Package ‘dismo’

October 13, 2022

Type Package
Title Species Distribution Modeling
Description Methods for species distribution modeling, that is, predicting the environmental similarity of any site to that of the locations of known occurrences of a species.
Version 1.3-9
Date 2022-09-19
Imports Rcpp, methods, terra (>= 1.5-34)
LinkingTo Rcpp
Depends R (>= 3.6.3), raster (>= 3.5-21), sp (>= 1.4-5)
Suggests rJava (>= 0.9-7), XML, ROCR, deldir, gstat, randomForest, kernlab, jsonlite, gbm (>= 2.1.1)
SystemRequirements Java (>= 8)
Author Robert J. Hijmans, Steven Phillips, John Leathwick and Jane Elith
Maintainer Robert J. Hijmans <r.hijmans@gmail.com>
License GPL (>= 3)
LazyLoad yes
URL https://rspatial.org/raster/sdm/
BugReports https://github.com/rspatial/dismo/issues/
NeedsCompilation yes
Repository CRAN
Date/Publication 2022-09-19 23:36:06 UTC

R topics documented:

dismo-package .. 3
acaule ... 3
Anguilla data .. 3
bioclim ... 4
biovars ... 6
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>boxplot</td>
<td>8</td>
</tr>
<tr>
<td>calc.deviance</td>
<td>8</td>
</tr>
<tr>
<td>circleHull</td>
<td>9</td>
</tr>
<tr>
<td>CirclesRange</td>
<td>10</td>
</tr>
<tr>
<td>Convex Hull</td>
<td>11</td>
</tr>
<tr>
<td>dcEvaluate</td>
<td>13</td>
</tr>
<tr>
<td>density</td>
<td>14</td>
</tr>
<tr>
<td>DistModel</td>
<td>14</td>
</tr>
<tr>
<td>domain</td>
<td>15</td>
</tr>
<tr>
<td>ecocrop</td>
<td>16</td>
</tr>
<tr>
<td>ecolim</td>
<td>17</td>
</tr>
<tr>
<td>evaluate</td>
<td>19</td>
</tr>
<tr>
<td>evaluateROCR</td>
<td>20</td>
</tr>
<tr>
<td>Evaluation plots</td>
<td>21</td>
</tr>
<tr>
<td>gbif</td>
<td>22</td>
</tr>
<tr>
<td>gbm.fixed</td>
<td>24</td>
</tr>
<tr>
<td>gbm.holdout</td>
<td>25</td>
</tr>
<tr>
<td>gbm.interactions</td>
<td>26</td>
</tr>
<tr>
<td>gbm.perspec</td>
<td>27</td>
</tr>
<tr>
<td>gbm.plot</td>
<td>28</td>
</tr>
<tr>
<td>gbm.plot.fits</td>
<td>29</td>
</tr>
<tr>
<td>gbm.simplify</td>
<td>29</td>
</tr>
<tr>
<td>gbm.step</td>
<td>30</td>
</tr>
<tr>
<td>geocode</td>
<td>34</td>
</tr>
<tr>
<td>Geographic Distance</td>
<td>34</td>
</tr>
<tr>
<td>gmap</td>
<td>35</td>
</tr>
<tr>
<td>gridSample</td>
<td>38</td>
</tr>
<tr>
<td>InvDistW</td>
<td>39</td>
</tr>
<tr>
<td>kfold</td>
<td>40</td>
</tr>
<tr>
<td>mahal</td>
<td>41</td>
</tr>
<tr>
<td>maxent</td>
<td>42</td>
</tr>
<tr>
<td>mess</td>
<td>45</td>
</tr>
<tr>
<td>ModelEvaluation</td>
<td>47</td>
</tr>
<tr>
<td>nicheEquivalency</td>
<td>48</td>
</tr>
<tr>
<td>nicheOverlap</td>
<td>49</td>
</tr>
<tr>
<td>pairs</td>
<td>50</td>
</tr>
<tr>
<td>plot</td>
<td>50</td>
</tr>
<tr>
<td>pointValues</td>
<td>51</td>
</tr>
<tr>
<td>predict</td>
<td>52</td>
</tr>
<tr>
<td>prepareData</td>
<td>53</td>
</tr>
<tr>
<td>pwdSample</td>
<td>54</td>
</tr>
<tr>
<td>Random null model</td>
<td>56</td>
</tr>
<tr>
<td>randomPoints</td>
<td>57</td>
</tr>
<tr>
<td>rectHull</td>
<td>58</td>
</tr>
<tr>
<td>response</td>
<td>59</td>
</tr>
<tr>
<td>ssb</td>
<td>60</td>
</tr>
<tr>
<td>threshold</td>
<td>61</td>
</tr>
<tr>
<td>voronoi</td>
<td>62</td>
</tr>
</tbody>
</table>
Description

This package implements a few species distribution models, including an R link to the ‘maxent’ model, and native implementations of Bioclim and Domain. It also provides a number of functions that can assist in using Boosted Regression Trees.

A good place to start is the vignette, which you can access by typing `vignette('sdm', 'dismo')`.

In addition there are a number of functions, such sampling background points, k-fold sampling, and for model evaluation (AUC) that are useful for these and for other species distribution modeling methods available in R (e.g. GLM, GAM, and RandomForest).

Author(s)

Robert J. Hijmans, Steven Phillips, John Leathwick and Jane Elith

acaule
Solanum acaule data

Description

Distribution data for Solanum acaule (a plant species that occurs in the high Andes of Peru and Bolivia). Downloaded from GBIF with the `gbif` function. For use in the 'species distribution modeling' vignette.

Usage

data(acaule)

References

https://www.gbif.org

Anguilla data
Anguilla australis distribution data

Description

A number of sites with presence or absence of the short-finned eel (Anguilla australis) in New Zealand, and environmental data at these sites; and gridded data of the environmental variables for the study area.
type	variable name	values
Reach	LocSed	weighted average of proportional cover of bed sediment
Segment	SegSumT	Summer air temperature (degrees C)
SegTSeas	Winter air temperature (degrees C), normalised with respect to SegJanT	
SegLowFlow	segment low flow (m3/sec), fourth root transformed	
Downstream	DSDist	distance to coast (km)
DSDam	presence of known downstream obstructions, mostly dams	
DSMaxSlope	maximum downstream slope (degrees)	
Upstream / catchment	USAvgT	average temperature in catchment (deg C) compared to segment, normalised with respect to SegJanT
USRainDays	days/month with rain greater than 25 mm	
USSlope	average slope in the upstream catchment (degrees)	
USNative	area with indigenous forest (proportion)	
Fishing method	fishing method in five classes: electric, net, spot, trap & mixture	

Usage

data(Anguilla_train)
data(Anguilla_test)
data(Anguilla_grids)

Author(s)

John R. Leathwick and Jane Elith

References

Description

The Bioclim algorithm has been extensively used for species distribution modeling. Bioclim is the classic 'climate-envelope-model'. Although it generally does not perform as good as some other modeling methods (Elith et al. 2006) and is unsuited for predicting climate change effects (Hijmans and Graham, 2006). It is still used, however, among other reasons because the algorithm is easy to understand and thus useful in teaching species distribution modeling.

The BIOCLIM algorithm computes the similarity of a location by comparing the values of environmental variables at any location to a percentile distribution of the values at known locations of occurrence ('training sites'). The closer to the 50th percentile (the median), the more suitable the location is. The tails of the distribution are not distinguished, that is, 10 percentile is treated as equivalent to 90 percentile.

In this R implementation, percentile scores are between 0 and 1, but predicted values larger than 0.5 are subtracted from 1. Then, the minimum percentile score across all the environmental variables
is computed (i.e. this is like Liebig’s law of the minimum, except that high values can also be limiting factors). The final value is subtracted from 1 and multiplied with 2 so that the results are between 0 and 1. The reason for this transformation is that the results become more like that of other distribution modeling methods and are thus easier to interpret. The value 1 will rarely be observed as it would require a location that has the median value of the training data for all the variables considered. The value 0 is very common as it is assigned to all cells with a value of an environmental variable that is outside the percentile distribution (the range of the training data) for at least one of the variables.

In the predict function, you can choose to ignore one of the tails of the distribution (e.g., to make low rainfall a limiting factor, but not high rainfall),

Usage

bioclim(x, p, ...)

Arguments

x Raster* object or matrix
p two column matrix or SpatialPoints* object
... Additional arguments

Value

An object of class 'Bioclim' (inherits from DistModel-class)

Author(s)

Robert J. Hijmans

References

biovars

biovars

bioclimatic variables

Description

Function to create 'bioclimatic variables' from monthly climate data.

Usage

biovars(prec, tmin, tmax, ...)

Arguments

prec vector, matrix, or RasterStack/Brick of precipitation data
tmin vector, matrix, or RasterStack/Brick of minimum temperature data
tmax vector, matrix, or RasterStack/Brick of maximum temperature data
... Additional arguments

Details

Input data is normally monthly. I.e. there should be 12 values (layers) for each variable, but the function should also work for e.g. weekly data (with some changes in the meaning of the output variables. E.g. #8 would then not be for a quarter (3 months), but for a 3 week period).
Value

Depending on the class of the input data, an object of class ‘vector’, ‘matrix’ or ‘RasterBrick’ with 19 variables (columns, layers)

- **bio1**: Mean annual temperature
- **bio2**: Mean diurnal range (mean of max temp - min temp)
- **bio3**: Isothermality (bio2/bio7) (* 100)
- **bio4**: Temperature seasonality (standard deviation *100)
- **bio5**: Max temperature of warmest month
- **bio6**: Min temperature of coldest month
- **bio7**: Temperature annual range (bio5-bio6)
- **bio8**: Mean temperature of the wettest quarter
- **bio9**: Mean temperature of driest quarter
- **bio10**: Mean temperature of warmest quarter
- **bio11**: Mean temperature of coldest quarter
- **bio12**: Total (annual) precipitation
- **bio13**: Precipitation of wettest month
- **bio14**: Precipitation of driest month
- **bio15**: Precipitation seasonality (coefficient of variation)
- **bio16**: Precipitation of wettest quarter
- **bio17**: Precipitation of driest quarter
- **bio18**: Precipitation of warmest quarter

Author(s)

Robert J. Hijmans

Examples

```r
tmin <- c(10, 12, 14, 16, 18, 20, 22, 21, 19, 17, 15, 12)
tmax <- tmin + 5
prec <- c(0, 2, 10, 30, 80, 160, 80, 20, 40, 60, 20, 0)
biovars(prec, tmin, tmax)

tmn = tmx = prc = brick(nrow=1, ncol=1)
tmn <- setValues(tmn, t(matrix(c(10, 12, 14, 16, 18, 20, 22, 21, 19, 17, 15, 12))))
tmx <- tmn + 5
prec <- setValues(prec, t(matrix(c(0, 2, 10, 30, 80, 160, 80, 20, 40, 60, 20, 0))))
b <- biovars(prec, tmn, tmx)
as.matrix(b)
```
Description

Make a box plot of model evaluation data, i.e., the model predictions for known presence and absence points.

Details

Arguments:
x Object of class ModelEvaluation ... Additional arguments that can be passed to boxplot

Author(s)

Robert J. Hijmans

See Also
evaluate

calc.deviance

Description

Function to calculate deviance given two vectors of observed and predicted values. Requires a family argument which is set to binomial by default

Usage

calc.deviance(obs, pred, weights = rep(1,length(obs)),
 family="binomial", calc.mean = TRUE)

Arguments

obs a vector with observed values
pred a vector with predicted values that correspond the the values in obs
weights a vector of weight values
family One of "binomial", "bernoulli", "poisson", "laplace", or "gaussian"
calc.mean Logical. If TRUE, the mean deviance is returned

Author(s)

John R. Leathwick and Jane Elith
circleHull

Circle hull model

Description

The Circle hull model predicts that a species is present at sites inside the smallest circle that can contain a set of training points, and absent outside that circle.

Usage

circleHull(p, ...)

