statistic

- `p.value`
 the simulated p-value for the test

- `method`
 a character string describing the test

- `data.name`
 a character string give the name of the data

Examples

```r
x <- c(15, 36, 17)
p <- c(0.25, 0.5, 0.25)
ks_gof(x, p)
```
Description

The `rms_gof()` function implements Monte Carlo simulations to calculate p-values based on the root-mean-square statistic for goodness-of-fit tests for discrete distributions.

Usage

```r
rms_gof(x, p, reps = 10000, tolerance = 64 * .Machine$double.eps)
```

Arguments

- **x**: a numeric vector that contains observed counts for each bin/category.
- **p**: a vector of probabilities of the same length of `x`. An error is given if any entry of `p` is negative or if the sum of `p` does not equal one.
- **reps**: an integer specifying the number of Monte Carlo simulations. The default is set to 10,000 which may be appropriate for exploratory analysis. A higher number of simulation should be selected for more precise results.
- **tolerance**: sets an upper bound for rounding errors when evaluating whether a statistic for a simulation is greater than or equal to the statistic for the observed data. The default is identical to the tolerance set for simulations in the `chisq.test` function from the `stats` package in base R.

Value

A list with class "htest" containing the following components:

- **statistic**: the value of the root-mean-square test statistic
- **p.value**: the simulated p-value for the test
- **method**: a character string describing the test
- **data.name**: a character string give the name of the data

Examples

```r
x <- c(15, 36, 17)
p <- c(0.25, 0.5, 0.25)

rms_gof(x, p)
```
Index

chisq_gof, 2

cvm_gof, 3

ft_gof, 4

g_gof, 5

ks_gof, 6

rms_gof, 7