Package ‘distributionsrd’

Title Distribution Fitting and Evaluation
Version 0.0.6
Description A library of density, distribution function, quantile function, (bounded) raw moments and random generation for a collection of distributions relevant for the firm size literature. Additionally, the package contains tools to fit these distributions using maximum likelihood and evaluate these distributions based on (i) log-likelihood ratio and (ii) deviations between the empirical and parametrically implied moments of the distributions. We add flexibility by allowing the considered distributions to be combined into piecewise composite or finite mixture distributions, as well as to be used when truncated. See Dewitte (2020) <https://hdl.handle.net/1854/LU-8644700> for a description and application of methods available in this package.

Depends R (>= 3.6.0)
Imports Rdpack, stats, flexmix, modeltools, methods
RdMacros Rdpack
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.1.0
Suggests knitr, rmarkdown, tidyverse, testthat
NeedsCompilation no
Author Ruben Dewitte [aut, cre]
Maintainer Ruben Dewitte <ruben@dewitte@gmail.com>
Repository CRAN
Date/Publication 2020-05-25 18:50:03 UTC

R topics documented:

burr ... 2
burr_plt .. 4
clauset.xmax .. 5
clauset.xmin .. 6
The Burr distribution

Description

Density, distribution function, quantile function, raw moments and random generation for the Burr distribution, also known as the Burr Type XII distribution or the Singh-Maddala distribution.
Usage

dburr(x, shape1 = 2, shape2 = 1, scale = 0.5, log = FALSE)

pburr(q, shape1 = 2, shape2 = 1, scale = 0.5, log.p = FALSE, lower.tail = TRUE)

qburr(p, shape1 = 2, shape2 = 1, scale = 0.5, log.p = FALSE, lower.tail = TRUE)

mburr(
 r = 0,
 truncation = 0,
 shape1 = 2,
 shape2 = 1,
 scale = 0.5,
 lower.tail = TRUE
)

rburr(n, shape1 = 2, shape2 = 1, scale = 0.5)

Arguments

x, q vector of quantiles
shape1, shape2, scale Shape1, shape2 and scale of the Burr distribution, defaults to 2, 1 and 0.5.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities (moments) are
\(P[X \leq x] \ (E[x^r|X \leq y]) \), otherwise, \(P[X > x] \ (E[x^r|X > y]) \)
p vector of probabilities
r rth raw moment of the distribution
truncation lower truncation parameter
n number of observations

Details

Probability and Cumulative Distribution Function:

\[
f(x) = \frac{k_c (x/\text{scale})^{\text{shape 2}-1}}{1 + (x/\text{scale})^{\text{shape 2}}}^{\text{shape 1}+1}, \quad F_X(x) = 1 - \frac{1}{1 + (x/\text{scale})^{\text{shape 2}}}^{\text{shape 1}}
\]

The y-bounded r-th raw moment of the Fréchet distribution equals:

\[
scale^{\text{shape 1}} \frac{\text{B}(r, \text{shape 1}) - \text{B}(\frac{x}{\text{scale}}, \text{shape 2})}{\text{B}(\frac{x}{\text{scale}}, \text{shape 2})} \frac{\text{B}(\frac{y}{\text{scale}}, \text{shape 2})}{\text{B}(\frac{y}{\text{scale}}, \text{shape 2})}^{\text{shape 2}+1}, \quad \text{shape 2} > r
\]
Value

dburr returns the density, pburr the distribution function, qburr the quantile function, mburr the rth moment of the distribution and rburr generates random deviates.

The length of the result is determined by n for rburr, and is the maximum of the lengths of the numerical arguments for the other functions.

Examples

```r
## Burr density
plot(x = seq(0, 5, length.out = 100), y = dburr(x = seq(0, 5, length.out = 100)))
plot(x = seq(0, 5, length.out = 100), y = dburr(x = seq(0, 5, length.out = 100), shape2 = 3))

## Demonstration of log functionality for probability and quantile function
qburr(pburr(2, log.p = TRUE), log.p = TRUE)

## The zeroth truncated moment is equivalent to the probability function
pburr(2)
mburr(truncation = 2)

## The (truncated) first moment is equivalent to the mean of a
#(truncated) random sample, for large enough samples.
x <- rburr(1e5, shape2 = 3)

mean(x)
mburr(r = 1, shape2 = 3, lower.tail = FALSE)

sum(x[x > quantile(x, 0.1)]) / length(x)
mburr(r = 1, shape2 = 3, truncation = quantile(x, 0.1), lower.tail = FALSE)
```

burr_plt

burr_plt

Burr coefficients after power-law transformation

Description

Coefficients of a power-law transformed Burr distribution

Usage

`burr_plt(shape1 = 2, shape2 = 1, scale = 0.5, a = 1, b = 1, inv = FALSE)`

Arguments

- `shape1, shape2, scale`

 Shape1, shape2 and scale of the Burr distribution, defaults to 2, 1 and 1 respectively.

- `a, b`

 Constant and power of power-law transformation, defaults to 1 and 1 respectively.
logical indicating whether coefficients of the outcome variable of the power-law transformation should be returned (FALSE) or whether coefficients of the input variable being power-law transformed should be returned (TRUE). Defaults to FALSE.

Details
If the random variable x is Burr distributed with scale \(\text{shape} \) and \(\text{shape} \) scale, then the power-law transformed variable

\[y = ax^b \]

is Burr distributed with \(\text{shape1} = \text{shape} \), \(\text{shape2} \cdot \text{shape} \) scale \(\left(\frac{\text{scale}}{a} \right)^{1/b} \).

Value
Returns a named list containing

- **coefficients**: Named vector of coefficients

```r
## Comparing probabilities of power-law transformed variables
pburr(3, shape1=2, shape2=3, scale=1)
coeff = burr_plt(shape1=2, shape2=3, scale=1, a=5, b=7)$coefficients
pburr(5*3^7, shape1=coeff["shape1"], shape2=coeff["shape2"], scale=coeff["scale"])

## Comparing the first moments and sample means of power-law transformed variables for large enough samples
x = rburr(1e5, shape1=2, shape2=3, scale=1)
coeff = burr_plt(shape1=2, shape2=3, scale=1, a=2, b=0.5)$coefficients
y = rburr(1e5, shape1=coeff["shape1"], shape2=coeff["shape2"], scale=coeff["scale"])
mean(2*x^0.5)
mean(y)
mburr(r=1, shape1=coeff["shape1"], shape2=coeff["shape2"], scale=coeff["scale"], lower.tail=FALSE)
```

clauset.xmax
Pareto scale determination à la Clauset

Description
This method determines the optimal scale parameter of the Inverse Pareto distribution using the iterative method (Clauset et al. 2009) that minimizes the Kolmogorov-Smirnov distance.

Usage

```r
clauset.xmax(x, q = 1)
```

Arguments
- **x**: data vector
- **q**: Percentage of data to search over (starting from the smallest values)
Value

Returns a named list containing a

- **coefficients**: Named vector of coefficients
- **KS**: Minimum Kolmogorov-Smirnov distance
- **n**: Number of observations in the Inverse Pareto tail
- **coeff.evo**: Evolution of the Inverse Pareto shape parameter over the iterations

References

Examples

```r
## Determine cuttof from compostie InvPareto-Lognormal distribution using Clauset's method
dist <- c("invpareto", "lnorm")
coeff <- c(coeff1.k = 1.5, coeff2.meanlog = 1, coeff2.sdlog = 0.5)
x <- rcomposite(1e3, dist = dist, coeff = coeff)
out <- clauset.xmax(x = x)
out$coefficients
coeffcomposite(dist = dist, coeff = coeff, startc = c(1, 1))$coeff1

## Speed up method by considering values above certain quantile only
dist <- c("invpareto", "lnorm")
coeff <- c(coeff1.k = 1.5, coeff2.meanlog = 1, coeff2.sdlog = 0.5)
x <- rcomposite(1e3, dist = dist, coeff = coeff)
out <- clauset.xmax(x = x, q = 0.5)
out$coefficients
coeffcomposite(dist = dist, coeff = coeff, startc = c(1, 1))$coeff1
```

clauset.xmin
Pareto scale determination à la Clauset

Description

This method determines the optimal scale parameter of the Pareto distribution using the iterative method (Clauset et al. 2009) that minimizes the Kolmogorov-Smirnov distance.