Arguments

p point locations (presence). Two column matrix, data.frame or SpatialPoints* object

... Additional arguments. See details

Value

An object of class 'CircleHull' (inherits from DistModel-class)

Author(s)

Robert J. Hijmans

See Also

circles, convHull, rectHull, predict

Examples

r <- raster(system.file("external/rlogo.grd", package="raster"))
#presence data
pts <- matrix(c(17, 42, 85, 70, 19, 53, 26, 84, 84, 46, 48, 85, 4, 95, 48, 54, 66,
 74, 50, 48, 28, 73, 38, 56, 43, 29, 63, 22, 46, 45, 7, 60, 46, 34, 14, 51, 70, 31, 39, 26), ncol=2)
train <- pts[1:12,]
test <- pts[13:20,]

ch <- circleHull(train)
predict(ch, test)

plot(r)
plot(ch, border='red', lwd=2, add=TRUE)
points(train, col='red', pch=20, cex=2)
points(test, col='black', pch=20, cex=2)

pr <- predict(ch, r, progress='')
plot(pr)
CirclesRange

Description

The Circles Range model predicts that a species is present at sites within a certain distance from a training point, and absent further away.

Usage

```r
## S4 method for signature 'matrix'
circles(p, d, lonlat, n=360, r=6378137, dissolve=TRUE, ...)
```

```r
## S4 method for signature 'SpatialPoints'
circles(p, d, lonlat, n=360, r=6378137, dissolve=TRUE, ...)
```

Arguments

- `p`: point locations (presence). Two column matrix, data.frame or SpatialPoints* object
- `d`: numeric. The radius of each circle in meters. A single number or a vector with elements corresponding to rows in `p`. If missing the diameter is computed from the mean inter-point distance
- `lonlat`: logical. Are these longitude/latitude data? If missing this is taken from the `p` if it is a SpatialPoints* object
- `n`: integer. How many vertices in the circle? Default is 360
- `r`: numeric. Radius of the earth. Only relevant for longitude/latitude data. Default is 6378137 m
- `dissolve`: logical. Dissolve overlapping circles. Setting this to FALSE may be useful for plotting overlapping circles
- `...`: additional arguments, none implemented

Value

An object of class 'CirclesRange' (inherits from DistModel-class)

Author(s)

Robert J. Hijmans
Convex Hull

See Also

predict, geoDist, convHull, maxent, domain, mahal, convHull

Examples

r <- raster(system.file("external/rlogo.grd", package="raster"))
#presence data
pts <- matrix(c(17, 42, 85, 70, 19, 53, 26, 84, 84, 46, 48, 85, 4, 95, 48, 54, 66,

74, 50, 48, 28, 73, 38, 56, 43, 29, 63, 22, 46, 45, 7, 60, 46, 34, 14, 51, 70, 31, 39, 26), ncol=2)
train <- pts[1:12,]
test <- pts[13:20,]
cc <- circles(train, lonlat=FALSE)
predict(cc, test)

plot(r)
plot(cc, border="red", lwd=2, add=TRUE)
points(train, col="red", pch=20, cex=2)
points(test, col="black", pch=20, cex=2)

pr <- predict(cc, r, progress=""
plot(r, legend=FALSE)
plot(pr, add=TRUE, col="blue")
points(test, col="black", pch=20, cex=2)
points(train, col="red", pch=20, cex=2)

to get the polygons:
p <- polygons(cc)

to compute the Circular Area Range of a species (see Hijmans and Spooner, 2001)
pts <- train*10
cal100 <- polygons(circles(pts, d=100, lonlat=FALSE))
cal150 <- polygons(circles(pts, d=150, lonlat=FALSE))
sum(area(cal150)) / (pi*150^2)
sum(area(cal100)) / (pi*100^2)
par(mfrow=c(1,2))
plot(cal100); points(pts)
plot(cal150); points(pts)
Convex Hull

Description

The Convex hull model predicts that a species is present at sites inside the convex hull of a set of training points, and absent outside that hull. I.e. this is the spatial convex hull, not an environmental hull.

Usage

convHull(x, ...)

Arguments

x point locations (presence). Two column matrix, data.frame or SpatialPoints* object
...

Additional arguments. See details

Details

You can supply an argument n (>= 1) to get n convex hulls around subsets of the points. You can also set n=1:x, to get a set of overlapping polygons consisting of 1 to x parts. I.e. the first polygon has 1 part, the second has 2 parts, and x has x parts.

Value

An object of class 'ConvexHull' (inherits from DistModel-class)

Author(s)

Robert J. Hijmans

See Also

predict, geoDist, maxent, domain, mahal

Examples

r <- raster(system.file("external/rlogo.grd", package="raster"))
#presence data
pts <- matrix(c(17, 42, 85, 70, 19, 53, 26, 84, 84, 46, 48, 85, 4, 95, 48, 54, 66,

74, 50, 48, 28, 73, 38, 56, 43, 29, 63, 22, 46, 45, 7, 60, 46, 34, 14, 51, 70, 31, 39, 26), ncol=2)
train <- pts[1:12,]
test <- pts[13:20,]
ch <- convHull(train)
predict(ch, test)
plot(r)
plot(ch, border='red', lwd=2, add=TRUE)
points(train, col='red', pch=20, cex=2)
points(test, col='black', pch=20, cex=2)
pr <- predict(ch, r, progress="'")
plot(pr)
points(test, col='black', pch=20, cex=2)
points(train, col='red', pch=20, cex=2)

to get the polygons:
p <- polygons(ch)
p

dcEvaluate

Evaluate by distance class

dcEvaluate(p, a, reference, lonlat=TRUE, binsize=15, predp, preda, model,
 predictors, fun=predict)

Description

Evaluate a model for intervals of distances to the nearest point in a reference dataset for presence
data and a sample of the absence data selected to have a low spatial sorting bias (obtained with
pwdSample).

Usage

dcEvaluate(p, a, reference, lonlat=TRUE, binsize=15, predp, preda, model,
 predictors, fun=predict)

Arguments

p two column matrix (x, y) or (longitude/latitude) or SpatialPoints object, for point
 locations
a two column matrix (x, y) or (longitude/latitude) or SpatialPoints object, for point
 locations
reference as above for reference point locations to which distances are computed
lonlat Logical. Use TRUE if the coordinates are spherical (in degrees), and use FALSE
 if they are planar
binsize positive integer. How many presence points in each distance bin?
predp p
preda a
model m
predictors pr
fun function

Value

list with Evaluation objects

Author(s)

Robert J. Hijmans
See Also

pwdSample, ssb

density density

density(x, ...)

x Object of class 'ModelEvaluation' or of a class that inherits from 'DistModel', (such as 'MaxEnt', 'Bioclim')
... Additional arguments that can be passed to plot

Author(s)

Robert J. Hijmans

See Also

evaluate

DistModel Class "DistModel"

Description

Parent class for a number of distribution models defined in the dismo package (those created by bioclim, domain, maxent and mahal). This is a virtual Class, no objects may be directly created from it.

Slots

presence: presence data used
absence: absence or background data used
hasabsence: Logical indicating whether there is any absence data
The Domain algorithm (Carpenter et al. 1993) that has been extensively used for species distribution modeling. It is included here for that reason but please note that it generally does not perform very well in model comparison (Elith et al. 2006, Hijmans and Graham, 2006). The Domain algorithm computes the Gower distance between environmental variables at any location and those at any of the known locations of occurrence (‘training sites’). For each variable the minimum distance between a site and any of the training points is taken. To integrate over environmental variables, the maximum distance to any of the variables is used. This distance is subtracted from one, and (in this R implementation) values below zero are truncated so that the scores are between 0 (low) and 1 (high).

Usage

```r
domain(x, p, ...)
```

Arguments

- `x` : Raster* object or matrix
- `p` : two column matrix or SpatialPoints* object
- `...` : Additional arguments

Value

An object of class 'Domain' (inherits from DistModel-class)

Author(s)

Robert J. Hijmans

References

See Also

predict, maxent, bioclim, mahal

Examples

```r
logo <- stack(system.file("external/rlogo.grd", package="raster"))
#presence data
d <- domain(logo, pts)
p <- predict(d, logo)
```

ecocrop

Ecocrop model

Description

Very simple mechanistic model for plants.

Usage

```r
ecocrop(crop, tmin, tavg, prec, rainfed=TRUE, ...)
```

Arguments

- `crop` An object of class 'ECOCROP', or the name of a crop as in `getCrop`
- `tmin` Vector of monthly minimum temperature (degrees C)
- `tavg` Vector of monthly average temperature (degrees C)
- `prec` Vector of monthly precipitation (mm)
- `rainfed` Logical. If FALSE, the crop is assumed to be irrigated
- `...` Additional arguments
- `name` Name of a crop (character). If missing a data.frame with all crop names is returned

Value

Object of class ECOCROP
ecolim

Author(s)

Robert J. Hijmans

Examples

```r
ecocrop('potato', 5:16, 15:26, runif(12)*100)
getCrop('Acacia brachystachya Benth.')
crop <- getCrop('Hot pepper')
ecocrop(crop, 5:16, 15:26, rainfed=FALSE)

# with spatial data
tmin = tavg = prec = brick(nrow=1, ncol=1)
tmin <- setValues(tmin, t(matrix(5:16)))
tavg <- tmin + 5
prec <- setValues(prec, t(matrix(15:26)))
crop <- getCrop('Hot pepper')
ecocrop(crop, tmin, tavg, prec, rainfed = FALSE)
```

ecolim	**Ecolim model**

Description

Simple generic limiting factor based model, in the tradition of the PLANTGRO model (Hackett, 1991)

Usage

```
## S4 method for signature 'matrix, matrix'
ecolim(x, y, extrapolate=TRUE, ...)
```

Arguments

- `x` numeric matrix with driver variables (each column has values for the variables). Values have to be in ascending order
- `y` numeric matrix with responses (between 0 and 1), one column for each column in `x`
- `extrapolate` logical. Should the model extrapolate beyond the extremes of `x`? If TRUE the value of `y` at the closest data extreme in `x` is used, else NA is returned for such records
- `...` Additional arguments. None implemented

Author(s)

Robert J. Hijmans
References

Hackett, C., 1991. PLANTGRO, a software package for coarse prediction of plant growth. CSIRO, Melbourne, Australia

Examples

get predictor variables
fnames <- list.files(path=paste(system.file(package="dismo"), '/ex', sep=''),
 pattern='grd', full.names=TRUE)
env <- stack(fnames)

bio1 <- c(200, 250, 400, 450)
bio12 <- c(0, 1000, 3000, 4000)
r1 <- c(0, 1, 1, 0)
r2 <- c(0, 1, 1, 1)
x <- cbind(bio1, bio12)

y <- cbind(r1, r2)

e <- ecolim(x, y)
plot(e, lwd=2, col='red')
p <- predict(e, env)
plot(p)

no extrapolation:
ef <- ecolim(x, y, extrapolate=FALSE)

pf <- predict(ef, env)
plot(pf)

occurrence <- paste(system.file(package="dismo"), '/ex/bradypus.csv', sep='')
occ <- read.table(occurrence, header=TRUE, sep=',')

fold <- kfold(occ, k=5)
occtest <- occ[fold == 1,]
occtrain <- occ[fold != 1,]

g <- randomPoints(env, 1000)

Not run:
An approach to optimize the values based on
some known presences and (here random) absences
for the same species as in the maxent example
initial parameters
v <- c(200, 250, 400, 450, 0, 1000, 3000, 4000)

function to be minimized
f <- function(p) {
x[] <- p
numbers must go up
if (any(x[-1,] < x[-nrow(x),])) return(Inf)
e <- ecolim(x, y)
we are minimizing, hence 1-AUC
evaluate

Model evaluation

Description

Evaluation of models with presence/absence data. Given a vector of presence and a vector of absence values (or a model and presence and absence points and predictors), confusion matrices are computed (for varying thresholds), and model evaluation statistics are computed for each confusion matrix / threshold. See the description of class ModelEvaluation-class for more info.

Usage

evaluate(p, a, model, x, tr, ...)

