Package ‘dispositionEffect’

October 13, 2022

Type Package

Title Analysis of Disposition Effect on Financial Portfolios

Version 1.0.1

Description Evaluate the presence of disposition effect and others irrational investor's behaviors based solely on investor's transactions and financial market data. Experimental data can also be used to perform the analysis. Four different methodologies are implemented to account for the different nature of human behaviors on financial markets. Novel analyses such as portfolio driven and time series disposition effect are also allowed.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Imports dplyr, purrr, lubridate, magrittr, progress

Suggests devtools, knitr, rmarkdown, roxygen2, testthat, covr, tidyr, skimr, ggplot2, ggridges, furrr, future, foreach, doParallel, parallel, bench

RoxygenNote 7.1.2

VignetteBuilder knitr

BugReports https://github.com/marcozanotti/dispositionEffect/issues

Depends R (>= 3.5.0)

NeedsCompilation no

Author Lorenzo Mazzucchelli [aut], Marco Zanotti [aut, cre]

Maintainer Marco Zanotti <zanottimarco17@gmail.com>

Repository CRAN

Date/Publication 2022-05-30 07:50:02 UTC
dispositionEffect-package

R topics documented:

dispositionEffect-package .. 2
closest_market_price ... 3
DDEanalysis ... 4
disposition_effect ... 4
evaluate .. 6
gains_losses ... 7
investor ... 8
marketprices ... 9
paper_compute ... 9
portfolio_compute .. 11
portfolio_results ... 13
portfolio_results_ts ... 14
realized_compute ... 15

Index

dispositionEffect-package .. 2

dispositionEffect: behavioral Analysis on Financial Data

Description

The dispositionEffect package allows to perform different types of behavioral analysis using financial market and experimental data. The analysis of disposition effect, portfolio-driven disposition effect, and time series disposition effect can be performed with four different implemented methods.

Main functions

- portfolio_compute is a wrapper function that compute realized and paper gains and losses from the investor's transactions and the market prices of the traded assets and updates the investor’s portfolio
- gains_losses is the core function of the package. It performs all the necessary calculations and can be used for real-time processing (it is intended for advanced users only)
- disposition_effect Compute the disposition effect based on realized and paper gains and losses
- disposition_difference Compute the disposition difference based on realized gains and losses
- disposition_compute and disposition_summary interfaces that allow to easily compute disposition effect and summary statistics.

Author(s)

L. Mazzucchelli & M. Zanotti
References

- An, Li and Engelberg, Joseph and Henriksson, Matthew and Wang, Baolian and Williams, Jared, 2019, "The Portfolio-Driven Disposition Effect".
- Filippin, Mazzucchelli and Zanotti, 2021, "An analysis of the short selling impact on the disposition effect extended in the portfolio framework" (working paper).
- Sakaguchi, Hiroaki and Stewart, Neil and Walasek, Lukasz, 2019, "The Disposition Effect Varies with Portfolio Composition Because People Take Gain-Loss-Domain-Level Sell Decisions".

closest_market_price

Closest market price

Description

Find the market price closest to a certain datetime and for specific assets.

Usage

```r
closest_market_price(
  asset, 
  datetime, 
  market_prices, 
  price_only = FALSE, 
  exact = FALSE, 
  substitute_datetime = FALSE
)
```

Arguments

- **asset**: Character vector of assets’ names to look for.
- **datetime**: POSIXct of the datetime at which looking for the asset’s price.
- **market_prices**: Data frame containing the market prices.
- **price_only**: Logical. If TRUE then only the price is returned.
- **exact**: Logical. If TRUE then it looks for market prices at the same datetime only, otherwise it looks for the nearest before the datetime.
- **substitute_datetime**: Logical. If TRUE the datetime is substituted with the datetime argument.
Value

The data frame of closest market prices.

See Also

evaluate, lubridate::round_date

DEanalysis
Real sample data for Disposition Effect analysis

Description

A sample dataset containing 10 investors, their market transactions and the market prices of the traded assets.