Usage

```r
clauset.xmin(x, q = 0)
```

Arguments

- **x**: data vector
- **q**: Percentage of data to search over (starting from the largest values)
coeffcomposite

Value

Returns a named list containing a

- coefficients Named vector of coefficients
- KS Minimum Kolmogorov-Smirnov distance
- n Number of observations in the Pareto tail
- coeff.evo Evolution of the Pareto shape parameter over the iterations

References

Examples

```r
## Determine cutoff from composite lognormal-Pareto distribution using Clauset's method
dist <- c("lnorm", "pareto")
coeff <- c(coeff1.meanlog = -0.5, coeff1.sdlog = 0.5, coeff2.k = 1.5)
x <- rcomposite(1e3, dist = dist, coeff = coeff)
out <- clauset.xmin(x = x)
out$coefficients
coeffcomposite(dist = dist, coeff = coeff, startc = c(1, 1))$coeff2

## Speed up method by considering values above certain quantile only
dist <- c("lnorm", "pareto")
coeff <- c(coeff1.meanlog = -0.5, coeff1.sdlog = 0.5, coeff2.k = 1.5)
x <- rcomposite(1e3, dist = dist, coeff = coeff)
out <- clauset.xmin(x = x, q = 0.5)
out$coefficients
coeffcomposite(dist = dist, coeff = coeff, startc = c(1, 1))$coeff2
```

coeffcomposite Parametrise two-/three- composite distribution

Description

Determines the weights and cutoffs of the three-composite distribution numerically applying the continuity- and differentiability condition.

Usage

```r
coeffcomposite(dist, coeff, startc = c(1, 1))
```
Arguments

dist character vector denoting the distribution of the first-, second- (and third) component respectively. If only two components are provided, the distribution reduces to the two-component distribution.

coeff named numeric vector holding the coefficients of the first-, second- (and third) component, preceded by `coeff1.`, `coeff2.` (and `coeff3.`), respectively. Coefficients for the last component do not have to be provided for the two-component distribution and will be disregarded.

startc starting values for the lower and upper cutoff, defaults to `c(1,1)`.

Details

The continuity condition implies

\[
\alpha_1 = \frac{m_2(c_1)M_1(c_1)}{m_1(c_1)[M_2(c_2) - M_2(c_1)]}, \quad \alpha_2 = \frac{m_2(c_2)[1 - M_3(c_2)]}{m_3(c_2)[M_2(c_2) - M_2(c_1)]}
\]

The differentiability condition implies

\[
\frac{d}{dc_1} \ln \left(\frac{m_1(c_1)}{m_2(c_1)} \right) = 0, \quad \frac{d}{dc_2} \ln \left(\frac{m_2(c_2)}{m_3(c_2)} \right) = 0
\]

Value

Returns a named list containing the separate distributions and their respective coefficients, as well as the cutoffs and weights of the composite distribution.

Examples

Three-composite distribution
dist <- c("invpareto", "lnorm", "pareto")
coeff <- c(coeff1.k = 1, coeff2.meanlog = -0.5, coeff2.sdlog = 0.5, coeff3.k = 1)
coeffcomposite(dist = dist, coeff = coeff, startc = c(1, 1))

Two-composite distribution
dist <- c("lnorm", "pareto")
coeff <- c(coeff1.meanlog = -0.5, coeff1.sdlog = 0.5, coeff2.k = 1.5)
coeffcomposite(dist = dist, coeff = coeff, startc = c(1, 1))

dist <- c("invpareto", "lnorm")
coeff <- c(coeff1.k = 1.5, coeff2.meanlog = 2, coeff2.sdlog = 0.5)
coeffcomposite(dist = dist, coeff = coeff, startc = c(1, 1))

#
combdist

Combined distributions

Description
Density, distribution function, quantile function, raw moments and random generation for combined (empirical, single, composite and finite mixture) truncated or complete distributions.

Usage

```r
dcombdist(
  x, 
  dist, 
  prior = c(1), 
  coeff, 
  log = FALSE, 
  compress = TRUE, 
  lowertrunc = 0, 
  uppertrunc = Inf 
)
```

```r
pcombdist(
  q, 
  dist, 
  prior = 1, 
  coeff, 
  log.p = FALSE, 
  lower.tail = TRUE, 
  compress = TRUE, 
  lowertrunc = NULL, 
  uppertrunc = NULL 
)
```

```r
qcombdist(p, dist, prior, coeff, log.p = FALSE, lower.tail = TRUE)
```

```r
mcombdist(
  r, 
  truncation = NULL, 
  dist, 
  prior = 1, 
  coeff, 
  lower.tail = TRUE, 
  compress = TRUE, 
  uppertrunc = 0, 
  lowertrunc = Inf 
)
```
rcombdist(n, dist, prior, coeff, uppertrunc = NULL, lowertrunc = NULL)

Arguments

- `x, q`: vector of quantiles
- `dist`: character vector denoting the distribution(s).
- `prior`: Numeric vector of prior coefficients, defaults to single vector with value one.
- `coeff`: list of parameters for the distribution(s).
- `log, log.p`: logical; if TRUE, probabilities p are given as log(p).
- `compress`: Logical indicating whether return values from individual densities of finite mixtures should be gathered or not, defaults to TRUE.
- `lowertrunc, uppertrunc`: lowertrunc- and uppertrunc truncation points, defaults to 0 and Inf respectively
- `lower.tail`: logical; if TRUE (default), probabilities (moments) are $P[X \leq x] (E[x^r|X \leq y])$, otherwise, $P[X > x] (E[x^r|X > y])$
- `p`: vector of probabilities
- `r`: rth raw moment of the Pareto distribution
- `truncation`: lower truncation parameter
- `n`: number of observations

Value

dcombdist gives the density, pcombdist gives the distribution function, qcombdist gives the quantile function, mcombdist gives the rth moment of the distribution and rcombdist generates random deviates.

The length of the result is determined by n for rcombdist, and is the maximum of the lengths of the numerical arguments for the other functions.

Examples

```r
# Load necessary tools
data("fit_US_cities")
library(tidyverse)
x <- rcombdist(
  n = 25359, dist = "lnorm",
prior = subset(fit_US_cities, (dist == "lnorm" & components == 5))$prior[[1]],
coeff = subset(fit_US_cities, (dist == "lnorm" & components == 5))$coefficients[[1]]
) # Generate data from one of the fitted functions

# Evaluate functioning of dcombdist by calculating log likelihood for all distributions
loglike <- fit_US_cities %>%
group_by(dist, components, np, n) %>%
do(loglike = sum(dcombdist(dist = .["dist"], x = sort(x), prior = .["prior"][[1]],
coeff = .["coefficients"][[1]], log = TRUE))) %>%
unnest(cols = loglike) %>%
```

mutate(NLL = -loglike, AIC = 2 * np - 2 * (loglike), BIC = log(n) * np - 2 * (loglike)) %>%
arrange(NLL)

Evaluate functioning of mcombdist and pcombdist by calculating NMAD
#(equivalent to the Kolmogorov-Smirnov test statistic for the zeroth moment
#of the distribution) for all distributions
nmad <- fit_US_cities %>%
group_by(dist, components, np, n) %>%
do(
 KS = max(abs(pempirical(q = sort(x), data = x) - pcombdist(dist = .[["dist"]], q = sort(x), prior = .[["prior"]][[1]], coeff = .[["coefficients"]][[1]])),
 nmad_0 = nmad_test(r = 0, dist = .[["dist"]], x = sort(x), prior = .[["prior"]][[1]], coeff = .[["coefficients"]][[1]], stat = "max"),
 nmad_1 = nmad_test(r = 1, dist = .[["dist"]], x = sort(x), prior = .[["prior"]][[1]], coeff = .[["coefficients"]][[1]], stat = "max"
) %>%
unnest(cols = c(KS, nmad_0, nmad_1)) %>%
arrange(nmad_0)