Arguments

p

presence points (x and y coordinates or SpatialPoints* object). Or, if x is missing, values at presence points

a

absence points (x and y coordinates or SpatialPoints* object). Or, if x is missing, values at presence points.

model

any fitted model, including objects inheriting from 'DistModel'; not used when x is missing (and both a and p are vectors)

x

Optional. Predictor variables (object of class Raster*). If present, p and a are interpreted as (spatial) points
Optional. a vector of threshold values to use for computing the confusion matrices

Additional arguments for the predict function

Value

An object of ModelEvaluation-class

Author(s)

Robert J. Hijmans

References

See Also

threshold

Examples

```r
## See ?maxent for an example with real data.
# this is a contrived example:
# p has the predicted values for 50 known cases (locations)
# with presence of the phenomenon (species)
p <- rnorm(50, mean=0.7, sd=0.3)
# a has the predicted values for 50 background locations (or absence)
a <- rnorm(50, mean=0.4, sd=0.4)
e <- evaluate(p=p, a=a)

threshold(e)

plot(e, 'ROC')
plot(e, 'TPR')
boxplot(e)
density(e)

str(e)
```

Description

Preparing data for model testing with the ROCR package.
Evaluation plots

Usage

evaluateROCR(model, p, a, x)

Arguments

model any fitted model, including objects inheriting from 'DistModel'
p presence points (x and y coordinates or SpatialPoints* object).
Or, if x is missing, values at presence points
Or, a matrix with values to compute predictions for
a absence points (x and y coordinates or SpatialPoints* object).
Or, if x is missing, values at presence points.
Or, a matrix with values to compute predictions for
x optional. predictor variables, if present, p and a are considered

Value

An object of class "prediction" (defined in the ROCR package)

Author(s)

Robert J. Hijmans

Description

Make a ROC curve, or a plot of a threshold dependent measure against threshold values

Methods

usage: plot(x, y, ...)

x Object of class ModelEvaluation
y Character. Either 'ROC' or a threshold dependent measure such as 'kappa', 'TPR'
... Additional arguments that can be passed to plot

Author(s)

Robert J. Hijmans

See Also

ModelEvaluation-class, density, pairs, plot
Examples

p = the predicted value for 50 known cases (locations) with presence of the phenomenon (species)
p = rnorm(50, mean=0.7, sd=0.3)
b = the predicted value for 50 known cases (locations) with absence of the phenomenon (species)
a = rnorm(50, mean=0.4, sd=0.4)
e = evaluate(p=p, a=a)
plot(e, 'ROC')
plot(e, 'kappa')
plot(e, 'FPR')
plot(e, 'prevalence')

gbif Data from GBIF

Description

This function downloads species occurrence records from the Global Biodiversity Information Facility (GBIF) data portal. You can download either a single species (if you append a '*') to the species name) or a subspecies of comparable level. You can download the data for an entire genus by using species='*'. Before using this function, please first check the GBIF data use agreement and see the note below about how to cite these data.

Usage

gbif(genus, species='', ext=NULL, args=NULL, geo=TRUE, sp=FALSE, removeZeros=FALSE, download=TRUE, ntries=5, nrecs=300, start=1, end=Inf)

Arguments

genus character. genus name
species character. species name. Use '*' to download the entire genus. Append '*' to the species name to get all naming variants (e.g. with and without species author name) and sub-taxa
ext Extent object to limit the geographic extent of the records. An extent can be created using functions like drawExtent and extent
args character. Additional arguments to refine the query. See query parameters in https://www.gbif.org/developer/occurrence for more details
geo logical. If TRUE, only records that have a georeference (longitude and latitude values) will be downloaded
sp logical. If TRUE, geo will be set to TRUE and a SpatialPointsDataFrame will be returned
removeZeros logical. If TRUE, all records that have a latitude OR longitude of zero will be removed if geo==TRUE, or set to NA if geo==FALSE. If FALSE, only records that have a latitude AND longitude that are zero will be removed or set to NA
download logical. If TRUE, records will be downloaded, else only the number of records will be shown
gbif

ntries integer. How many times should the function attempt to download the data, if an invalid response is returned (perhaps because the GBIF server is very busy)?
nreces integer. How many records to download in a single request (max is 300)?
start integer. Record number from which to start requesting data
end integer. Last record to request

Value
data frame

Note
Under the terms of the GBIF data user agreement, users who download data agree to cite a DOI. Citation rewards data-publishing institutions and individuals and provides support for sharing open data [1][2]. You can get a DOI for the data you downloaded by creating a "derived" dataset. For this to work, you need to keep the "datasetKey" variable in your dataset.

Author(s)
Robert J. Hijmans

References
https://www.gbif.org/occurrence

Examples

Not run:

```r
gbif('solanum', download=FALSE)
gbif('solanum', 'acaule', download=FALSE)

gbif('Batrachoseps', '', download=FALSE)
gbif('Batrachoseps', 'luciae', download=FALSE)
g <- gbif('Batrachoseps', 'luciae', geo=TRUE)
plot(g$lon, g$lat)

gs <- gbif('Batrachoseps', 'luciae', sp=TRUE)
plot(gs)

## End(Not run)
```
gbm.fixed

Description

Calculates a gradient boosting (gbm) object with a fixed number of trees. The optimal number of trees can be identified using gbm.step or some other procedure. Mostly used as a utility function, e.g., when being called by gbm.simplify. It takes as input a dataset and arguments selecting x and y variables, learning rate and tree complexity.

Usage

```r
gbm.fixed(data, gbm.x, gbm.y, tree.complexity = 1, site.weights = rep(1, nrow(data)),
           verbose = TRUE, learning.rate = 0.001, n.trees = 2000, bag.fraction = 0.5,
           family = "bernoulli", keep.data = FALSE, var.monotone = rep(0, length(gbm.x)))
```

Arguments

data
data.frame

gbm.x
indices of the predictors in the input dataframe

gbm.y
index of the response in the input dataframe

tree.complexity
the tree depth - sometimes referred to as interaction depth

site.weights
by default set equal

verbose
to control reporting

learning.rate
controls speed of the gradient descent

n.trees
default number of trees

bag.fraction
varies random sample size for each new tree

family
can be any of "bernoulli", "poisson", "gaussian", or "laplace"

keep.data
Logical. If TRUE, original data is kept

var.monotone
constrain to positive (1) or negative monontone (-1)

Value

object of class gbm

Author(s)

John R. Leathwick and Jane Elith

References

Description

Calculates a gradient boosting (gbm) object in which model complexity is determined using a training set with predictions made to a withheld set. An initial set of trees is fitted, and then trees are progressively added testing performance along the way, using gbm.perf until the optimal number of trees is identified.

As any structured ordering of the data should be avoided, a copy of the data set is BY DEFAULT randomly reordered each time the function is run.

Usage

```r
gbm.holdout(data, gbm.x, gbm.y, learning.rate = 0.001, tree.complexity = 1,
family = "bernoulli", n.trees = 200, add.trees = n.trees, max.trees = 20000,
verbose = TRUE, train.fraction = 0.8, permute = TRUE, prev.stratify = TRUE,
var.monotone = rep(0, length(gbm.x)), site.weights = rep(1, nrow(data)),
refit = TRUE, keep.data = TRUE)
```

Arguments

data data.frame

```r
gbm.x
```
indices of the predictors in the input dataframe

```r
gbm.y
```
index of the response in the input dataframe

```r
learning.rate
```
typically varied between 0.1 and 0.001

```r
tree.complexity
```
sometimes called interaction depth

```r
family
```
"bernoulli","poisson", etc. as for gbm

```r
n.trees
```
initial number of trees

```r
add.trees
```
number of trees to add at each increment

```r
max.trees
```
maximum number of trees to fit

```r
verbose
```
controls degree of screen reporting

```r
train.fraction
```
proportion of data to use for training

```r
permute
```
reorder data to start with

```r
prev.stratify
```
stratify selection for presence/absence data

```r
var.monotone
```
allows constraining of response to monotone

```r
site.weights
```
set equal to 1 by default

```r
refit
```
refit the model with the full data but id’d no of trees

```r
keep.data
```
keep copy of the data
gbm.interactions

Value

A gbm object

Author(s)

John R. Leathwick and Jane Elith

References

gbm.interactions gbm interactions

Description

Tests whether interactions have been detected and modelled, and reports the relative strength of these. Results can be visualised with gbm.perspec

The function assesses the magnitude of 2nd order interaction effects in gbm models fitted with interaction depths greater than 1. This is achieved by:

1. forming predictions on the linear scale for each predictor pair;
2. fitting a linear model that relates these predictions to the predictor pair, with the the predictors fitted as factors;
3. calculating the mean value of the residuals, the magnitude of which increases with the strength of any interaction effect;
4. results are stored in an array;
5. finally, the n most important interactions are identified, where n is 25

Usage

gbm.interactions(gbm.object, use.weights=FALSE, mask.object)

Arguments

gbm.object A gbm object
use.weights Logical. If TRUE, weights are used for samples
mask.object a gbm object describing sample intensity

Value

object of class gbm
gbm.perspec

gbm perspective plot

Description
Takes a gbm boosted regression tree object produced by gbm.step and plots a perspective plot showing predicted values for two predictors as specified by number using x and y. Values for all other variables are set at their mean by default but values can be specified by giving a list consisting of the variable name and its desired value, e.g., c(name1 = 12.2, name2 = 57.6)

Usage

```r
gbm.perspec(gbm.object, x = 1, y = 2, pred.means = NULL, x.label = NULL, x.range = NULL, 
y.label = NULL, z.label = "fitted value", y.range = NULL, z.range = NULL, 
leg.coords = NULL, ticktype = "detailed", theta = 55, phi = 40, smooth = "none", 
mask = FALSE, perspective = TRUE, ...)
```

Arguments
- **gbm.object**: object of class gbm
- **x**: the first variable to be plotted
- **y**: the second variable to be plotted
- **pred.means**: allows specification of values for other variables
- **x.label**: allows manual specification of the x label
- **x.range**: manual range specification for the x variable
- **y.label**: and y label
- **z.label**: default z label
- **y.range**: and the y
- **z.range**: allows control of the vertical axis
- **leg.coords**: can specify coords (x, y) for legend
- **ticktype**: specify detailed types - otherwise "simple"
- **theta**: rotation
- **phi**: and elevation
- **smooth**: controls smoothing of the predicted surface
- **mask**: controls masking using a sample intensity model
- **perspective**: controls whether a contour or perspective plot is drawn
- **...**: allows the passing of additional arguments to plotting routine useful options include shade, ltheta, lphi for controlling illumination and cex for controlling text size - cex.axis and cex.lab have no effect

Author(s)
John R. Leathwick and Jane Elith
References

Description

Function to plot gbm response variables, with the option of adding a smooth representation of the response if requested. Additional options in this version allow for plotting on a common scale. Note that fitted functions are centered by subtracting their mean.

Usage

```r
gbm.plot(gbm.object, variable.no=0, smooth=FALSE, rug=TRUE, n.plots=length(pred.names),
         common.scale=TRUE, write.title=TRUE, y.label="fitted function", x.label=NULL,
         show.contrib=TRUE, plot.layout=c(3, 4), ...)
```

Arguments

- `gbm.object`: a gbm object - could be one from gbm.step
- `variable.no`: the var to plot - if zero then plots all
- `smooth`: Logical. If TRUE, a smoothed version of the fitted function is added
- `rug`: Logical. If TRUE, a rug of deciles is plotted
- `n.plots`: plot the first n most important preds
- `common.scale`: Logical. If TRUE, a common scale is used on the y axis
- `write.title`: Logical. If TRUE, the plot gets a title
- `y.label`: the default y-axis label
- `x.label`: the default x-axis label
- `show.contrib`: Logical. If TRUE, the contribution is shown on the x axis
- `plot.layout`: define the default layout for graphs on the page
- `...`: other arguments to pass to the plotting useful options include cex.axis, cex.lab, etc.