Usage

DEanalysis

Format

A list containing two data frames: transactions and marketprices.

investor id of the investor
type binary variable indicating the type of operation, B = buy and S = sell
asset id of the traded asset
quantity quantity of the traded asset
price market price of the traded asset
datetime timestamp of the operation

disposition_effect Disposition Effect

Description

Compute the disposition effect and the disposition difference.
disposition_effect

Usage

disposition_effect(realized_gains, paper_gains, realized_losses, paper_losses)

disposition_difference(gains, losses)

disposition_compute(
 gainslosses,
 dispdiff_value = FALSE,
 aggregate_fun = NULL,
 ...
)

disposition_compute_ts(gainslosses, aggregate_fun = NULL, ...)

disposition_summary(gainslosses, dispdiff_value = FALSE)

disposition_summary_ts(de_timeseries)

Arguments

realized_gains Numeric vector (or scalar) containing realized gains values.
paper_gains Numeric vector (or scalar) containing paper gains values.
realized_losses Numeric vector (or scalar) containing realized losses values.
paper_losses Numeric vector (or scalar) containing paper losses values.
gains Numeric vector (or scalar) containing gains.
losses Numeric vector (or scalar) containing losses.
gainslosses Data frame, the portfolio of the investor containing the realized and paper gains and losses results (as those obtained via \texttt{portfolio_compute}).
dispdiff_value Logical, if TRUE the disposition difference on the "value" method is computed. Default to disposition effect (FALSE).
aggregate_fun Function to use to aggregate results. Default to NULL, that is no aggregation is performed and the results of each asset are shown.
... Further arguments to be passed to the aggregate function.
de_timeseries Data frame, the time series of disposition effects.

Details

The disposition effect is defined as \(DE = \frac{\text{RealizedGain}}{\text{RealizedGain} - \text{PaperGain}} - \frac{\text{RealizedLoss}}{\text{RealizedLoss} + \text{PaperLoss}} \)

The disposition difference is defined as \(DD = \text{RealizedGain} - |\text{RealizedLoss}| \) or \(DD = \text{PaperGain} - |\text{PaperLoss}| \)

Value

Numeric vector (or scalar) with the value(s) of disposition effect(s) or disposition difference(s).
Functions

- disposition_effect: Compute the disposition effect
- disposition_difference: Compute the disposition difference
- disposition_compute: Compute the disposition effect directly on the investor's portfolio containing realized and paper gains and losses results.
- disposition_compute_ts: Compute the time series disposition effect on the gains and losses results.
- disposition_summary: Wrapper that returns the most important summary statistics related to the disposition effect.
- disposition_summary_ts: Wrapper that returns the most important summary statistics related to the time series disposition effect.

evaluate Portfolio evaluation

Description

Calculate the portfolio value as the sum of each asset portfolio quantity times the excess return of each asset with respect to the market.

Usage

evaluate_portfolio(portfolio, market_prices)

Arguments

portfolio Data frame of the investor's portfolio at time t.
market_prices Data frame containing the market prices.

Value

The portfolio value.

See Also

portfolio_compute, gains_losses, closest_market_price
gains_losses

Gains & Losses

Description

Calculation of the realized gains and losses and the paper gains and losses.

Usage

gains_losses(
 portfolio,
 market_prices,
 transaction_type,
 transaction_asset,
 transaction_quantity,
 transaction_price,
 transaction_datetime,
 previous_datetime,
 time_threshold = "0 mins",
 method = "all",
 allow_short = FALSE,
 verbose = FALSE
)

Arguments

portfolio Data frame of the investor's portfolio at time t.
market_prices Data frame containing the market prices.
transaction_type Character string. Either "B" = buy or "S" = sell.
transaction_asset Character string. The name of the traded asset.
transaction_quantity Numeric value. The quantity of the traded asset.
transaction_price Numeric value. The market price of the traded asset.
transaction_datetime POSIXct value. The date-time at which the transaction is going to occur.
previous_datetime POSIXct value. The date-time of the last transaction performed by the investor.
time_threshold Character in the format "value units" indicating the time threshold at which the computed financial difftime has to be evaluated (for instance "05 mins" or "20 hours"). The allowed units are "secs", "mins", "hours", "days" and "weeks" (See base::difftime).
method Character string. The method used to compute papers. Allowed values are "count", "total", "value", "duration" and "all".
allow_short Logical. If TRUE short positions are allowed, otherwise only long positions are allowed.
verbose Logical. If TRUE than messages are printed to the console.

Details

It is essentially a wrapper around paper_compute and realized_compute functions. It is the function that can be used for streaming computations of gains and losses.

Value

A data frame containing the values of realized and paper gains and losses computed by means of the chosen method on each portfolio assets.