Evaluate functioning of qcombdist pcombdist by calculating NMAD (equivalent to the Kolmogorov-
#Smirnov test statistic for the zeroth moment of the distribution) for all distributions
test <- fit_US_cities %>%
group_by(dist, components, np, n) %>%
do(out = qcombdist(pcombdist(2, dist = .[["dist"]], prior = .[["prior"]][[1]], coeff = .[["coefficients"]][[1]], log.p = TRUE),
 dist = .[["dist"]], prior = .[["prior"]][[1]], coeff = .[["coefficients"]][[1]],
 log.p = TRUE) %>%
unnest(cols = c(out))
```
steps = 1,
lowertrunc = 0,
uppertrunc = Inf,
...
)

Arguments

x data vector
dist character vector denoting the distribution(s).
start named numeric vector holding the starting values for the coefficients.
lower, upper Lower and upper bounds to the estimated coefficients, defaults to -Inf and Inf respectively.
components number of components for a mixture distribution.
nested logical indicating whether results should be returned in a nested list or a flat list form, defaults to FALSE.
steps number of steps taken in stepflexmix, defaults to 1.
lowertrunc, uppertrunc lowertrunc- and uppertrunc truncation points, defaults to 0 and Inf respectively
...

Additional arguments.

Value

Returns a named list containing a

- **dist** Character vector denoting the distributions, separated by an underscore
- **components** Nr. of combined distributions
- **prior** Weights assigned to the respective component distributions
- **coefficients** Named vector of coefficients
- **convergence** logical indicator of convergence
- **n** Length of the fitted data vector
- **np** Nr. of coefficients

Examples

```r
x <- rdoubleparetolognormal(1e3)
combdist.mle(x = x, dist = "doubleparetolognormal") # Double-Pareto Lognormal
combdist.mle(x = x, components = 2, dist = "lnorm", steps = 20) # FMM with 2 components
combdist.mle(x = x, dist = c("invpareto", "lnorm", "pareto"),
start = c(coeff1.k = 1, coeff2.meanlog = mean(log(x)), coeff2.sdlog = sd(log(x)), coeff3.k = 1),
lower = c(1e-10, -Inf, 1e-10, 1e-10), upper = c(Inf, Inf, Inf, Inf), nested = TRUE)
composite distribution
```
Combined coefficients of power-law transformed combined distribution

Description

Coefficients of a power-law transformed combined distribution

Usage

combdist_plt(
  dist,
  prior = NULL,
  coeff,
  a = 1,
  b = 1,
  inv = FALSE,
  nested = FALSE
)

Arguments

dist  character vector denoting the distribution(s).
prior Numeric vector of prior coefficients, defaults to single vector with value one.
coeff list of parameters for the distribution(s).
a, b  constant and power of power-law transformation, defaults to 1 and 1 respectively.
inv logical indicating whether coefficients of the outcome variable of the power-law transformation should be returned (FALSE) or whether coefficients of the input variable being power-law transformed should be returned (TRUE). Defaults to FALSE.
nested logical indicating whether results should be returned in a nested list or flat list, defaults to FALSE.

Value

Returns a nested or flat list containing

coefficients Named vector of coefficients

Examples

# Load necessary tools
data("fit_US_cities")
library(tidyverse)

## Comparing probabilities of power-law transformed transformed variables
prob <- fit_US_cities %>%
  filter(!(dist %in% c(
    "exp", "invpareto_exp_pareto", "exp_pareto", "invpareto_exp",
    "gamma", "invpareto_gamma_pareto", "gamma_pareto", "invpareto_gamma"
  ))) %>%
  group_by(dist, components, np, n) %>%
  do(prob = pcombdist(q = 1.1, dist = .[["dist"]], prior = .[["prior"]][[1]],
    coeff = .[["coefficients"]][[1]]) %>%
  unnest(cols = c(prob))

fit_US_cities_plt <- fit_US_cities %>%
  filter(!(dist %in% c(
    "exp", "invpareto_exp_pareto", "exp_pareto", "invpareto_exp",
    "gamma", "invpareto_gamma_pareto", "gamma_pareto", "invpareto_gamma"
  ))) %>%
  group_by(dist, components, np, n, convergence) %>%
  do(results = as_tibble(combdist_plt(dist = .[["dist"]], prior = .[["prior"]][[1]],
    coeff = .[["coefficients"]][[1]], a = 2, b = 0.5, nested = TRUE)) %>%
  unnest(cols = c(results))

prob$prob_plt <- fit_US_cities_plt %>%
  group_by(dist, components, np, n) %>%
  do(prob_plt = pcombdist(q = 2 * 1.1^0.5, dist = .[["dist"]], prior = .[["prior"]][[1]],
    coeff = .[["coefficients"]][[1]], a = 2, b = 0.5, nested = TRUE)) %>%
  unnest(cols = c(prob_plt)) %>%
  .$prob_plt

prob <- prob %>%
  mutate(check = abs(prob - prob_plt))

prob <- fit_US_cities %>%
  filter(!(dist %in% c(
    "exp", "invpareto_exp_pareto", "exp_pareto", "invpareto_exp",
    "gamma", "invpareto_gamma_pareto", "gamma_pareto", "invpareto_gamma"
  ))) %>%
  group_by(dist, components, np, n, convergence) %>%
  do(prob = pcombdist(q = 2 * 1.1^0.5, dist = .[["dist"]], prior = .[["prior"]][[1]],
    coeff = .[["coefficients"]][[1]], a = 2, b = 0.5, nested = TRUE, inv = TRUE)) %>%
  unnest(cols = c(results))

prob$prob_plt <- fit_US_cities_plt %>%
  group_by(dist, components, np, n, convergence) %>%
  do(prob_plt = pcombdist(q = 1.1, dist = .[["dist"]], prior = .[["prior"]][[1]],
    coeff = .[["coefficients"]][[1]]) %>%
  unnest(cols = c(prob_plt)) %>%
  .$prob_plt

prob <- prob %>%
  mutate(check = abs(prob - prob_plt))
The two- or three-composite distribution

Description

Density, distribution function, quantile function, raw moments and random generation for the two- or three-composite distribution.

Usage

dcomposite(x, dist, coeff, startc = c(1, 1), log = FALSE)
pcomposite(q, dist, coeff, startc = c(1, 1), log.p = FALSE, lower.tail = TRUE)
qcomposite(p, dist, coeff, startc = c(1, 1), log.p = FALSE, lower.tail = TRUE)
mcomposite(
  r = 0,
  truncation = 0,
  dist,
  coeff,
  startc = c(1, 1),
  lower.tail = TRUE
)
rcComposite(n, dist, coeff, startc = c(1, 1))

Arguments

- x, q: vector of quantiles
- dist: character vector denoting the distribution of the first-, second- (and third) component respectively. If only two components are provided, the distribution reduces to the two-component distribution.
- coeff: named numeric vector holding the coefficients of the first-, second- (and third) component, preceeded by coeff1., coeff2. (and coeff3.), respectively. Coefficients for the last component do not have to be provided for the two-component distribution and will be disregarded.
- startc: starting values for the lower and upper cutoff, defaults to c(1,1).
- log, log.p: logical; if TRUE, probabilities p are given as log(p).
Details

These derivations are based on the two-composite distribution proposed by (Bakar et al. 2015).

Probability Distribution Function:

\[
f(x) = \begin{cases} \frac{\alpha_1}{1+\alpha_1+\alpha_2}\frac{m_1(x)}{M_1(c_1)} & \text{if } 0 < x \leq c_1 \\ \frac{\alpha_1}{1+\alpha_1+\alpha_2}\frac{m_2(x)}{M_2(c_2)-M_2(c_1)} & \text{if } c_1 < x \leq c_2 \\ \frac{\alpha_2}{1+\alpha_1+\alpha_2}\frac{m_3(x)}{1-M_3(c_2)} & \text{if } c_2 < x < \infty \end{cases}
\]

Cumulative Distribution Function:

\[
Q(p) = \begin{cases} \frac{\alpha_1}{1+\alpha_1+\alpha_2}pM_1(c_1) & \text{if } 0 < x \leq \frac{\alpha_1}{1+\alpha_1+\alpha_2} \\ \frac{\alpha_1}{1+\alpha_1+\alpha_2}\frac{M_2(x)-M_2(c_1)}{M_2(c_2)-M_2(c_1)} & \text{if } c_1 < x \leq c_2 \\ \frac{\alpha_2}{1+\alpha_1+\alpha_2}\frac{M_3(x)-M_3(c_2)}{1-M_3(c_2)} & \text{if } c_2 < x < \infty \end{cases}
\]

Quantile function

\[
\mu_y = \begin{cases} \frac{(\mu_1 y^\alpha_1 - (\mu_1)^\alpha_1)}{1+\alpha_1+\alpha_2 M_1(c_1)} & \text{if } 0 < y \leq c_2 \\ \frac{(\mu_2 y^\alpha_2 - (\mu_2)^\alpha_2)}{1+\alpha_1+\alpha_2 M_2(c_2)-M_2(c_1)} & \text{if } c_1 < y \leq c_2 \\ \frac{(\mu_3 y^\alpha_2 - (\mu_3)^\alpha_2)}{1+\alpha_1+\alpha_2 M_3(c_2)} & \text{if } c_2 < y < \infty \end{cases}
\]

Value

decomposite returns the density, pcomposite the distribution function, qcomposite the quantile function, mcomposite the rth moment of the distribution and rcomposite generates random deviates.

The length of the result is determined by n for rcomposite, and is the maximum of the lengths of the numerical arguments for the other functions.

References

Examples