Author(s)

John R. Leathwick and Jane Elith

References

gbm.plot.fits

gbm.plot.fits

gbm plot fitted values

Description

Plots the fitted values from a gbm object returned by any of the model fitting options. This can give a more reliable guide to the shape of the fitted surface than can be obtained from the individual functions, particularly when predictor variables are correlated and/or samples are unevenly distributed in environmental space. Allows masking out of absences to enable focus on sites with high predicted values.

Usage

```r
gbm.plot.fits(gbm.object, v=0, mask.presence=FALSE, use.factor=FALSE)
```

Arguments

- `gbm.object`: a gbm object
- `v`: variable numbers to be plotted (if 0 then all are plotted)
- `mask.presence`: Logical. If `TRUE`, the function only plots fitted values for presences
- `use.factor`: Logical. If `TRUE`, forces to use quicker printing box and whisker plot

Author(s)

John R. Leathwick and Jane Elith

References

gbm.simplify

gbm simplify

Description

The function takes an initial cross-validated model as produced by `gbm.step` and then assesses the potential to remove predictors using k-fold cross validation. This done for each fold, removing the lowest contributing predictor, and repeating this process for a set number of steps. After the removal of each predictor, the change in predictive deviance is computed relative to that obtained when using all predictors. The function returns a list containing the mean change in deviance and its standard error as a function of the number of variables removed. Having completed the cross validation, it then identifies the sequence of variable to remove when using the full data set, testing this up to the number of steps used in the cross-validation phase of the analysis with results reported to the screen.
The function returns a table containing the order in which variables are to be removed and some vectors, each of which specifies the predictor column numbers in the original dataframe - the latter can be used as an argument to gbm.step e.g., gbm.step(data = data, gbm.x = simplify.object$pred.list[[4]]...) would implement a new analysis with the original predictor set, minus its four lowest contributing predictors.

Usage

```r
gbm.simplify(gbm.object, n.folds = 10, n.drops = "auto", alpha = 1, prev.stratify = TRUE, eval.data = NULL, plot = TRUE)
```

Arguments

- **gbm.object**: a gbm object describing sample intensity
- **n.folds**: number of times to repeat the analysis
- **n.drops**: can be automatic or an integer specifying the number of drops to check
- **alpha**: controls stopping when n.drops = "auto"
- **prev.stratify**: use prevalence stratification in selecting evaluation data
- **eval.data**: an independent evaluation data set - leave here for now
- **plot**: plot results

Value

A list with these elements: deviance.summary, deviance.matrix, drop.count, final.drops, pred.list, and gbm.call = gbm.call))

Author(s)

John R. Leathwick and Jane Elith

References

Description

Function to assess the optimal number of boosting trees using k-fold cross validation. This is an implementation of the cross-validation procedure described on page 215 of Hastie et al (2001).

The data is divided into 10 subsets, with stratification by prevalence if required for presence/absence data. The function then fits a gbm model of increasing complexity along the sequence from n.trees to n.trees + (n.steps * step.size), calculating the residual deviance at each step along the way. After each fold processed, the function calculates the average holdout residual deviance and its standard error and then identifies the optimal number of trees as that at which the holdout deviance is minimised. It fits a model with this number of trees, returning it as a gbm model along with additional information from the cross-validation selection process.

Usage

```r
gbm.step(data, gbm.x, gbm.y, offset = NULL, fold.vector = NULL, tree.complexity = 1, learning.rate = 0.01, bag.fraction = 0.75, site.weights = rep(1, nrow(data)), var.monotone = rep(0, length(gbm.x)), n.folds = 10, prev.stratify = TRUE, family = "bernoulli", n.trees = 50, step.size = n.trees, max.trees = 10000, tolerance.method = "auto", tolerance = 0.001, plot.main = TRUE, plot.folds = FALSE, verbose = TRUE, silent = FALSE, keep.fold.models = FALSE, keep.fold.vector = FALSE, ...)
```

Arguments

- `data`: input data.frame
- `gbm.x`: indices or names of predictor variables in data
- `gbm.y`: index or name of response variable in data
- `offset`: offset
- `fold.vector`: a fold vector to be read in for cross validation with offsets
- `tree.complexity`: sets the complexity of individual trees
- `learning.rate`: sets the weight applied to individual trees
- `bag.fraction`: sets the proportion of observations used in selecting variables
- `site.weights`: allows varying weighting for sites
- `var.monotone`: restricts responses to individual predictors to monotone
- `n.folds`: number of folds
- `prev.stratify`: prevalence stratify the folds - only for presence/absence data
- `family`: family - bernoulli (=binomial), poisson, laplace or gaussian
- `n.trees`: number of initial trees to fit
- `step.size`: numbers of trees to add at each cycle
- `max.trees`: max number of trees to fit before stopping
- `tolerance.method`: method to use in deciding to stop - "fixed" or "auto"
- `tolerance`: tolerance value to use - if method == fixed is absolute, if auto is multiplier * total mean deviance
plot.main Logical. plot hold-out deviance curve
plot.folds Logical. plot the individual folds as well
verbose Logical. control amount of screen reporting
silent Logical. to allow running with no output for simplifying model
keep.fold.models Logical. keep the fold models from cross validation
keep.fold.vector Logical. allows the vector defining fold membership to be kept
keep.fold.fit Logical. allows the predicted values for observations from cross-validation to be kept
... Logical. allows for any additional plotting parameters

Value

object of S3 class gbm

Note

This and other boosted regression trees (BRT) functions in the dismo package do not work if you use only one predictor. There is an easy work around: make a dummy variable with a constant value and then fit a model with two predictors, the one of interest and the dummy variable, which will be ignored by the model fitting as it has no useful information.

Author(s)

John R. Leathwick and Jane Elith

References

Examples

data(Anguilla_train)
reduce data set to speed things up a bit
Anguilla_train = Anguilla_train[1:200,]
angaus.tc5.lr01 <- gbm.step(data=Anguilla_train, gbm.x = 3:14, gbm.y = 2, family = "bernoulli",
 tree.complexity = 5, learning.rate = 0.01, bag.fraction = 0.5)
Description

A wrapper around the Google geocoding web-service. It returns 0 to n matches. It is important to be as precise as possible, e.g. always include the country in the locality description.

Usage

geocode(x, oneRecord=FALSE, extent=NULL, progress='', geocode_key, ...)

Arguments

- **x** A vector of locality descriptions
- **oneRecord** Logical. If TRUE a single record for each item in x is returned. If the API returned multiple records, the values of this record are computed by averaging the coordinates and taking the union of all bounding boxes
- **extent** An Extent object, or an object that can be coerced to one, to bias the search towards that region
- **progress** Character. Valid values are "" (no progress indicator), "text" or "window"
- **geocode_key** character. Your Google API key for geocoding (and billing). See https://developers.google.com/maps/documentation/geocoding/get-api-key
- **...** additional arguments (currently none implemented)

Value

data.frame with the following fields:

- **originalPlace** the locality description as provided (in argument x)
- **interpretedPlace** the locality as interpreted by the Google API
- **lon** longitude
- **lat** latitude
- **lonmin** minimum longitude of the bounding box
- **lonmax** maximum longitude of the bounding box
- **latmin** minimum latitude of the bounding box
- **latmax** maximum latitude of the bounding box
- **uncertainty** distance from c(lon, lat) to the farthest corner of the bounding box

Note

It is important to compare fields originalPlace and interpretedPlace as the Google interpretation of a (perhaps vague) locality description can be very speculative
Author(s)
Robert J. Hijmans

Examples

```r
## Not run:
geocode(c('1600 Pennsylvania Ave NW, Washington DC', 'Luca, Italy', 'Kampala'))
geocode(c('San Jose', 'San Jose, Mexico'))
geocode(c('San Jose', 'San Jose, Mexico'), oneRecord=TRUE)
## End(Not run)
```

Geographic Distance Geographic distance model

Description

The geographic distance model predicts that the likelihood of presence is highest near places where a species has been observed. It can be used as a null-model to calibrate cross-validation scores with. The predicted values are the inverse distance to the nearest known presence point. Distances smaller than or equal to zero are set to 1 (highest score).

Usage

```r
geoDist(p, ...)
```

Arguments

- `p` point locations (presence). Two column matrix, data.frame or SpatialPoints* object
- `...` Additional arguments. You must supply a lonlat= argument (logical), unless `p` is a SpatialPoints* object and has a valid CRS (coordinate reference system). You can also supply an additional argument 'a' for absence points (currently ignored). Argument 'a' should be of the same class as argument 'p'

Value

An object of class 'GeographicDistance' (inherits from DistModel-class)

Author(s)
Robert J. Hijmans

See Also

- `predict`, `convHull`, `maxent`, `domain`, `mahal`, `voronoiHull`, `geoIDW`
Examples

```r
r <- raster(system.file("external/rlogo.grd", package="raster"))
# presence data
pts <- matrix(c(17, 42, 85, 70, 19, 53, 26, 84, 84, 46, 48, 85, 4, 95, 48, 54, 66, 74, 50, 48,
                28, 73, 38, 56, 43, 29, 63, 22, 46, 45, 7, 60, 46, 34, 14, 51, 70, 31, 39, 26), ncol=2)
colnames(pts) <- c('x', 'y')

train <- pts[1:12, ]
test <- pts[13:20, ]

gd <- geoDist(train, lonlat=FALSE)
p <- predict(gd, r)

## Not run:
plot(p)
points(test, col='black', pch=20, cex=2)
points(train, col='red', pch=20, cex=2)
## End(Not run)
```

gmap

Get a Google map

Description

Retrieve a 'Google Map' that can be used as a background for plotting points and other spatial data. The projection of the returned Raster object is "Mercator" (unless you use lonlat=TRUE), and other spatial data may need to be transformed before it can be plotted on top of the Google map. You can use the `Mercator` function to transform points from longitude/latitude to Mercator. For SpatialLines and SpatialPolygons objects, use `spTransform` in the `rgdal` package.

This function uses the Google static maps web-service, and is based on functions by Markus Loecher for the `RgoogleMaps` package.

Usage

```r
gmap(x, exp=1, type='terrain', filename='', style=NULL, scale=1, zoom=NULL,
     size=c(640, 640), rgb=FALSE, lonlat=FALSE, map_key, geocode_key, ...)

Mercator(p, inverse = FALSE)
```

Arguments

- `x`: a textual locality description, or an Extent object (with longitude/latitude coordinates), or an object that can be coerced to one (such as a Raster* or Spatial* object), in any (known) coordinate system
- `exp`: numeric. An expansion factor to enlarge (by multiplication) the extent specified by `x`
type character. Choose from 'roadmap', 'satellite', 'hybrid', 'terrain'
filename character. Filename (optional). You can open the resulting file in a GIS program
style character. Additional style arguments. See https://developers.google.com/maps/documentation/maps-static/overview?csw=1#StyledMapFeatures. Note that certain style features do not work in combination with (the default) type='terrain'
scale 1 or 2. Using 2 doubles the number of pixels returned (and thus gives you better image quality if you need a large image)
zoom integer between 0 (the whole world) to 21 (very small area), centered on the center of the extent
size vector of two integers indicating the number of columns and rows that is requested (what is returned depends on other factors as well). Maximum values are c(640, 640), so you can only select a smaller area than the default. Note that the number of pixels returned can be doubled by using scale=2
rgb logical. If TRUE, a RasterBrick is returned with three layers (red, green, blue). This can be plotted with plotRGB
lonlat logical. If TRUE the Raster object returned has a longitude/latitude CRS instead of Mercator
map_key character. Your Google API key for mapping (and billing). See https://developers.google.com/maps/documentation/javascript/get-api-key)
geocode_key character. Your Google API key for geocoding (and billing). Only relevant if x is a textual locality description. See https://developers.google.com/maps/documentation/javascript/get-api-key)
... additional parameters
p Points. A two-column matrix, or a SpatialPoints object
inverse Should the inverse projection be done (from Mercator to longitude/latitude?)

Details

If argument x is a textual locality description, the geocode function is used to retrieve the extent that should be mapped.

Change the type to 'roadmap' if the map returned says "sorry we have no imagery here"; or use a larger extent.