See Also

realized_compute, paper_compute, portfolio_compute

investor Sample investor financial transactions

Description

A sample dataset containing 19 transactions over time.

Usage

investor

Format

A data frame with 19 rows and 6 variables:

investor id of the investor
type binary variable indicating the type of operation, B = buy and S = sell
asset id of the traded asset
quantity quantity of the traded asset
price market price of the traded asset
datetime timestamp of the operation
marketprices

Description

A sample dataset containing 6895 market prices of 5 different assets over time.

Usage

marketprices

Format

A data frame with 6895 rows and 4 variables:

- **asset**: id of the asset
- **datetime**: timestamp of market price
- **price**: market price of the asset

paper_compute

Description

Papers' estimation

Compute paper gains and paper losses as either simple counts, total quantities, expected returns and financial duration.

Usage

```r
paper_count(
  portfolio_quantity,
  portfolio_price,
  market_price,
  allow_short = TRUE
)
```

```r
classical_loss_gain(
  portfolio_quantity,
  portfolio_price,
  market_price, 
  allow_short = TRUE
)
```

```r
classical_loss_value(
  portfolio_quantity,
  portfolio_price,
  market_price,
  allow_short = TRUE
)
```

```r
paper_total(
  portfolio_quantity,
  portfolio_price,
  market_price,
  allow_short = TRUE
)
```

```r
paper_value(
  portfolio_quantity,
  portfolio_price,
  market_price,
  allow_short = TRUE
)
```
paper_compute

 portfolio_price,
 market_price,
 allow_short = TRUE
)

paper_duration(
 portfolio_quantity,
 portfolio_price,
 market_price,
 datetime_difference = NULL,
 previous_datetime = NULL,
 transaction_datetime = NULL,
 allow_short = TRUE
)

paper_compute(
 portfolio_quantity,
 portfolio_price,
 market_price,
 previous_datetime,
 transaction_datetime,
 assets,
 allow_short = TRUE,
 method = "all"
)

Arguments

 portfolio_quantity
 Numeric vector. The portfolio quantities of assets into the investor’s portfolio.
 portfolio_price
 Numeric vector. The portfolio prices of assets into the investor’s portfolio.
 market_price
 Numeric vector. The market prices of assets into the investor’s portfolio.
 allow_short
 Logical. If TRUE short positions are allowed, otherwise only long positions are
 allowed.
 datetime_difference
 Numeric value of time difference between the previous_datetime and the trans-
 action_datetime, computed through difftime_financial. If NULL, then pre-
 vious_datetime and transaction_datetime must be specified.
 previous_datetime
 POSIXct value. The date-time of the last transaction performed by the investor.
 transaction_datetime
 POSIXct value. The date-time at which the transaction is going to occur.
 assets
 Character vector. The name of assets into the investor’s portfolio but the traded
 asset.
 method
 Character string. The method used to compute papers. Allowed values are
 "count", "total", "value", "duration" and "all".
Value

The described functions have different return behaviors

- `paper_compute` returns a data frame containing the values of paper gains and paper losses computed by means of the chosen method on each portfolio assets.
- `paper_count` returns a named vector containing the values of paper gains and paper losses computed using the count method.
- `paper_total` returns a named vector containing the values of paper gains and paper losses computed using the total method.
- `paper_value` returns a named vector containing the values of paper gains and paper losses computed using the value method.
- `paper_duration` returns a named vector containing the values of paper gains and paper losses computed using the duration method.

In particular:

- `RG_"method"` contains Realized Gains results
- `RL_"method"` contains Realized Losses results
- `PG_"method"` contains Paper Gains results
- `PL_"method"` contains Paper Losses results

Functions

- `paper_count`: Computation of paper gains and paper losses as simple counts (default method).
- `paper_total`: Computation of paper gains and paper losses as total quantity of assets.
- `paper_value`: Computation of paper gains and paper losses as expected return of assets.
- `paper_duration`: Computation of paper gains and paper losses as financial duration.
- `paper_compute`: Wrapper that calls other `paper_` functions to compute paper gains and paper losses based on the chosen method.