```r
Three-component distribution
dist <- c("invpareto", "lnorm", "pareto")
coeff <- c(coeff2.meanlog = -0.5, coeff2.sdlog = 0.5, coeff3.k = 1.5, coeff1.k = 1.5)

Compare density with the Double-Pareto Lognormal distribution
plot(x = seq(0, 5, length.out = 1e3), y = dcomposite(x = seq(0, 5, length.out = 1e3),
 dist = dist, coeff = coeff))
lines(x = seq(0, 5, length.out = 1e3), y = ddoubleparetolognormal(x = seq(0, 5, length.out = 1e3)))

Demonstration of log functionality for probability and quantile function
qcomposite(pcomposite(2, dist = dist, coeff = coeff, log.p = TRUE), dist = dist,
 coeff = coeff, log.p = TRUE)

The zeroth truncated moment is equivalent to the probability function
mpcomposite(truncation = 2, dist = dist, coeff = coeff)

The (truncated) first moment is equivalent to the mean of a (truncated) random sample,
for large enough samples.
coeff <- c(coeff2.meanlog = -0.5, coeff2.sdlog = 0.5, coeff3.k = 3, coeff1.k = 1.5)
x <- rcomposite(1e5, dist = dist, coeff = coeff)
mean(x)
mpcomposite(r = 1, lower.tail = FALSE, dist = dist, coeff = coeff)

sum(x[x > quantile(x, 0.1)]) / length(x)
mpcomposite(r = 1, truncation = quantile(x, 0.1), lower.tail = FALSE, dist = dist, coeff = coeff)

Two-component distribution
dist <- c("lnorm", "pareto")
coeff <- c(coeff2.k = 1.5, coeff1.meanlog = -0.5, coeff1.sdlog = 0.5)

Compare density with the Right-Pareto Lognormal distribution
plot(x = seq(0, 5, length.out = 1e3), y = dcomposite(x = seq(0, 5, length.out = 1e3),
 dist = dist, coeff = coeff))
lines(x = seq(0, 5, length.out = 1e3), y = drightparetolognormal(x = seq(0, 5, length.out = 1e3)))

Demonstration of log functionality for probability and quantile function
qcomposite(pcomposite(2, dist = dist, coeff = coeff, log.p = TRUE), dist = dist,
 coeff = coeff, log.p = TRUE)

The zeroth truncated moment is equivalent to the probability function
mpcomposite(truncation = 2, dist = dist, coeff = coeff)

The (truncated) first moment is equivalent to the mean of a (truncated) random sample,
for large enough samples.
coeff <- c(coeff1.meanlog = -0.5, coeff1.sdlog = 0.5, coeff2.k = 3)
x <- rcomposite(1e5, dist = dist, coeff = coeff)
```
composite.mle

### Description

Maximum likelihood estimation of the parameters of the two-/three- composite distribution

### Usage

```r
composite.mle(x, dist, start, lower = NULL, upper = NULL)
```

### Arguments

- `x` data vector
- `dist` character vector denoting the distribution of the first-, second- (and third) component respectively. If only two components are provided, the distribution reduces to the two-component distribution.
- `start` named numeric vector holding the coefficients of the first-, second- (and third) component, preceded by `coeff1`, `coeff2` (and `coeff3`), respectively. Coefficients for the last component do not have to be provided for the two-component distribution and will be disregarded.
- `lower, upper` Lower and upper bounds to the estimated coefficients, defaults to -Inf and Inf respectively.

### Value

Returns a named list containing a

- `coefficients` Named vector of coefficients
- `convergence` logical indicator of convergence
- `cutoffs` Cutoffs of the composite distribution
- `n` Length of the fitted data vector
- `np` Nr. of coefficients
- `components` Nr. of components
Examples

dist <- c("invpareto", "lnorm", "pareto")
coeff <- c(
  coeff1.k = 1.5, coeff2.meanlog = -0.5,
  coeff2.sdlog = 0.5, coeff3.k = 1.5
)
lower <- c(1e-10, -Inf, 1e-10, 1e-10)
upper <- c(Inf, Inf, Inf, Inf)
x <- rcomposite(1e3, dist = dist, coeff = coeff)

composite.mle(x = x, dist = dist, start = coeff + 0.2, lower = lower, upper = upper)

'= 

composite_plt  Composite coefficients after power-law transformation

Description

Coefficients of a power-law transformed composite distribution

Usage

composite_plt(dist, coeff, a = 1, b = 1, inv = FALSE)

Arguments

dist  character vector denoting the distribution of the first-, second- (and third) com-
       ponent respectively. If only two components are provided, the distribution re-
       duces to the two-component distribution.

coeff  named numeric vector holding the coefficients of the first-, second- (and third)
       component, predeced by coeff1., coeff2. (and coeff3.), respectively. Coeffi-
       cients for the last component do not have to be provided for the two-component
       distribution and will be disregarded.

a, b  constant and power of power-law transformation, defaults to 1 and 1 respec-
       tively.

inv  logical indicating whether coefficients of the outcome variable of the power-law
       transformation should be returned (FALSE) or whether coefficients of the input
       variable being power-law transformed should be returned (TRUE). Defaults to
       FALSE.

Value

Returns a named list containing

coefficients  Named vector of coefficients
## Comparing probabilities of power-law transformed variables

```r
dist <- c("invpareto", "lnorm", "pareto")
c <= c(coeff2.meanlog = -0.5, coeff2.sdlog = 0.5, coeff3.k = 1.5, coeff1.k = 1.5)
pcomposite(3, dist=dist, coeff=coeff)
newcoeff = composite_plt(dist=dist, coeff=coeff, a=5, b=7)$coefficients
pcomposite(5*3^7, dist=dist, coeff=newcoeff)
pcomposite(5*0.9^3, dist=dist, coeff=coeff)
nnewcoeff = composite_plt(dist=dist, coeff=coeff, a=5, b=3, inv=TRUE)$coefficients
pcomposite(0.9, dist=dist, coeff=newcoeff)
```

---

doubleparetolognormal  
The Double-Pareto Lognormal distribution

### Description

Density, distribution function, quantile function and random generation for the Double-Pareto Lognormal distribution.

### Usage

```r
doubleparetolognormal(x, shape1 = 1.5, shape2 = 1.5, meanlog = -0.5, sdlog = 0.5, log = FALSE)
pdoubleparetolognormal(q, shape1 = 1.5, shape2 = 1.5, meanlog = -0.5, sdlog = 0.5, lower.tail = TRUE, log.p = FALSE)
qdoubleparetolognormal(p, shape1 = 1.5, shape2 = 1.5, meanlog = -0.5, sdlog = 0.5, lower.tail = TRUE, log.p = FALSE)
```
mdoubleparetolognormal(
  r = 0,
  truncation = 0,
  shape1 = 1.5,
  shape2 = 1.5,
  meanlog = -0.5,
  sdlog = 0.5,
  lower.tail = TRUE
)

rdoubleparetolognormal(
  n,
  shape1 = 1.5,
  shape2 = 1.5,
  meanlog = -0.5,
  sdlog = 0.5
)

Arguments

x, q
vector of quantiles

shape1, shape2, meanlog, sdlog
Shapes, mean and variance of the Double-Pareto Lognormal distribution respectively, defaults to shape1=1.5, shape2=1.5, meanlog=-0.5, sdlog=0.5.

log, log.p
logical; if TRUE, probabilities p are given as log(p).

lower.tail
logical; if TRUE (default), probabilities (moments) are $P[X \leq x]$ ($E[x^r \mid X \leq y]$), otherwise, $P[X > x]$ ($E[x^r \mid X > y]$)

p
vector of probabilities

r
r-th raw moment of the Pareto distribution

truncation
lower truncation parameter, defaults to xmin

n
number of observations

Details

Probability and Cumulative Distribution Function as provided by (Reed and Jorgensen 2004):

$$f(x) = \frac{\text{shape2}\text{shape1}}{\text{shape2+shape1}} [x^{\text{shape2}-1}e^{\text{shape1}\text{meanlog} + \frac{\text{shape2}^2\text{sdlog}^2}{2}} \Phi(\ln x - \text{meanlog} + \frac{\text{shape2}^2\text{sdlog}^2}{2} + \frac{\text{shape2}\text{meanlog}}{2}) + x^{\text{shape1}-1}e^{-\text{shape1}\text{meanlog} + \frac{\text{shape1}^2\text{sdlog}^2}{2}} \Phi(\ln x - \text{meanlog} + \frac{\text{shape1}^2\text{sdlog}^2}{2})]$$

$$F_X(x) = \Phi(\ln x - \text{meanlog} - \frac{\text{shape2}^2\text{sdlog}^2}{2} - \frac{\text{shape1}\text{meanlog}}{2})$$

The y-bounded r-th raw moment of the Double-Pareto Lognormal distribution equals:

$$\text{meanlog}^r_y = \frac{\text{shape2}\text{shape1}}{\text{shape2+shape1}} [x^{\text{shape2}-1}e^{\text{shape1}\text{meanlog} + \frac{\text{shape2}^2\text{sdlog}^2}{2}} \Phi(\ln y - \text{meanlog} + \frac{\text{shape2}^2\text{sdlog}^2}{2}) + x^{\text{shape1}-1}e^{-\text{shape1}\text{meanlog} + \frac{\text{shape1}^2\text{sdlog}^2}{2}} \Phi(\ln y - \text{meanlog} + \frac{\text{shape1}^2\text{sdlog}^2}{2})]$$
Value

doubleparetolognormal returns the density, pdoubleparetolognormal the distribution function, qdoubleparetolognormal the quantile function, mdoubleparetolognormal the rth moment of the distribution and rdoubleparetolognormal generates random deviates.

The length of the result is determined by n for rdoubleparetolognormal, and is the maximum of the lengths of the numerical arguments for the other functions.

References


Examples