The returned RasterLayer has a Mercator projection. To plot points (or lines or polygons) on top of it, these need to be transformed first.

A matrix of longitude/latitude data can be transformed with the Mercator function used in the example below. 'Spatial*' objects can be transformed with spTransform p <- spTransform(x, "+proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 +y_0=0.0 +k=1.0 +units=m +nadgrids=@null +no_defs")

Value

RasterLayer
gmap

Author(s)

Robert Hijmans and Sebastien Rochette, based on code by Markus Loecher, Sense Networks <markus at sensenetworks.com> in the RgoogleMaps package

Examples

Not run:
mymapkey = "pk-tHVbDiymfUl"
mygeokey = "Skxe99-adfKeax"

library(rgdal)

from a matrix with lon/lat points
x <- runif(30)*10 + 40
y <- runif(30)*10 - 20
xy <- cbind(x, y)
g <- gmap(xy, type='hybrid', map_key=mymapkey)
plot(g, inter=TRUE)
points(Mercator(xy), col='red', pch=20)

or from an Extent object
e <- extent(-121.9531, -120.3897, 35.36, 36.61956)
you can also get an Extent object by clicking on the map twice after using:
drawExtent()
r <- gmap(e, map_key=mymapkey)
plot(r, interpolate=TRUE)

transform points to Mercator for plotting on top of map:
pt <- matrix(c(-121, 36), ncol=2)
ptm <- Mercator(pt)
points(ptm, cex=3, pch=20, col='blue')
Mercator(ptm, inverse=TRUE)

transform Spatial objects to Mercator for plotting on top of map
here for points, but particularly relevant for lines and polygons
pt <- data.frame(pt)
coordinates(pt) <- ~X1 + X2
proj4string(pt) <- "+proj=longlat +datum=WGS84 +ellps=WGS84"
ptm2 <- spTransform(pt, CRS("+proj=merc +a=6378137 +b=6378137 +lat_ts=0.0
+lon_0=0.0 +x_0=0.0 +y_0=0.0 +k=1.0 +units=m +nadgrids=@null +no_defs")
points(ptm2, col='red', pch='x', cex=3)

get a map using names
g = gmap('Australia', map_key=mymapkey, geocode_key=mygeokey)
plot(g, inter=TRUE)

gs = gmap('Sydney, New South Wales, Australia', type='satellite',
 map_key=mymapkey, geocode_key=mygeokey)
plot(gs, inter=TRUE)
gs = gmap('Sydney, Australia', type='satellite', exp=3,
map_key=mymapkey, geocode_key=mygeokey)
plot(gs, inter=TRUE)

gs = gmap('Sydney, Australia', type='hybrid', zoom=10, scale=2,
map_key=mymapkey, geocode_key=mygeokey)
plot(gs, inter=TRUE)

styles:
g <- gmap("Brooklyn", style="feature:road.local|element:geometry|hue:0x00ff00|saturation:100 &style=feature:landscape|element:geometry|lightness:-100", type='roadmap',
map_key=mymapkey, geocode_key=mygeokey)
plot(g)

End(Not run)

gridSample

Stratified regular sample on a grid

Description

Sample points from xy, using a grid (raster) as stratification. Up to n points are sampled from each stratum (cell). For "chessboard" sampling (i.e. sampling from half the cells), use the argument chess='black', or chess='white'.

Usage

```r
gridSample(xy, r, n=1, chess='')
```

Arguments

- `xy` A two column matrix or data.frame with x and y coordinates (or longitude and latitude), or a SpatialPoints* object
- `r` Raster* object
- `n` Maximum number of samples per cell
- `chess` Character. ", 'black', or 'white'. If 'black' or 'white', "chess-board" sampling is used. I.e. only the 'white' fields, or only the 'black' fields are sampled. Cell number 1 (the upper left corner of r) is white.

Value

A two column matrix with x and y coordinates (or longitude and latitude)

Author(s)

Robert J. Hijmans
InvDistW

See Also

`pwdSample`

Examples

```r
x <- rnorm(1000, 10, 5)
y <- rnorm(1000, 50, 5)
xy <- cbind(x,y)
res <- 5
r <- raster(extent(range(xy[,1]), range(xy[,2])) + res)
res(r) <- res
samp <- gridSample(xy, r, n=1)
plot(xy, cex=0.1)
points(samp, pch='x', col='red')
```

Description

Inverse-distance weighted predictions for presence/absence data. Computed with the `gstat` function from the `gstat` package.

Usage

`geoIDW(p, a, ...)`

Arguments

- `p`: Presence points. Two column matrix, data.frame, or a SpatialPoints* object
- `a`: Absence points. Must be of the same class as `p`
- `...`: Additional arguments. None implemented

Value

An object of class `InvDistWeightModel` (inherits from `DistModel-class`)

Author(s)

Robert J. Hijmans
Examples

```r
r <- raster(system.file("external/rlogo.grd", package="raster"))
# presence points
p <- matrix(c(17, 42, 85, 70, 19, 53, 26, 84, 84, 46, 48, 85, 4, 95, 48, 54, 66, 74, 50, 48,
28, 73, 38, 56, 43, 29, 63, 22, 46, 45, 7, 60, 46, 34, 14, 51, 70, 31, 39, 26), ncol=2)
# absence points
a <- matrix(c(30, 23, 5, 5, 31, 33, 91, 63, 60, 88, 93, 97, 65, 68, 85, 97, 35, 32, 29, 55,
3, 8, 19, 71, 49, 36, 69, 41, 20, 28, 18, 9, 5, 9, 25, 71, 8, 32, 46, 60), ncol=2)

idw <- geoIDW(p, a)
prd <- predict(r, idw)

## Not run:
plot(prd)
points(p)
points(a, pch='x')
## End(Not run)
```

kfold

k-fold partitioning

Description

k-fold partitioning of a data set for model testing purposes. Each record in a matrix (or similar data structure) is randomly assigned to a group. Group numbers are between 1 and k.

Usage

```r
kfold(x, k=5, by)
```

Arguments

- **x**
 - a vector, matrix, data.frame, or Spatial object
- **k**
 - number of groups
- **by**
 - Optional argument. A vector or factor with sub-groups (e.g. species). Its length should be the same as the number of records in x

Value

- a vector with group assignments

Author(s)

Robert J. Hijmans
Examples

```r
#library(disdat)
data(NSWtrain)
## a single species
#srsp1 <- subset(NSWtrain, spid==''srsp1'')
#kfold(srsp1, k = 5)

## all species
#k = kfold(NSWtrain, k=5, by=NSWtrain$spid)

#k[NSWtrain$spid==''srsp1'']
## each group has the same number of records
##(except for adjustments if the number of records divided by k is not an integer)
#table(k[NSWtrain$spid==''srsp1''])
#k[NSWtrain$spid==''ousp5'']
```

mahal
Mahalanobis model

Description

Distribution model based on the Mahalanobis distance. The predictions are \(1 - \text{distance}\). I.e. the highest possible value is 1, and there will likely be large negative numbers.

Usage

```r
mahal(x, p, ...)
```

Arguments

- `x`
 Raster* object or matrix
- `p`
 two column matrix or SpatialPoints* object
- `...`
 Additional arguments. Currently not used

Value

An object of class Mahalanobis (inherits from DistModel-class)

Author(s)

Robert J. Hijmans

See Also

predict, maxent, bioclim, domain
Examples

```r
logo <- stack(system.file("external/rlogo.grd", package="raster"))

# presence data
pts <- matrix(c(48.243420, 48.243420, 47.985820, 52.880230, 49.531423, 46.182616,
               54.168232, 69.624263, 83.792291, 85.337894, 74.261072, 83.792291, 95.126713,
               84.565092, 66.275456, 41.803408, 25.832176, 3.936132, 18.876962, 17.331359,
               7.048974, 13.648543, 26.093446, 28.544714, 39.104026, 44.572240, 51.171810,
               56.262906, 46.269272, 38.161230, 30.618865, 21.945145, 34.390047, 59.656971,
               69.839163, 73.233228, 63.239594, 45.892154, 43.252326, 28.356155), ncol=2)

# fit model
m <- mahal(logo, pts)

# make a prediction
predict(m, logo[1])

x <- predict(m, logo)

# or x <- predict(logo, m) via raster::predict

# plot(x > 0)
```

maxent

Maxent

Description

Build a "MaxEnt" (Maximum Entropy) species distribution model (see references below). The function uses environmental data for locations of known presence and for a large number of 'background' locations. Environmental data can be extracted from raster files. The result is a model object that can be used to predict the suitability of other locations, for example, to predict the entire range of a species.

Background points are sampled randomly from the cells that are not `NA` in the first predictor variable, unless background points are specified with argument `a`.

This function uses the MaxEnt species distribution model software by Phillips, Dudik and Schapire.

Usage

```r
## S4 method for signature 'Raster,ANY'
maxent(x, p, a=NULL, factors=NULL, removeDuplicates=TRUE, nbg=10000, ...)

## S4 method for signature 'SpatialGridDataFrame,ANY'
maxent(x, p, a=NULL, removeDuplicates=TRUE, nbg=10000, ...)

## S4 method for signature 'data.frame,vector'
maxent(x, p, args=NULL, path, ...)
```
S4 method for signature 'missing,missing'
maxent(x, p, silent=FALSE, ...)

Arguments

- **x**
 Predictors. Raster* object or SpatialGridDataFrame, containing grids with predictor variables. These will be used to extract values from for the point locations. x can also be a data.frame, in which case each column should be a predictor variable and each row a presence or background record.

- **p**
 Occurrence data. This can be a data.frame, matrix, SpatialPoints* object, or a vector. If p is a data.frame or matrix it represents a set of point locations; and it must have two columns with the first being the x-coordinate (longitude) and the second the y-coordinate (latitude). Coordinates can also be specified with a SpatialPoints* object. If x is a data.frame, p should be a vector with a length equal to nrow(x) and contain 0 (background) and 1 (presence) values, to indicate which records (rows) in data.frame x are presence records, and which are background records.

- **a**
 Background points. Only used if p is and not a vector and not missing.

- **nbg**
 Number of background points to use. These are sampled randomly from the cells that are not NA in the first predictor variable. Ignored if background points are specified with argument a.

- **factors**
 Character. Which (if any) variables should be considered as categorical? Either by (layer)name or by index. Only used when argument 'x' is a Raster* object because it is not needed in other cases as you can set the appropriate class to the variables in the data.frame.

- **args**
 Character. Additional argument that can be passed to MaxEnt. See the MaxEnt help for more information. The R maxent function only uses the arguments relevant to model fitting. There is no point in using args='outputformat=raw' when *fitting* the model; but you can use arguments relevant for *prediction* when using the predict function. Some other arguments do not apply at all to the R implementation. An example is 'outputfiletype', because the 'predict' function has its own 'filename' argument for that.

- **removeDuplicates**
 Boolean. If TRUE, duplicate presence points (that fall in the same grid cell) are removed.

- **path**
 Character. Optional argument to set where you want the MaxEnt output files to be stored. This allows you to permanently keep these files. If not supplied the MaxEnt files will be stored in a temporary file. These are the files that are shown in a browser when typing the model name or when you use "show(model)"

- **silent**
 Boolean. If TRUE a message is printed.