See Also

`realized_compute, gains_losses`

portfolio_compute

Portfolio Compute

Description

Computation of all the transaction updates and the realized and paper gains and losses for each assets.
Usage

```r
portfolio_compute(
  portfolio_transactions,
  market_prices,
  method = "count",
  allow_short = TRUE,
  time_threshold = "0 mins",
  exact_market_prices = TRUE,
  portfolio_driven.DE = FALSE,
  time_series.DE = FALSE,
  assets_time_series.DE = NULL,
  verbose = c(0, 0),
  progress = FALSE
)
```

Arguments

- `portfolio_transactions`: Data frame. The investor’s transactions data frame.
- `market_prices`: Data frame containing the market prices.
- `method`: Character string containing the method to use to compute realized and paper gains and losses. If "none" nothing is computed but the investor's portfolio updates. Otherwise it has to be one of "count" (default), "total", "value", "duration", or "all".
- `allow_short`: Logical. If TRUE short positions are allowed, otherwise only long positions are allowed.
- `time_threshold`: Character in the format "value units" indicating the time threshold at which the computed financial difftime has to be evaluated (for instance "05 mins" or "20 hours"). The allowed units are "secs", "mins", "hours", "days" and "weeks" (See `base::difftime`).
- `exact_market_prices`: Logical. If TRUE then `closest_market_price` uses exact datetime match to look for the closest price of each asset. It usually speeds up computation by a small degree, but it requires the `market_prices` to have the prices for each transaction asset along each transaction datetimes.
- `portfolio_driven.DE`: Logical. If TRUE the realized and paper gains and losses for the positive (that is when the investor’s portfolio value, as computed through `evaluate_portfolio`, is greater than zero) and the negative (that is when the investor’s portfolio value, as computed through `evaluate_portfolio`, is smaller than zero) portfolios are returned.
- `time_series.DE`: Logical. If TRUE the time series of disposition effect is computed on 'count' and 'value' methods only.
- `assets_time_series.DE`: Character vector of assets’ names as contained into `portfolio_transactions` on which to compute the time series disposition effect.
verbose Numeric or logical vector of length 2 that allows to control for the function’s verbosity.
progress Logical. If TRUE a progress bar is displayed.

Value
A data frame containing the investor’s portfolio and the values of realized and paper gains and losses computed by means of the chosen method on each portfolio assets.
If time_series_DE is set to TRUE, then also time series disposition effect results are returned.

See Also
realized_compute, paper_compute, gains_losses

portfolio_results *Realized and paper results*

Description
Results obtained by means of portfolio_compute on the data sets investor and marketprices.

Usage
portfolio_results

Format
A data frame with 5 rows and 21 variables:
- **investor** id of the investor
- **asset** id of the traded asset
- **quantity** quantity of the traded asset at the end of the portfolio updating process
- **price** last market price of the traded asset
- **datetime** timestamp of the last operation
- **RG_count** realized gains via count method
- **RL_count** realized losses via count method
- **PG_count** paper gains via count method
- **PL_count** paper losses via count method
- **RG_total** realized gains via total method
- **RL_total** realized losses via total method
- **PG_total** paper gains via total method
- **PL_total** paper losses via total method
- **RG_value** realized gains via value method
portfolio_results_ts

Description

Results obtained by means of `portfolio_compute` on the data sets `investor` and `marketprices` with `time_series_DE = TRUE`.

Usage

`portfolio_results_ts`

Format

A data frame with 19 rows and 6 variables:

- `investor` id of the investor
- `datetime` timestamp of the last operation
- `DEts_count` Partial disposition effect computed at time t
- `DETs_count` Complete disposition effect computed after updating at time t
- `DEts_value` Partial disposition difference computed at time t
- `DETs_value` Complete disposition difference computed after updating at time t
realized Compute

Realized estimation

Description

Compute realized gains and realized losses as either simple counts, total quantities, expected returns and financial duration.

Usage

realized_count(
 portfolio_quantity,
 portfolio_price,
 transaction_quantity,
 transaction_price,
 transaction_type,
 allow_short = TRUE,
 realized_only = FALSE
)

realized_total(
 portfolio_quantity,
 portfolio_price,
 transaction_quantity,
 transaction_price,
 transaction_type,
 allow_short = TRUE,
 realized_only = FALSE
)

realized_value(
 portfolio_quantity,
 portfolio_price,
 transaction_quantity,
 transaction_price,
 transaction_type,
 allow_short = TRUE,
 realized_only = FALSE
)

realized_duration(
 portfolio_quantity,
 portfolio_price,
 transaction_quantity,
 transaction_price,
 transaction_type,
 previous_transaction_datetime,
realized_compute

realized_compute(
 portfolio_quantity,
 portfolio_price,
 transaction_quantity,
 transaction_price,
 transaction_type,
 previous_transaction_datetime,
 previous_datetime,
 transaction_datetime,
 transaction_asset,
 allow_short = TRUE,
 realized_only = FALSE,
 method = "all"
)

realized_empty(transaction_asset, method = "all")