```r
Double-Pareto Lognormal density
plot(x = seq(0, 5, length.out = 100), y = ddoubleparetolognormal(x = seq(0, 5, length.out = 100)))
plot(x = seq(0, 5, length.out = 100), y = ddoubleparetolognormal(x = seq(0, 5, length.out = 100), shape2 = 1))

Double-Pareto Lognormal relates to the right-pareto Lognormal distribution if shape1 goes to infinity
pdoubleparetolognormal(q = 6, shape1 = 1e20, shape2 = 1.5, meanlog = -0.5, sdlog = 0.5)
prightparetolognormal(q = 6, shape2 = 1.5, meanlog = -0.5, sdlog = 0.5)

Double-Pareto Lognormal relates to the left-pareto Lognormal distribution if shape2 goes to infinity
pdoubleparetolognormal(q = 6, shape1 = 1.5, shape2 = 1e20, meanlog = -0.5, sdlog = 0.5)
pleftparetolognormal(q = 6, shape1 = 1.5, meanlog = -0.5, sdlog = 0.5)

Double-Pareto Lognormal relates to the Lognormal if both shape parameters go to infinity
pdoubleparetolognormal(q = 6, shape1 = 1e20, shape2 = 1e20, meanlog = -0.5, sdlog = 0.5)
plnorm(q = 6, meanlog = -0.5, sdlog = 0.5)

Demonstration of log functionality for probability and quantile function
qdoubleparetolognormal(pdoubleparetolognormal(2, log.p = TRUE), log.p = TRUE)

The zeroth truncated moment is equivalent to the probability function
pdoubleparetolognormal(2)
mdoubleparetolognormal(truncation = 2)

The (truncated) first moment is equivalent to the mean of a (truncated) random sample, for large enough samples.
x <- rdoubleparetolognormal(1e5, shape2 = 3)
mean(x)
mdoubleparetolognormal(r = 1, shape2 = 3, lower.tail = FALSE)

sum(x[x > quantile(x, 0.1)]) / length(x)
mdoubleparetolognormal(r = 1, shape2 = 3, truncation = quantile(x, 0.1), lower.tail = FALSE)
```
**doubleparetolognormal.mle**

*Double-Pareto Lognormal MLE*

**Description**

Maximum likelihood estimation of the parameters of the Double-Pareto Lognormal distribution.

**Usage**

```r
doubleparetolognormal.mle(
 x,
 lower = c(1e-10, 1e-10, 1e-10),
 upper = c(Inf, Inf, Inf),
 start = NULL
)
```

**Arguments**

- `x` : data vector
- `lower, upper` : Upper and lower bounds for the estimation procedure on the parameters \(c(\text{shape2}, \text{shape1}, \text{sdlog})\), defaults to \(c(1e-10, 1e-10, 1e-10)\) and \(c(\text{Inf}, \text{Inf}, \text{Inf})\) respectively.
- `start` : named vector with starting values, default to \(c(\text{shape2}=2, \text{shape1}=2, \text{sdlog}=\text{sd}(\log(x)))\)

**Value**

Returns a named list containing a

- **coefficients**  : Named vector of coefficients
- **convergence**  : logical indicator of convergence
- **n**  : Length of the fitted data vector
- **np**  : Nr. of coefficients

**Examples**

```r
x <- rdoubleparetolognormal(1e3)

Pareto fit with xmin set to the minimum of the sample
doubleparetolognormal.mle(x = x)
```
doubleparetolognormal_plt

Double-Pareto Lognormal coefficients of power-law transformed Double-Pareto Lognormal

Description

Coefficients of a power-law transformed Double-Pareto Lognormal distribution

Usage

doubleparetolognormal_plt(
    shape1 = 1.5,
    shape2 = 1.5,
    meanlog = -0.5,
    sdlog = 0.5,
    a = 1,
    b = 1,
    inv = FALSE
)

Arguments

shape1, shape2, meanlog, sdlog
    Shapes, mean and variance of the Double-Pareto Lognormal distribution respectively.

a, b
    constant and power of power-law transformation, defaults to 1 and 1 respectively.

inv
    logical indicating whether coefficients of the outcome variable of the power-law transformation should be returned (FALSE) or whether coefficients of the input variable being power-law transformed should be returned (TRUE). Defaults to FALSE.

Details

If the random variable y is Double-Pareto Lognormal distributed with mean meanlog and standard deviation sdlog, then the power-law transformed variable

\[ y = ax^b \]

is Double-Pareto Lognormal distributed with \( \text{shape1} \times b, \frac{\text{meanlog} - \log(a)}{b}, \frac{\text{sdlog}}{b}, \text{shape2} \times b \).
### Value

Returns a named list containing

**coefficients**  Named vector of coefficients

```r
Comparing probabilities of power-law transformed variables
pdoubleparetolognormal(3, shape1 = 1.5, shape2 = 3, meanlog = -0.5, sdlog = 0.5)
coeff = doubleparetolognormal_plt(shape1 = 1.5, shape2 = 3, meanlog = -0.5, sdlog = 0.5,a=5,b=7)$coefficients
pdoubleparetolognormal(5*3^7,shape1=coeff["shape1"],shape2=coeff["shape2"],meanlog=coeff["meanlog"],sdlog=coeff["sdlog"])

pdoubleparetolognormal(5*0.9^7,shape1 = 1.5, shape2 = 3, meanlog = -0.5, sdlog = 0.5)
coeff = doubleparetolognormal_plt(shape1 = 1.5, shape2 = 3, meanlog = -0.5, sdlog = 0.5,a=5,b=7,inv=TRUE)$coefficients
pdoubleparetolognormal(0.9,shape1=coeff["shape1"],shape2=coeff["shape2"],meanlog=coeff["meanlog"],sdlog=coeff["sdlog"])
```

---

### empirical

**The empirical distribution**

#### Description

Density, distribution function, quantile function, and raw moments for the empirical distribution.

#### Usage

- `dempirical(x, data, log = FALSE)`
- `pempirical(q, data, log.p = FALSE, lower.tail = TRUE)`
- `qempirical(p, data, lower.tail = TRUE, log.p = FALSE)`
- `mempirical(r = 0, data, truncation = NULL, lower.tail = TRUE)`

#### Arguments

- **x, q**  vector of quantiles
- **data**  data vector
- **log, log.p**  logical; if TRUE, probabilities p are given as log(p).
- **lower.tail**  logical; if TRUE (default), moments are $E[x^r | X \leq y]$, otherwise, $E[x^r | X > y]$
- **p**  vector of probabilities
- **r**  rth raw moment of the Pareto distribution
- **truncation**  lower truncation parameter, defaults to NULL.
Details

The density function is a standard Kernel density estimation for 1e6 equally spaced points. The cumulative Distribution Function:

\[ F_n(x) = \frac{1}{n} \sum_{i=1}^{n} I_{x_i \leq x} \]

The y-bounded r-th raw moment of the empirical distribution equals:

\[ \mu^r_y = \frac{1}{n} \sum_{i=1}^{n} I_{x_i \leq x} x^r \]

Value

dempirical returns the density, pempirical the distribution function, qempirical the quantile function, mempirical gives the rth moment of the distribution or a function that allows to evaluate the rth moment of the distribution if truncation is NULL.

Examples