- **...**
 Additional arguments

Value

An object of class 'MaxEnt' (inherits from DistModel-class). Or a 'MaxEntReplicates' object if you use 'replicates=' as part of the args argument. If the function is run without any arguments a boolean value is returned (TRUE if maxent.jar was found).
Author(s)
Steven Phillips and Robert J. Hijmans

References
https://biodiversityinformatics.amnh.org/open_source/maxent/

See Also
predict

Examples

test if you can use maxent
maxent()
if (maxent()) {

get predictor variables
fnames <- list.files(path=paste(system.file(package="dismo"), '/ex', sep=''),
 pattern='grd', full.names=TRUE)
predictors <- stack(fnames)
#plot(predictors)

file with presence points
occurrence <- paste(system.file(package="dismo"), '/ex/bradypus.csv', sep='')
occ <- read.table(occurrence, header=TRUE, sep=','[,-1]

withholding a 20% sample for testing
fold <- kfold(occ, k=5)
occtest <- occ[fold == 1,]
occtrain <- occ[fold != 1,]

fit model, biome is a categorical variable
me <- maxent(predictors, occtrain, factors='biome')

see the maxent results in a browser:
me
use "args"
me2 <- maxent(predictors, occtrain, factors='biome', args=c("-J", "-P"))

plot showing importance of each variable
plot(me)

response curves
response(me)

predict to entire dataset
r <- predict(me, predictors)

with some options:
r <- predict(me, predictors, args=c("outputformat=raw"), progress='text',
filename='maxent_prediction.grd')

plot(r)
points(occ)

testing
background data
bg <- randomPoints(predictors, 1000)

simplest way to use 'evaluate'
e1 <- evaluate(me, p=occtest, a=bg, x=predictors)

alternative 1
extract values
pvtest <- data.frame(extract(predictors, occtest))
avtest <- data.frame(extract(predictors, bg))

e2 <- evaluate(me, p=pvtest, a=avtest)

alternative 2
predict to testing points
testp <- predict(me, pvtest)
head(testp)
testa <- predict(me, avtest)

e3 <- evaluate(p=testp, a=testa)
e3
threshold(e3)

plot(e3, 'ROC')
}

mess

Multivariate environmental similarity surfaces (MESS)
Description

Compute multivariate environmental similarity surfaces (MESS), as described by Elith et al., 2010.

Usage

`mess(x, v, full=FALSE, filename="", ...)`

Arguments

- `x`: Raster* object
- `v`: matrix or data.frame containing the reference values. Each column should correspond to one layer of the Raster* object
- `full`: logical. If FALSE a RasterLayer with the MESS values is returned. If TRUE, a RasterBrick is returned with `n` layers corresponding to the layers of the input Raster object and an additional layer with the MESS values
- `filename`: character. Output filename (optional)
- `...`: additional arguments as for `writeRaster`

Details

`v` can be obtained for a set of points using `extract`.

Value

A RasterBrick with layers corresponding to the input layers and an additional layer with the MESS values (if `full=TRUE` and `nlayers(x) > 1`) or a RasterLayer with the MESS values (if `full=FALSE`).

Author(s)

Jean-Pierre Rossi <jean-pierre.rossi@supagro.inra.fr>, Robert Hijmans, Paulo van Breugel

References

Examples

```r
set.seed(9)
r <- raster(ncol=10, nrow=10)
r1 <- setValues(r, (1:ncell(r))/10 + rnorm(ncell(r)))
r2 <- setValues(r, (1:ncell(r))/10 + rnorm(ncell(r)))
r3 <- setValues(r, (1:ncell(r))/10 + rnorm(ncell(r)))
s <- stack(r1, r2, r3)
names(s) <- c('a', 'b', 'c')
xy <- cbind(rep(c(10,30,50), 3), rep(c(10,30,50), each=3))
refpt <- extract(s, xy)
```
ms <- mess(s, refpt, full=TRUE)
plot(ms)

Not run:
filename <- paste(system.file(package="dismo"),
/quotesingle.Var/ex/bradypus.csv
quotesingle.Var, sep="
"
)
bradypus <- read.table(filename, header=TRUE, sep="
")
bradypus <- bradypus[,2:3]
files <- list.files(path=paste(system.file(package="dismo"),
/quotesingle.Var/ex, sep="
"),
pattern="grd", full.names=TRUE)
predictors <- stack(files)
predictors <- dropLayer(x=predictors,i=9)
reference_points <- extract(predictors, bradypus)
mss <- mess(x=predictors, v=reference_points, full=TRUE)
plot(mss)

End(Not run)

ModelEvaluation
Class "ModelEvaluation"

Description
Class to store results of model cross-validation with presence/absence (0/1) data

Slots

- **presence**: presence data used
- **absence**: absence data used
- **np**: number of presence points
- **na**: number of absence points
- **auc**: Area under the receiver operator (ROC) curve
- **pauc**: p-value for the AUC (for the Wilcoxon test W statistic
- **cor**: Correlation coefficient
- **pcor**: p-value for correlation coefficient
- **t**: vector of thresholds used to compute confusion matrices
- **confusion**: confusion matrices
- **prevalence**: Prevalence
- **ODP**: Overall diagnostic power
- **CCR**: Correct classification rate
- **TPR**: True positive rate
- **TNR**: True negative rate
- **FPR**: False positive rate
nicheEquivalency

FNR: False negative rate
PPP: Positive predictive power
NPP: Negative predictive power
MCR: Misclassification rate
OR: Odds-ratio
kappa: Cohen’s kappa

Author(s)
Robert J. Hijmans

References

See Also
evaluate

nicheEquivalency Niche equivalency

Description
Compute niche equivalency for two species following Warren et al. (2009). The statistic ranges from 0 to 1.

Usage

nicheEquivalency(sp1, sp2, predictors, n=99, model=maxent, verbose=TRUE, ...)

Arguments

sp1 coordinates for species 1 (matrix with (x, y) or (lon, lat), or SpatialPoints)
sp2 coordinates for species 2 (matrix with (x, y) or (lon, lat), or SpatialPoints)
predictors Raster object with environmental variables
n integer. Number of randomizations
model function. modeling algorithm to me used
verbose logical. If TRUE some progress indicators are printed
... additional arguments (none)
Value

numeric

Author(s)

Brian Anacker. Based on a similar function in by Christoph Heibl in the phyloclim package

References

nicheOverlap

Niche overlap

Description

Compute niche overlap from predictions of species distributions with the 'I' or 'D' similarity statistic of Warren et al. (2009). The statistic ranges from 0 (no overlap) to 1 (the distributions are identical).

Usage

nicheOverlap(x, y, stat='I', mask=TRUE, checkNegatives=TRUE)

Arguments

x

RasterLayer with non-negative values (predictions of the probability that a site is suitable for a species)

y

RasterLayer with non-negative values, as above

stat

character either 'I' or 'D' to get the statistic with that name

mask

logical. If TRUE the function removes cells from x that are NA in y and vice-versa. If you are sure that such cases do not occur you can set this to FALSE to speed up computations

checkNegatives

logical. If TRUE the function checks of any of the values in x and y are negative. If you are sure that such cases do not occur you can set this to FALSE to speed up computations

Value

numeric

Author(s)

Based on SDMTools::Istat by Jeremy VanDerWal
References

Examples
r1 <- raster(nr=18, nc=36)
r2 <- raster(nr=18, nc=36)
set.seed(0)
r1[] <- runif(ncell(r1))
r2[] <- runif(ncell(r1))
nicheOverlap(r1, r2)

pairs Pair plots

Description
Pair plots of presence and absence (background) data.

Methods
pairs(x, v=NULL, pa="pa", hist=TRUE, cor=TRUE)

x Object of class DistModel or derived from that class (such as ’MaxEnt’, ’Bioclim’)
v numeric, to select a subset of pairs, e.g. v=1:3 to plot only the first three variables
pa Character. Either ’pa’, ’p’, or ’a’ to show presence and absence, presence, or absence data respectively
hist logical. If TRUE a histogram of the values is shown on the diagonal
cor logical. If TRUE the correlation coefficient is shown in the upper panels

Author(s)
Robert J. Hijmans

See Also
density, plot

plot Plot predictor values

Description
Plot predictor values for occurrence (presence and absence) data in a DistModel (or derived) object.
pointValues

Methods

usage: plot(x, y, ...)

 x Object of class DistModel or from a class that inherits from it
 y missing
 ... Additional arguments that can be passed to plot

Author(s)

Robert J. Hijmans

See Also
density, pairs, plot

pointValues point values

Description

Extract values from a Raster* object for point locations. This function adds a few options that can be useful in the context of species distribution modeling to extract function in the raster package.

Usage

pointValues(x, p, a, uniquecells = TRUE, na.rm = TRUE)

Arguments

x A Raster* object
p Points. Two-colum matrix or data.frame; or a SpatialPoints* object
a Additional points (absences). Two-colum matrix or data.frame; or a SpatialPoints* object
uniquecells Logical. If TRUE, each cell can be included only once (i.e. 'duplicate' points are removed)
na.rm Logical. If TRUE, cell values of NA are not returned

Value

matrix

Author(s)

Robert J. Hijmans

See Also

extract
predict

Distribution model predictions

Description

Make a RasterLayer with a prediction based on a model object of class that inherits from 'DistModel', including: Bioclim, Domain, MaxEnt, Mahalanobis, and GeographicDistance. Predictions with model objects that do not inherit from DistModel can be made using the similar `predict` function in the 'raster' package.

Provide a Raster* object with the independent variables. The names of the layers in the Raster* object should include those expected by the model.

Value

A RasterLayer or, (if x is a matrix), a vector.

Methods

```
predict(object, x, ext=NULL, filename='', progress='text', ...)```

- **object** A fitted model of class Bioclim, Domain, MaxEnt, ConvexHull, or Mahalanobis (classes that inherit from DistModel)
- **x** A Raster* object or a data.frame
- **ext** An extent object to limit the prediction to a sub-region of 'x'. Or an object that can be coerced to an Extent object by extent; such as a Raster* or Spatial* object
- **filename** Output filename for a new raster; if NA the result is not written to a file but returned with the RasterLayer object
- **progress** Character. Valid values are "" (no progress bar), "text" and "windows" (on that platform only)
- **...** Additional model specific arguments. And additional arguments for file writing as for `writeRaster`

For maxent models, there is an additional argument `args` used to pass arguments (options) to the maxent software. See the help page for maxent for more information.

For bioclim models, there is an additional argument `tails` which you can use to ignore the left or right tail of the percentile distribution for a variable. If supplied, tails should be a character vector with a length equal to the number of variables used in the model. Valid values are "both" (the default), "low" and "high". For example, if you have a variable x with an observed distribution between 10 and 20 and you are predicting the bioclim value for a value 25, the default result would be zero (outside of all observed values); but if you use tail='low', the high (right) tail is ignored and the value returned will be 1.

For geoDist models, there is an additional argument `fun` that allows you to use your own (inverse) distance function, and argument `scale=1` that allows you to scale the values (distances smaller than this value become one, and the others are divided by this value before computing the inverse distance).

**Author(s)**

Robert J. Hijmans
prepareData

Prepare data for model fitting

See Also

For spatial predictions with GLM, GAM, BRT, randomForest, etc., see predict in the Raster package.

To fit a model that can be used with this predict method, see maxent, bioclim, mahal, domain, geoDist, convHull

Extent object: extent

Examples

```r
logo <- stack(system.file("external/rlogo.grd", package="raster"))
pts <- matrix(c(48, 48, 48, 53, 50, 46, 54, 70, 84, 85, 74, 84, 95, 85, 66,
 42, 26, 4, 19, 17, 7, 14, 26, 29, 39, 45, 51, 56, 46, 38, 31, 22, 34, 60,
 70, 73, 63, 46, 43, 28), ncol=2)
b <- bioclim(logo, pts)
prediction for a sub-region
e <- extent(30,90,20,60)
p <- predict(b, logo, progress='text', ext=e)
plot(p)
```

Prepare data for model fitting

Description

Simple helper function to prepare data for model fitting

Usage

```r
prepareData(x, p, b, factors, xy=FALSE)
```

Arguments

- `x` Raster* object
- `p` presence points
- `b` background (or absence) points
- `factors` vectors indicating which variables are factors (using layer names or numbers)
- `xy` logical. If TRUE, the first two columns of the returned data.frame will be the coordinates of p and b (labeled 'x' and 'y')

Value

data.frame with nlayers(x)+1 columns and nrow(p) + nrow(b) rows. The first column, 'pb' indicates whether a record represents presence '1' or background '0' values. The other columns have the values from the Raster* object.

Author(s)

Robert J. Hijmans
**Description**

Select pairs of points from two sets (without replacement) that have a similar distance to their nearest point in another set of points.

For each point in "fixed", a point is selected from "sample" that has a similar distance (as defined by threshold) to its nearest point in "reference" (note that these are likely to be different points in reference). The select point is either the nearest point nearest=TRUE, or a randomly select point nearest=FALSE that is within the threshold distance. If no point within the threshold distance is found in sample, the point in fixed is dropped.

Hijmans (2012) proposed this sampling approach to remove 'spatial sorting bias' (ssb) from evaluation data used in cross-validation of presence-only species distribution models. In that context, fixed are the testing-presence points, sample the testing-absence (or testing-background) points, and reference the training-presence points.

**Usage**