Arguments

portfolio_quantity
 Numeric vector. The portfolio quantities of assets into the investor’s portfolio.

portfolio_price
 Numeric vector. The portfolio prices of assets into the investor’s portfolio.

transaction_quantity
 Numeric value. The quantity of the traded asset.

transaction_price
 Numeric value. The market price of the traded asset.

transaction_type
 Character string. Either "B" = buy or "S" = sell.

allow_short
 Logical. If TRUE short positions are allowed, otherwise only long positions are allowed.

realized_only
 Logical. If TRUE only realized gains and realized losses are computed. Otherwise also paper gains and paper losses on excess quantity of the traded asset are computed.

previous_transaction_datetime
 POSIXct value. The portfolio date-time related to the last transaction of the traded asset.

previous_datetime
 POSIXct value. The date-time of the last transaction performed by the investor.

transaction_datetime
 POSIXct value. The date-time at which the transaction is going to occur.
realized_compute

transaction_asset
Character string. The name of the traded asset.

method
Character string. The method used to compute papers. Allowed values are "count", "total", "value", "duration" and "all".

Value

The described functions have different return behaviors

- **realized_compute** returns a data frame containing the values of realized and paper gains and losses computed by means of the chosen method on each portfolio assets.
- **realized_count** returns a named vector containing the values of realized and paper gains and losses computed using the count method.
- **realized_total** returns a named vector containing the values of realized and paper gains and losses computed using the total method.
- **realized_value** returns a named vector containing the values of realized and paper gains and losses computed using the value method.
- **realized_duration** returns a named vector containing the values of realized and paper gains and losses computed using the duration method.
- **realized_empty** returns a named vector containing empty values of realized and paper gains and losses computed using the chosen method.

In particular:

- **RG_"method"** contains Realized Gains results
- **RL_"method"** contains Realized Losses results
- **PG_"method"** contains Paper Gains results
- **PL_"method"** contains Paper Losses results

Functions

- **realized_count**: Computation, as simple counts, of realized gains and realized losses of the traded asset.
- **realized_total**: Computation, as total quantity, of realized gains and realized losses of the traded asset.
- **realized_value**: Computation, as expected return, of realized gains and realized losses of the traded asset.
- **realized_duration**: Computation, as financial duration, of realized gains and realized losses of the traded asset.
- **realized_compute**: Wrapper that calls other realized_. functions to compute realized gains and realized losses of the traded asset based on the chosen method.
- **realized_empty**: Simple function to obtain empty results for realized and paper computations based on the chosen method.

See Also

document
Index

* datasets
 - DEanalysis, 4
 - investor, 8
 - marketprices, 9
 - portfolio_results, 13
 - portfolio_results_ts, 14

closest_market_price, 3, 6, 12

DEanalysis, 4
difftime, 7, 12
difftime_financial, 10
disposition_compute
 - (disposition_effect), 4
disposition_compute_ts
 - (disposition_effect), 4
disposition_difference
 - (disposition_effect), 4
disposition_effect, 4
disposition_summary
 - (disposition_effect), 4
disposition_summary_ts
 - (disposition_effect), 4
dispositionEffect-package, 2
evaluate, 4, 6
evaluate_portfolio, 12
evaluate_portfolio(evaluate), 6

gains_losses, 6, 7, 11, 13, 17

investor, 8

marketprices, 9

paper_compute, 8, 9, 13, 17
paper_count (paper_compute), 9
paper_duration (paper_compute), 9
paper_total (paper_compute), 9
paper_value (paper_compute), 9
portfolio_compute, 5, 6, 8, 11

portfolio_results, 13
portfolio_results_ts, 14

realized_compute, 8, 11, 13, 15
realized_count (realized_compute), 15
realized_duration (realized_compute), 15
realized_empty (realized_compute), 15
realized_total (realized_compute), 15
realized_value (realized_compute), 15
round_date, 4

18