```r
Generate random sample to work with
x <- rlnorm(1e5, meanlog = -0.5, sdlog = 0.5)

Empirical density
plot(x = seq(0, 5, length.out = 100), y = dempirical(x = seq(0, 5, length.out = 100), data = x))

Compare empirical and parametric quantities
dlnorm(0.5, meanlog = -0.5, sdlog = 0.5)
dempirical(0.5, data = x)

plnorm(0.5, meanlog = -0.5, sdlog = 0.5)
pempirical(0.5, data = x)

qlnorm(0.5, meanlog = -0.5, sdlog = 0.5)
qempirical(0.5, data = x)

mlnorm(r = 0, truncation = 0.5, meanlog = -0.5, sdlog = 0.5)
mempirical(r = 0, truncation = 0.5, data = x)

mlnorm(r = 1, truncation = 0.5, meanlog = -0.5, sdlog = 0.5)
mempirical(r = 1, truncation = 0.5, data = x)

Demonstration of log functionality for probability and quantile function
quantile(x, 0.5, type = 1)
qempirical(p = pempirical(q = quantile(x, 0.5, type = 1), data = x, log.p = TRUE),
data = x, log.p = TRUE)

The zeroth truncated moment is equivalent to the probability function
pempirical(q = quantile(x, 0.5, type = 1), data = x)
```
mempirical(truncation = quantile(x, 0.5, type = 1), data = x)

## The (truncated) first moment is equivalent to the mean of a (truncated) random sample,  
# for large enough samples.
mean(x)
mempirical(r = 1, data = x, truncation = 0, lower.tail = FALSE)

sum(x[x > quantile(x, 0.1)]) / length(x)
mempirical(r = 1, data = x, truncation = quantile(x, 0.1), lower.tail = FALSE)

"'

---

exp

The Exponential distribution

Description

Raw moments for the exponential distribution.

Usage

mexp(r = 0, truncation = 0, rate = 1, lower.tail = TRUE)

Arguments

r
rth raw moment of the distribution, defaults to 1.

truncation
lower truncation parameter, defaults to 0.

rate
rate of the distribution with default values of 1.

lower.tail
logical; if TRUE (default), moments are $E[x^r|X \leq y]$, otherwise, $E[x^r|X > y]$

Details

Probability and Cumulative Distribution Function:

$$f(x) = \frac{1}{s}e^{-\frac{x}{s}}, \quad F_X(x) = 1 - e^{-\frac{x}{s}}$$

The y-bounded r-th raw moment of the distribution equals:

$$s^{\sigma_s - 1}\Gamma\left(\sigma_s + 1, \frac{y}{s}\right)$$

where $\Gamma(\cdot)$ denotes the upper incomplete gamma function.

Value

Returns the truncated rth raw moment of the distribution.
Examples

```r
The zeroth truncated moment is equivalent to the probability function
pexp(2, rate = 1)
mexp(truncation = 2)

The (truncated) first moment is equivalent to the mean of a (truncated) random sample,
for large enough samples.
x <- rexp(1e5, rate = 1)
mean(x)
mexp(r = 1, lower.tail = FALSE)

sum(x[x > quantile(x, 0.1)]) / length(x)
mexp(r = 1, truncation = quantile(x, 0.1), lower.tail = FALSE)
```

### fit_US_cities

Fitted distributions to the US Census 2000 city size distribution.

Description

A dataset containing 52 distribution fits to the US Census 2000 city size distributions

Usage

```r
fit_US_cities
```

Format

A data frame with 52 rows and 7 variables:

- **dist**: distribution
- **components**: number of components
- **prior**: list of prior weights for the individual distribution components of FMM
- **coefficients**: list of coefficients for the distributions
- **np**: Number of parameters
- **n**: Number of observations
- **convergence**: Logical indicating whether the fitting procedure converged

Source

http://doi.org/10.3886/E113328V1
The Fréchet distribution

Description

Density, distribution function, quantile function, raw moments and random generation for the Fréchet distribution.

Usage

dfrechet(x, shape = 1.5, scale = 0.5, log = FALSE)
pfrechet(q, shape = 1.5, scale = 0.5, log.p = FALSE, lower.tail = TRUE)
qfrechet(p, shape = 1.5, scale = 0.5, log.p = FALSE, lower.tail = TRUE)
mfrechet(r = 0, truncation = 0, shape = 1.5, scale = 0.5, lower.tail = TRUE)
rfrechet(n, shape = 1.5, scale = 0.5)

Arguments

x, q
vector of quantiles
shape, scale
Shape and scale of the Fréchet distribution, defaults to 1.5 and 0.5 respectively.
log, log.p
logical; if TRUE, probabilities p are given as log(p).
lower.tail
logical; if TRUE (default), probabilities (moments) are $P[X \leq x]$ ($E[x^r | X \leq y]$), otherwise, $P[X > x]$ ($E[x^r | X > y]$)
p
vector of probabilities
r
rth raw moment of the distribution
truncation
lower truncation parameter
n
number of observations

Details

Probability and Cumulative Distribution Function:

$$f(x) = \frac{\text{shape}}{\text{scale}} \left( \frac{\omega}{\text{scale}} \right)^{-1 - \text{shape}} e^{-\left( \frac{\omega}{\text{scale}} \right)^{-\text{shape}}}, \quad F_X(x) = e^{-\left( \frac{\omega}{\text{scale}} \right)^{-\text{shape}}}$$

The y-bounded r-th raw moment of the Fréchet distribution equals:

$$\mu_y^r = \text{scale}^{r-1} \left[ 1 - \Gamma \left( 1 - \frac{\sigma}{\text{shape}}, \left( \frac{y}{\text{scale}} \right)^{-\text{shape}} \right) \right], \quad \text{shape} > r$$
Value

dfrechet returns the density, pfrechet the distribution function, qfrechet the quantile function, mfrechet the rth moment of the distribution and rfrechet generates random deviates.

The length of the result is determined by n for rfrechet, and is the maximum of the lengths of the numerical arguments for the other functions.

Examples

```r
Frechet density
plot(x = seq(0, 5, length.out = 100), y = dfrechet(x = seq(0, 5, length.out = 100),
shape = 1, scale = 1))
plot(x = seq(0, 5, length.out = 100), y = dfrechet(x = seq(0, 5, length.out = 100),
shape = 2, scale = 1))
plot(x = seq(0, 5, length.out = 100), y = dfrechet(x = seq(0, 5, length.out = 100),
shape = 3, scale = 1))
plot(x = seq(0, 5, length.out = 100), y = dfrechet(x = seq(0, 5, length.out = 100),
shape = 3, scale = 2))

Frechet is also called the inverse weibull distribution, which is available in the stats package
pfrechet(q = 5, shape = 2, scale = 1.5)
1 - pweibull(q = 1 / 5, shape = 2, scale = 1 / 1.5)

Demonstration of log functionality for probability and quantile function
qfrechet(pfrechet(2, log.p = TRUE), log.p = TRUE)

The zeroth truncated moment is equivalent to the probability function
pfrechet(2)
mfrechet(truncation = 2)

The (truncated) first moment is equivalent to the mean of a (truncated) random sample,
for large enough samples.
x <- rfrechet(1e5, scale = 1)
mean(x)
mfrechet(r = 1, lower.tail = FALSE, scale = 1)

sum(x[x > quantile(x, 0.1)]) / length(x)
mfrechet(r = 1, truncation = quantile(x, 0.1), lower.tail = FALSE, scale = 1)
```

---

**frechet.mle**  
*Fréchet MLE*

Description

Maximum likelihood estimation of the coefficients of the Fréchet distribution
Usage