```
pwdSample(fixed, sample, reference, tr=0.33, nearest=TRUE, n=1, lonlat=TRUE, warn=TRUE)
```

**Arguments**

- **fixed**: two column matrix (x, y) or (longitude/latitude) or SpatialPoints object, for point locations for which a pair should be found in sample
- **sample**: as above for point locations from which to sample to make a pair with a point from fixed
- **reference**: as above for reference point locations to which distances are computed
- **n**: How many pairs do you want for each point in fixed
- **tr**: Numeric, normally below 1. The threshold distance for a pair of points (one of fixed and one of sample) to their respective nearest points in reference to be considered a valid pair. The absolute difference in distance between the candidate point pairs in fixed and reference (dfr) and the distance between candidate point pairs in sample and reference (dsr) must be smaller than tr * dfr. I.e. if the dfr = 100 km, and tr = 0.1, dsr must be between >90 and <110 km to be considered a valid pair.
- **nearest**: Logical. If TRUE, the pair with the smallest difference in distance to their nearest reference point is selected. If FALSE, a random point from the valid pairs (with a difference in distance below the threshold defined by tr) is selected (generally leading to higher ssb)
- **lonlat**: Logical. Use TRUE if the coordinates are spherical (in degrees), and use FALSE if they are planar
- **warn**: Logical. If TRUE a warning is given if nrow(fixed) < nrow(sample)
**pwdSample**

**Value**

A matrix of nrow(fixed) and ncol(n), that indicates, for each point (row) in fixed which point(s) in sample it is paired to; or NA if no suitable pair was available.

**Author(s)**

Robert J. Hijmans

**References**


**See Also**

`gridSample`

**Examples**

```r
ref <- matrix(c(-54.5,-38.5, 2.5, -9.5, -45.5, 1.5, 9.5, 4.5, -10.5, -10.5), ncol=2)
fix <- matrix(c(-56.5, -30.5, -6.5, 14.5, -25.5, -48.5, 14.5, -2.5, 14.5,
 -11.5, -17.5, -11.5), ncol=2)

r <- raster()
extent(r) <- c(-110, 110, -45, 45)
r[] <- 1
set.seed(0)
sam <- randomPoints(r, n=50)

par(mfrow=c(1,2))
plot(sam, pch='x')
points(ref, col='red', pch=18, cex=2)
points(fix, col='blue', pch=20, cex=2)

i <- pwdSample(fix, sam, ref, lonlat=TRUE)
i
sfix <- fix[!is.na(i),]
ssam <- sam[i[!is.na(i)],]

plot(sam, pch='x', cex=0)
points(ssam, pch='x')
points(ref, col='red', pch=18, cex=2)
points(sfix, col='blue', pch=20, cex=2)

try to get 3 pairs for each point in 'fixed'
pwdSample(fix, sam, ref, lonlat=TRUE, n=3)
```
Random null model

Description

Null model based on randomization of locations as suggested by Raes and ter Steege (2007).

Usage

nullRandom(x, model, n=25, rep=25, pa=FALSE)

Arguments

x data.frame with environmental predictor values for collecting localities
model Model function that creates a model of class ’DistModel’
n Sample size
rep Number of repetitions
pa Boolean. Presence-only or presence/background model (e.g. Maxent)

Value

List with n object of class ModelEvaluation-class

Author(s)

Robert J. Hijmans

References


See Also

geoDist

Examples

predictors <- stack(list.files(path=paste(system.file(package="dismo"), '/ex', sep=''), pattern='grd', full.names=TRUE ))
occurrence <- paste(system.file(package="dismo"), '/ex/bradypus.csv', sep='')
occ <- read.table(ooccurrence, header=TRUE, sep='',)[,-1]

x <- extract(predictors, occ)
nr <- nullRandom(x, bioclim, n=25, rep=25, pa=FALSE)
mean(sapply(nr, function(x)x@auc))
randomPoints

Description

Generate random points that can be used to extract background values ("random-absence"). The points are sampled (without replacement) from the cells that are not 'NA' in raster 'mask'.

If the coordinate reference system (of mask) is longitude/latitude, sampling is weighted by the size of the cells. That is, because cells close to the equator are larger than cells closer to the poles, equatorial cells have a higher probability of being selected.

Usage

randomPoints(mask, n, p, ext=NULL, extf=1.1, excludep=TRUE, prob=FALSE, cellnumbers=FALSE, tryf=3, warn=2, lonlatCorrection=TRUE)

Arguments

- **mask**: Raster* object. If the object has cell values, cells with NA are excluded (of the first layer of the object if there are multiple layers)
- **n**: integer. Number of points
- **p**: Presence points (if provided, random points won’t be in the same cells (as defined by mask)
- **ext**: Extent object. Can be used to restrict sampling to a spatial extent
- **extf**: numeric. Multiplier to adjust the size of extent 'ext'. The default increases of 1.1 increases the extent a little (5% at each side of the extent)
- **excludep**: logical. If TRUE, presence points are excluded from background
- **prob**: logical. If TRUE the values in mask are interpreted as probability weights (and the values should be positive numbers (or NA)). NOTE: this currently only works for rasters of a relatively modest size (that can be loaded into RAM)
- **cellnumbers**: logical. If TRUE, cell numbers for mask are returned rather than coordinates
- **tryf**: numeric > 1. Multiplier used for initial sample size from which the requested sample size is extracted after removing NA points (outside of mask)
- **warn**: integer. 2 or higher gives most warnings. 0 or lower gives no warnings if sample size n is not reached
- **lonlatCorrection**: logical. If TRUE then correct for the fact that longitude/latitude is not a planar coordinate system

Value

matrix with coordinates, or, if cellnumbers=TRUE, a vector with cell numbers.

Author(s)

Robert J. Hijmans
rectHull  

Rectangular hull model

Description

The Rectangular Hull model predicts that a species is present at sites inside the minimum (rotated) bounding rectangle of a set of training points, and absent outside that rectangle.

Usage

rectHull(p, ...)

Arguments

p  point locations (presence). Two column matrix, data.frame or SpatialPoints* object

...  Additional arguments. See details

Details

You can supply an argument n (>= 1) to get n hulls around subset of the points. This uses k-means to form clusters. To reproduce the clusters you may need to use set.seed.

Value

An object of class 'RectangularHull' (inherits from DistModel-class)

Author(s)

Robert J. Hijmans. Using an algorithm by whuber and Bangyou on gis.stackexchange.com

See Also

predict, circleHull, convHull, maxent, domain, mahal

Examples

r <- raster(system.file("external/rlogo.grd", package="raster"))
# presence data
pts <- matrix(c(17, 42, 85, 70, 19, 53, 26, 84, 84, 46, 48, 85, 4, 95, 48, 54, 66,
    74, 50, 48, 28, 73, 38, 56, 43, 29, 63, 45, 7, 60, 46, 34, 14, 51, 70, 31, 39, 26), ncol=2)
train <- pts[1:12, ]
test <- pts[13:20, ]

rh <- rectHull(train)
predict(rh, test)

plot(r)
plot(rh, border='red', lwd=2, add=TRUE)
response plots

Description

Generate 'response plots', i.e. single variable response curves for a model

Usage

response(x, ...)

Arguments

x  Model object that inherits from 'DistModel', e.g. 'MaxEnt'. Also works for some other models (e.g. GLM)
...  Additional arguments. See Details

Details

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>var</td>
<td>Variable to be plotted (if NULL, all variables will be plotted)</td>
</tr>
<tr>
<td>at</td>
<td>Function to indicate at what level the other variables should be. E.g. median (the default), mean, min, max. Note 'pa' (default) or 'p'. Show responses for the range of the presence data (p) or presence and absence (background) data.</td>
</tr>
<tr>
<td>range</td>
<td>'pa' (default) or 'p'. Show responses for the range of the presence data (p) or presence and absence (background) data.</td>
</tr>
<tr>
<td>expand</td>
<td>percentage to expand the range of values with. Default is 10</td>
</tr>
<tr>
<td>rug</td>
<td>Logical. If TRUE (the default) a 'rug' of deciles is plotted on the horizontal axes</td>
</tr>
<tr>
<td>data</td>
<td>data.frame with data to use, normally this is the data used to fit the model and does not need to be supplied as this is available from the model object</td>
</tr>
<tr>
<td>fun</td>
<td>predict function. The default is &quot;predict&quot;; but you may change this to e.g., function(x, y, ...) predict(x, y, type='response', ...)</td>
</tr>
<tr>
<td>...</td>
<td>Additional graphical parameters</td>
</tr>
</tbody>
</table>

Value

Used for the side-effect of a plot

Author(s)

Robert J. Hijmans
See Also
density, plot, pairs

ssb

Spatial sorting bias

Description

Determine "spatial sorting bias", or the difference between two point data sets in the average distance to the nearest point in a reference dataset.

Usage

ssb(p, a, reference, lonlat=TRUE, avg=TRUE)

Arguments

p
two column matrix (x, y) or (longitude/latitude) or SpatialPoints object, for point locations

a
two column matrix (x, y) or (longitude/latitude) or SpatialPoints object, for point locations

reference
as above for reference point locations to which distances are computed

lonlat
Logical. Use TRUE if the coordinates are spherical (in degrees), and use FALSE if they are planar

avg
Logical. If TRUE the distances are averaged

Value

matrix with two values. 'dp': the average distance from a point in p to the nearest point in reference and 'da': the average distance from a point in a to the nearest point in reference. Distance is in meters if lonlat=TRUE, and in mapunits (typically also meters) if lonlat=FALSE

Author(s)

Robert J. Hijmans

References


See Also

pwdSample
Examples

```r
ref <- matrix(c(-54.5, -38.5, 2.5, -9.5, -45.5, 1.5, 9.5, 4.5, -10.5, -10.5), ncol=2)
p <- matrix(c(-56.5, -30.5, -6.5, 14.5, -25.5, -48.5, 14.5, -2.5, 14.5, -11.5, -17.5, -11.5), ncol=2)
r <- raster()
extent(r) <- c(-110, 110, -45, 45)
r[] <- 1
set.seed(0)
a <- randomPoints(r, n=50)
b <- ssb(p, a, ref)

distances in km
b / 1000

an index of spatial sorting bias (1 is no bias, near 0 is extreme bias)
```

threshold

Find a threshold

Description

Find a threshold (cut-off) to transform model predictions (probabilities, distances, or similar values) to a binary score (presence or absence).

Usage

```r
S4 method for signature 'ModelEvaluation'
threshold(x, stat='', sensitivity=0.9, ...)
```

Arguments

- `x`: A ModelEvaluation object (see `evaluate`)
- `stat`: character. To select a particular threshold (see section 'value' for possible values)
- `sensitivity`: numeric between 0 and 1. For the fixed sensitivity threshold
- `...`: Additional arguments. None implemented

Value

data.frame with the following columns:

- `kappa`: the threshold at which kappa is highest ("max kappa")
- `spec_sens`: the threshold at which the sum of the sensitivity (true positive rate) and specificity (true negative rate) is highest
- `no_omission`: the highest threshold at which there is no omission
- `prevalence`: modeled prevalence is closest to observed prevalence
- `equal_sens_spec`: equal sensitivity and specificity
- `sensitivity`: fixed (specified) sensitivity
Author(s)
Robert J. Hijmans and Diego Nieto-Lugilde

See Also
evaluate

Examples
## See ?maxent for an example with real data.
# this is a contrived example:
# p has the predicted values for 50 known cases (locations)
# with presence of the phenomenon (species)
p <- rnorm(50, mean=0.7, sd=0.3)
# b has the predicted values for 50 background locations (or absence)
a <- rnorm(50, mean=0.4, sd=0.4)
e <- evaluate(p=p, a=a)
threshold(e)

Description
Create Voronoi polygons for a set of points. (These are also known Thiessen polygons, and Nearest Neighbor polygons; and the technique used is referred to as Delauny triangulation.)

Usage
## S4 method for signature 'ANY'
voronoi(x, ext, eps=1e-09, ...)

Arguments
x SpatialPoints* or two column matrix with x and y coordinates
ext Extent. Can be used to set the corners of the rectangular window enclosing the triangulation. The default is the data range plus 10 percent. See deldir
eps Numerical tolerance used in triangulation. See deldir
...
Additional arguments (none)

Value
SpatialPolygonsDataFrame
**Author(s)**

This method is based on the `link(deldir)(deldir)` function by Rolf Turner and code by Carson Farmer

**Examples**

```r
points
p <- matrix(c(17, 42, 85, 70, 19, 53, 26, 84, 84, 46, 48, 85, 4, 95, 48, 54, 66, 74, 50, 48, 28, 73, 38, 43, 29, 63, 22, 46, 45, 7, 60, 46, 34, 14, 51, 70, 31, 39, 26), ncol=2)

v <- voronoi(p)
```

**Voronoi Hull**

<table>
<thead>
<tr>
<th>Voronoi Hull</th>
<th>Voronoi hull model</th>
</tr>
</thead>
</table>

**Description**

Voronoi polygons for presence/absence data

**Usage**

```r
S4 method for signature 'matrix,matrix'
voronoihull(p, a, ext=NULL, dissolve=FALSE, crs=NA, ...)
S4 method for signature 'data.frame,data.frame'
voronoihull(p, a, ext=NULL, dissolve=FALSE, crs=NA, ...)
S4 method for signature 'SpatialPoints,SpatialPoints'
voronoihull(p, a, ext=NULL, dissolve=FALSE, ...)
```

**Arguments**

- `p`: Presence points. Two column matrix, data.frame, or a SpatialPoints* object
- `a`: Absence points. Must be of the same class as p
- `ext`: Extent to limit or expand the area of interest
- `dissolve`: Boolean. Dissolve (aggregate) polygons?
- `crs`: character or CRS object. PROJ.4 notation coordinate reference system
- `...`: Additional arguments passed to `voronoi`

**Value**

A VoronoiHull object (inherits from DistModel-class)

**Note**

This function is only correct when using a planar coordinate reference system (not longitude/latitude).
Author(s)

Robert J. Hijmans

See Also

covHull, voronoi

Examples

r <- raster(system.file("external/rlogo.grd", package="raster"))
# presence points
p <- matrix(c(17, 42, 85, 70, 19, 53, 26, 84, 84, 46, 48, 85, 4, 95, 48, 54, 66, 74, 50, 48,
28, 73, 38, 56, 43, 29, 63, 62, 46, 45, 7, 60, 46, 34, 14, 51, 70, 31, 39, 26), ncol=2)
# absence points
a <- matrix(c(30, 23, 5, 5, 31, 33, 91, 63, 60, 88, 93, 97, 65, 68, 85, 97, 35, 32, 29, 55,
3, 8, 19, 71, 49, 36, 69, 41, 20, 28, 18, 9, 5, 9, 25, 71, 8, 32, 46, 60), ncol=2)
v <- voronoiHull(p, a)
x <- predict(r, v)

## Not run:
plot(x)
points(p, col='black', pch=20, cex=2)
points(a, col='red', pch=20, cex=2)
## End(Not run)
Index

* classes
  DistModel, 14
  ModelEvaluation, 47
* datasets
  acaule, 3
  Anguilla data, 3
* methods
  predict, 52
* package
  dismo-package, 3
* spatial
  bioclim, 4
  biovars, 6
  boxplot, 8
  calc.deviance, 8
  circleHull, 9
  CirclesRange, 10
  Convex Hull, 11
  dcEvaluate, 13
  density, 14
  dismo-package, 3
  domain, 15
  ecocrop, 16
  ecolim, 17
  evaluate, 19
  evaluateROCR, 20
  Evaluation plots, 21
  ggbif, 22
  gbm.fixed, 24
  gbm.holdout, 25
  gbm.interactions, 26
  gbm.perspec, 27
  gbm.plot, 28
  gbm.plot.fits, 29
  gbm.simplify, 29
  gbm.step, 30
  geocode, 33
  Geographic Distance, 34
  gmap, 35
  gridSample, 38
  InvDistW, 39
  kfold, 40
  mahal, 41
  maxent, 42
  pairs, 50
  plot, 50
  pointValues, 51
  predict, 52
  prepareData, 53
  pwdSample, 54
  Random null model, 56
  randomPoints, 57
  rectHull, 58
  response, 59
  ssb, 60
  threshold, 61
  voronoi, 62
  Voronoi Hull, 63
acaule, 3
Anguilla data, 3
Anguilla_grids (Anguilla data), 3
Anguilla_test (Anguilla data), 3
Anguilla_train (Anguilla data), 3
bioclim, 4, 14, 16, 41, 52, 53
bioclim,data.frame,missing-method (bioclim), 4
bioclim,matrix,missing-method (bioclim), 4
bioclim,Raster,data.frame-method (bioclim), 4
bioclim,Raster,matrix-method (bioclim), 4
bioclim,Raster,SpatialPoints-method (bioclim), 4
bioclim,SpatialGridDataFrame,matrix-method (bioclim), 4
INDEX

bioclim, SpatialGridDataFrame, SpatialPoints-method (bioclim), 4
Bioclim-class (bioclim), 4
biovars, 6
biovars, matrix, matrix, matrix-method (biovars), 6
biovars, Raster, Raster, Raster-method (biovars), 6
biovars, vector, vector, vector-method (biovars), 6
boxplot, 8
boxplot, ModelEvaluation-method (boxplot), 8
calc.deviance, 8
circleHull, 9, 58
circleHull, data.frame-method (circleHull), 9
circleHull, matrix-method (circleHull), 9
circleHull, SpatialPoints-method (circleHull), 9
CircleHull-class (circleHull), 9
circles, 9
circles (CirclesRange), 10
circles, data.frame-method (CirclesRange), 10
circles, matrix-method (CirclesRange), 10
circles, SpatialPoints-method (CirclesRange), 10
CirclesRange, 10
CirclesRange-class (CirclesRange), 10
Convex Hull, 11
ConvexHull-class (Convex Hull), 11
convHull, 9, 11, 34, 53, 58, 64
convHull (Convex Hull), 11
convHull, data.frame-method (Convex Hull), 11
convHull, matrix-method (Convex Hull), 11
convHull, SpatialPoints-method (Convex Hull), 11
dcEvaluate, 13
deldir, 62
density, 14, 21, 50, 51, 60
density, DistModel-method (density), 14
density, ModelEvaluation-method (density), 14
dismo (dismo-package), 3
dismo-package, 3
distModel-class (DistModel), 14
domain, 6, 11, 12, 14, 15, 34, 41, 53, 58
domain, data.frame, missing-method (domain), 15
domain, matrix, missing-method (domain), 15
domain, Raster, data.frame-method (domain), 15
domain, Raster, matrix-method (domain), 15
domain, Raster, SpatialPoints-method (domain), 15
Domain-class (domain), 15
drawExtent, 22
ecocrop, 16
ECOCROP-class (ecocrop), 16
ECOCROPcrop-class (ecocrop), 16
ECOcrops (ecocrop), 16
ecolim, 17
ecolim, matrix, matrix-method (ecolim), 17
Ecolim-class (ecolim), 17
evaluate, 8, 14, 19, 48, 61, 62
evaluateROCR, 20
Evaluation plots, 21
Extent, 57
extent, 22, 53
extract, 46, 51
gbif, 3, 22
gbm.fixed, 24
gbm.holdout, 25
gbm.interactions, 26
gbm.perspec, 27
gbm.plot, 28
gbm.plot.fits, 29
gbm.simplify, 29
gbm.step, 30
geoDist, 33, 36
geoDist, 11, 12, 52, 53, 56
geoDist (Geographic Distance), 34
geoDist, data.frame-method (Geographic Distance), 34
geoDist, matrix-method (Geographic Distance), 34
geoDist, SpatialPoints-method (Geographic Distance), 34
Geographic Distance, 34
INDEX

GeographicDistance-class (Geographic Distance), 34
geoIDW, 34
geoIDW (InvDistW), 39
geoIDW, data.frame, data.frame-method (InvDistW), 39
geoIDW, matrix, matrix-method (InvDistW), 39
geoIDW, SpatialPoints, SpatialPoints-method (InvDistW), 39
getCrop (ecocrop), 39
gridSample, 38, 55
InvDistW, 39
InvDistWeightModel-class (InvDistW), 39
kfold, 40
mahal, 6, 11, 12, 14, 16, 34, 41, 53, 58
mahal, data.frame, missing-method (mahal), 41
mahal, matrix, missing-method (mahal), 41
mahal, Raster, data.frame-method (mahal), 41
mahal, Raster, matrix-method (mahal), 41
mahal, Raster, SpatialPoints-method (mahal), 41
Mahalanobis-class (mahal), 41
maxent, 6, 11, 12, 14, 16, 34, 41, 42, 52, 53, 58
maxent, data.frame, vector-method (maxent), 42
maxent, missing, missing-method (maxent), 42
maxent, Raster, ANY-method (maxent), 42
maxent, SpatialGridDataFrame, ANY-method (maxent), 42
MaxEnt-class (maxent), 42
MaxEntReplicates-class (maxent), 42
Mercator (gmap), 35
mess, 45
ModelEvaluation, 47
ModelEvaluation-class (ModelEvaluation), 47
nicheEquivalency, 48
nicheOverlap, 49
nullRandom (Random null model), 56
pairs, 21, 50, 51, 60
pairs, DistModel-method (pairs), 50
plot, 21, 50, 51, 60
plot, Bioclim, missing-method (plot), 50
plot, DistModel, numeric-method (plot), 50
plot, ModelEvaluation, character-method (Evaluation plots), 21
plotRGB, 36
points, DistModel-method (plot), 50
pointValues, 51
predict, 5, 6, 9, 11, 12, 16, 34, 41, 44, 52, 58
predict, Bioclim-method (predict), 52
predict, CircleHull-method (predict), 52
predict, CirclesRange-method (predict), 52
predict, ConvexHull-method (predict), 52
predict, Domain-method (predict), 52
predict, EcoLim-method (ecolim), 17
predict, GeographicDistance-method (predict), 52
predict, InvDistWeightModel-method (predict), 52
predict, Mahalanobis-method (predict), 52
predict, MaxEnt-method (predict), 52
predict, MaxEntReplicates-method (predict), 52
predict, RectangularHull-method (predict), 52
predict, VoronoiHull-method (predict), 52
prepareData, 53
pwdSample, 14, 39, 54, 60
Random null model, 56
randomPoints, 57
RectangularHull-class (rectHull), 58
rectHull, 9, 58
rectHull, data.frame-method (rectHull), 58
rectHull, matrix-method (rectHull), 58
rectHull, SpatialPoints-method (rectHull), 58
response, 59
response, ANY-method (response), 59
response, DistModel-method (response), 59
response, MaxEntReplicates-method (response), 59
SpatialPoints, 22
ssb, 14, 54, 60
threshold. 20, 61
threshold, ModelEvaluation-method
   (threshold), 61

voronoi. 62, 63, 64
Voronoi Hull. 63
voronoi, ANY-method (voronoi). 62
voronoiHull. 34
voronoiHull (Voronoi Hull). 63
voronoiHull, data.frame, data.frame-method
   (Voronoi Hull). 63
voronoiHull, matrix, matrix-method
   (Voronoi Hull). 63
voronoiHull, SpatialPoints, SpatialPoints-method
   (Voronoi Hull). 63
VoronoiHull-class (Voronoi Hull). 63

writeRaster. 46, 52