```r
frechet.mle(
 x,
 weights = NULL,
 start = c(shape = 1.5, scale = 0.5),
 lower = c(1e-10, 1e-10),
 upper = c(Inf, Inf)
)
```

Arguments

- `x` : data vector
- `weights` : numeric vector for weighted MLE, should have the same length as data vector `x`
- `start` : named vector with starting values, default to `c(shape = 1.5, scale = 0.5)`
- `lower, upper` : Lower and upper bounds to the estimated shape parameter, defaults to `1e-10` and `Inf` respectively

Value

Returns a named list containing a

- `coefficients` : Named vector of coefficients
- `convergence` : logical indicator of convergence
- `n` : Length of the fitted data vector
- `np` : Nr. of coefficients

```r
x = rfrechet(1e3)
Pareto fit with xmin set to the minimum of the sample frechet.mle(x=x)
```

---

**frechet_plt**  
*Fréchet coefficients after power-law transformation*

Description

Coefficients of a power-law transformed Fréchet distribution

Usage

```r
date_plt(shape = 1.5, scale = 0.5, a = 1, b = 1, inv = FALSE)
```
Arguments

- **shape, scale**: Scale and shape of the Fréchet distribution, defaults to 1.5 and 0.5 respectively.
- **a, b**: Constant and power of power-law transformation, defaults to 1 and 1 respectively.
- **inv**: Logical indicating whether coefficients of the outcome variable of the power-law transformation should be returned (FALSE) or whether coefficients of the input variable being power-law transformed should be returned (TRUE). Defaults to FALSE.

Details

If the random variable $x$ is Fréchet distributed with scale $\text{shape}$ and shape $\text{scale}$, then the power-law transformed variable

$$ y = ax^b $$

is Fréchet distributed with scale $\left( \frac{\text{scale}}{a} \right)^{\frac{1}{b}}$ and shape $b \cdot k$.

Value

Returns a named list containing

- **coefficients**: Named vector of coefficients

### Comparing probabilities of power-law transformed variables

```r
pfrechet(3, shape=2, scale=1)
coeff = frechet_plt(shape=2, scale=1, a=5, b=7)$coefficients
pfrechet(5*3^7, shape=coeff["shape"], scale=coeff["scale"])

pfrechet(5*0.8^7, shape=2, scale=1)
coeff = frechet_plt(shape=2, scale=1, a=5, b=7, inv=TRUE)$coefficients
pfrechet(0.8, shape=coeff["shape"], scale=coeff["scale"])
```

---

**gamma**  
*The Gamma distribution*

Description

Raw moments for the Gamma distribution.

Usage

```r
mgamma(
 r = 0,
 truncation = 0,
 shape = 2,
 rate = 1,
 scale = 1/rate,
 lower.tail = TRUE
)
```
**Arguments**

- **r**: rth raw moment of the distribution, defaults to 1.
- **truncation**: lower truncation parameter, defaults to 0.
- **shape, rate, scale**: shape, rate and scale of the distribution with default values of 2 and 1 respectively.
- **lower.tail**: logical; if TRUE (default), moments are $E[x^r | X \leq y]$, otherwise, $E[x^r | X > y]$

**Details**

Probability and Cumulative Distribution Function:

$$f(x) = \frac{1}{s^k \Gamma(k)} \omega^{k-1} e^{-\frac{\omega}{s}}$$

$$F_X(x) = \frac{1}{\Gamma(k)} \gamma(k, \frac{\omega}{s})$$

where $\Gamma(x)$ stands for the upper incomplete gamma function function, while $\gamma(s, x)$ stands for the lower incomplete Gamma function with upper bound $x$.

The $y$-bounded r-th raw moment of the distribution equals:

$$\mu_y^r = \frac{s^r}{\Gamma(k)} \Gamma(r + k, \frac{y}{s})$$

**Value**

Provides the truncated rth raw moment of the distribution.

```r
The zeroth truncated moment is equivalent to the probability function pgamma(2,shape=2,rate=1)
mgamma(truncation=2)
The (truncated) first moment is equivalent to the mean of a (truncated) random sample, #for large
enough samples. x = rgamma(1e5,shape=2,rate=1) mean(x) mgamma(r=1,lower.tail=FALSE)
sum(x[x>quantile(x,0.1)])/length(x) mgamma(r=1,truncation=quantile(x,0.1),lower.tail=FALSE)
```

---

**invpareto**  
*The Inverse Pareto distribution*

**Description**

Density, distribution function, quantile function, raw moments and random generation for the Pareto distribution.
Usage

dinvpareto(x, k = 1.5, xmax = 5, log = FALSE, na.rm = FALSE)

pinvpareto(
  q,
  k = 1.5,
  xmax = 5,
  lower.tail = TRUE,
  log.p = FALSE,
  log = FALSE,
  na.rm = FALSE
)

qinvpareto(p, k = 1.5, xmax = 5, lower.tail = TRUE, log.p = FALSE)

minvpareto(r = 0, truncation = 0, k = 1.5, xmax = 5, lower.tail = TRUE)

rinvpareto(n, k = 1.5, xmax = 5)

Arguments

x, q vector of quantiles
xmax, k Scale and shape of the Inverse Pareto distribution, defaults to 5 and 1.5 respectively.
log, log.p logical; if TRUE, probabilities p are given as log(p).
na.rm Removes values that fall outside the support of the distribution
lower.tail logical; if TRUE (default), probabilities (moments) are \( P[X \leq x] \) (\( E[x^r | X \leq y] \)), otherwise, \( P[X > x] \) (\( E[x^r | X > y] \))
p vector of probabilities
r rth raw moment of the Inverse Pareto distribution
truncation lower truncation parameter, defaults to xmin
n number of observations

Details

Probability and Cumulative Distribution Function:

\[
f(x) = \frac{k x^{-k}}{x^{-k+1}}, \quad F_X(x) = \left(\frac{x_{\text{max}}}{x}\right)^{-k}
\]

The y-bounded r-th raw moment of the Inverse Pareto distribution equals:

\[
\mu_y^r = k \omega_{\text{max}}^{-r-k} \left( \frac{\omega_{\text{max}}^{r+k} - y^{r+k}}{r + k} \right)
\]
Value

dinvpareto returns the density, pinvpareto the distribution function, qinvpareto the quantile function, 
minvpareto the rth moment of the distribution and rinvpareto generates random deviates.

The length of the result is determined by n for rinvpareto, and is the maximum of the lengths of the 
umerical arguments for the other functions.

Examples

```r
Inverse invpareto density
plot(x = seq(0, 5, length.out = 100), y = dinvpareto(x = seq(0, 5, length.out = 100)))

Demonstration of log functionality for probability and quantile function
qinvpareto(pinvpareto(2, log.p = TRUE), log.p = TRUE)

The zeroth truncated moment is equivalent to the probability function
pinvpareto(2)
minvpareto(truncation = 2)

The (truncated) first moment is equivalent to the mean of a (truncated) random sample,
#for large enough samples.
x <- rinvpareto(1e5)

mean(x)
minvpareto(r = 1, lower.tail = FALSE)

sum(x[x > quantile(x, 0.1)]) / length(x)
minvpareto(r = 1, truncation = quantile(x, 0.1), lower.tail = FALSE)
```

invpareto.mle

### Inverse Pareto MLE

Description

Maximum likelihood estimation of the Inverse Pareto shape parameter using the Hill estimator.

Usage

```r
invpareto.mle(x, xmax = NULL, clauset = FALSE, q = 1)
```

Arguments

- **x**: data vector
- **xmax**: scale parameter of the Inverse Pareto distribution, set to max(x) if not provided
- **clauset**: Indicator variable for calculating the scale parameter using the clauset method, overrides provided xmax
- **q**: Percentage of data to search over (starting from the smallest values), defaults to 1.
Details

The Hill estimator equals

\[ \hat{k} = -\frac{1}{n} \sum_{i=1}^{n} \log \frac{x_{\text{max}}}{x_i} \]

Value

Returns a named list containing a

- coefficients Named vector of coefficients
- convergence logical indicator of convergence
- n Length of the fitted data vector
- np Nr. of coefficients

Examples

```r
x <- rinvpareto(1e3, k = 1.5, xmax = 5)
Pareto fit with xmin set to the minium of the sample
invpareto.mle(x = x)
Pareto fit with xmin set to its real value
invpareto.mle(x = x, xmax = 5)
Pareto fit with xmin determined by the Clauset method
invpareto.mle(x = x, clauset = TRUE)
```

Description

Coefficients of a power-law transformed Inverse Pareto distribution

Usage

`invpareto_plt(xmax = 5, k = 1.5, a = 1, b = 1, inv = FALSE)`

Arguments

- `xmax`, `k` Scale and shape of the Inverse Pareto distribution, defaults to 5 and 1.5 respectively.
- `a`, `b` constant and power of power-law transformation, defaults to 1 and 1 respectively.
logical indicating whether coefficients of the outcome variable of the power-law transformation should be returned (FALSE) or whether coefficients of the input variable being power-law transformed should be returned (TRUE). Defaults to FALSE.

Details

If the random variable $x$ is Inverse Pareto-distributed with scale $x_{min}$ and shape $k$, then the power-law transformed variable

$$y = ax^b$$

is Inverse Pareto distributed with scale $(\frac{x_{min}}{a})^{\frac{1}{b}}$ and shape $b \cdot k$.

Value

Returns a named list containing

```r
coefficients Named vector of coefficients
```
shape1 = 1.5,
meanlog = -0.5,
sdlog = 0.5,
lower.tail = TRUE,
log.p = FALSE
)

mleftparetolognormal(  
r = 0,
truncation = 0,
shape1 = 1.5,
meanlog = -0.5,
sdlog = 0.5,
lower.tail = TRUE
)

rleftparetolognormal(n, shape1 = 1.5, meanlog = -0.5, sdlog = 0.5)

Arguments

x, q
vector of quantiles
shape1, meanlog, sdlog
Shape, mean and variance of the Left-Pareto Lognormal distribution respectively.
log, log.p
logical; if TRUE, probabilities p are given as log(p).
lower.tail
logical; if TRUE (default), probabilities (moments) are \( P[X \leq x] \) (\( E[x^r | X \leq y] \)), otherwise, \( P[X > x] \) (\( E[x^r | X > y] \))
p
vector of probabilities
r
rth raw moment of the Pareto distribution
truncation
lower truncation parameter, defaults to xmin
n
number of observations

Details

Probability and Cumulative Distribution Function as provided by (Reed and Jorgensen 2004):

\[
f(x) = shape1 \omega^{shape1 - 1} e^{-shape1 meanlog + \frac{shape1^2 sdlog^2}{2}} \Phi\left( \frac{ln\omega - meanlog + shape1 sdlog^2}{sdlog} \right),
\]
\[
F_X(x) = \Phi\left( \frac{lnw - meanlog}{sdlog} \right) - \omega^{shape1} e^{-shape1 meanlog + \frac{shape1^2 sdlog^2}{2}} \Phi\left( \frac{ln\omega - meanlog + shape1 sdlog^2}{sdlog} \right)
\]

The y-bounded r-th raw moment of the Let-Pareto Lognormal distribution equals:

\[
meanlog_y^r = -shape1 e^{-shape1 meanlog + \frac{shape1^2 sdlog^2}{2}} \frac{\sigma_r + shape1 - 1}{\sigma_r + shape1 - 1} \Phi\left( \frac{lny - r sdlog^2 + meanlog}{sdlog} \right) + \frac{shape1}{r + shape1} e^{\frac{r^2 sdlog^2 + 2 meanlog}{2}} \Phi\left( \frac{lny - rsdlog^2 + meanlog}{sdlog} \right)
\]

Value

dleftparetolognormal gives the density, mleftparetolognormal gives the distribution function, qleftparetolognormal gives the quantile function, mleftparetolognormal gives the rth moment of the distribution and rleftparetolognormal generates random deviates.
The length of the result is determined by \( n \) for `rleftparetolognormal`, and is the maximum of the lengths of the numerical arguments for the other functions.

References


```r
Left-Pareto Lognormal density plot(x=seq(0,5,length.out=100),y=dleftparetolognormal(x=seq(0,5,length.out=100)))
plot(x=seq(0,5,length.out=100),y=dleftparetolognormal(x=seq(0,5,length.out=100),shape1=1))
Left-Pareto Lognormal relates to the Lognormal if the shape parameter goes to infinity pleftparetolognormal(q=6,shape1=1e20,meanlog=-0.5,sdlog=0.5) plnorm(q=6,meanlog=-0.5,sdlog=0.5)
Demonstration of log functionality for probability and quantile function qleftparetolognormal(pleftparetolognormal(2,log.p=TRUE),log.p=TRUE)
The zeroth truncated moment is equivalent to the probability function pleftparetolognormal(2)
mleftparetolognormal(truncation=2)
The (truncated) first moment is equivalent to the mean of a (truncated) random sample, #for large enough samples. x = rleftparetolognormal(1e5)
mean(x) mleftparetolognormal(r=1,lower.tail=FALSE)
sum(x[x>quantile(x,0.1)])/length(x) mleftparetolognormal(r=1,truncation=quantile(x,0.1),lower.tail=FALSE)
```

---

**leftparetolognormal.mle**

*Left-Pareto Lognormal MLE*

**Description**

Maximum likelihood estimation of the parameters of the Left-Pareto Lognormal distribution.

**Usage**

```r
leftparetolognormal.mle(
 x,
 lower = c(1e-10, 1e-10),
 upper = c(Inf, Inf),
 start = NULL
)
```

**Arguments**

- **x**  
  data vector
- **lower, upper**  
  Upper and lower bounds for the estimation procedure on the parameters c(shape1,sdlog), defaults to c(1e-10,1e-10) and c(Inf,Inf) respectively.
- **start**  
  named vector with starting values, default to c(shape1=2,sdlog=sd(log(x))))
Value

Returns a named list containing a

coefficients  Named vector of coefficients
convergence  logical indicator of convergence
n  Length of the fitted data vector
np  Nr. of coefficients

x = rleftparetolognormal(1e3)
## Pareto fit with xmin set to the minimum of the sample leftparetolognormal.mle(x=x)

Description

Coefficients of a power-law transformed Left-Pareto Lognormal distribution

Usage

leftparetolognormal_plt(
  shape1 = 1.5,
  meanlog = -0.5,
  sdlog = 0.5,
  a = 1,
  b = 1,
  inv = FALSE
)

Arguments

shape1, meanlog, sdlog
  Shapes, mean and variance of the Left-Pareto Lognormal distribution respectively.

a, b
  constant and power of power-law transformation, defaults to 1 and 1 respectively.

inv
  logical indicating whether coefficients of the outcome variable of the power-law
  transformation should be returned (FALSE) or whether coefficients of the input
  variable being power-law transformed should be returned (TRUE). Defaults to
  FALSE.
Details

If the random variable $y$ is Left-Pareto Lognormal distributed with mean meanlog and standard deviation sdlog, then the power-law transformed variable

$$y = ax^b$$

is Left-Pareto Lognormal distributed with $shape1 \cdot \frac{meanlog - \log(a)}{b}, sdlog$. 

Value

Returns a named list containing

- **coefficients**  Named vector of coefficients

Examples

```r
Comparing probabilites of power-law transformed transformed variables
pleftparetolognormal(3, shape1 = 1.5, meanlog = -0.5, sdlog = 0.5)
coeff <- leftparetolognormal_plt(shape1 = 1.5, meanlog = -0.5, sdlog = 0.5, a = 5, b = 7)$coefficients
pleftparetolognormal(5 * 3^7, shape1 = coeff["shape1"], meanlog = coeff["meanlog"], sdlog = coeff["sdlog"])
pleftparetolognormal(5 * 0.9^7, shape1 = 1.5, meanlog = -0.5, sdlog = 0.5)
coeff <- leftparetolognormal_plt(shape1 = 1.5, meanlog = -0.5, sdlog = 0.5, a = 5, b = 7, inv = TRUE)$coefficients
pleftparetolognormal(0.9, shape1 = coeff["shape1"], meanlog = coeff["meanlog"], sdlog = coeff["sdlog"])
```

llr_vuong  

Vuong’s closeness test

Description

Likelihood ratio test for model selection using the Kullback-Leibler information criterion (Vuong 1989)

Usage

```r
llr_vuong(x, y, np.x, np.y, corr = c("none", "BIC", "AIC"))
```

Arguments

- **x, y** vector of log-likelihoods
- **np.x, np.y**  Number of parameters respectively
- **corr** type of correction for parameters, defaults to none.
Value

returns data frame with test statistic, p-value and character vector indicating the test outcome.

References


Examples

```r
x <- rlnorm(1e4, meanlog = -0.5, sdlog = 0.5)
pereo_fit <- combdist.mle(x = x, dist = "pareto")
pereo_loglike <- dcombdist(x = x, dist = "pareto", coeff = pereo_fit$coefficients, log = TRUE)
lnorm_fit <- combdist.mle(x = x, dist = "lnorm")
lnorm_loglike <- dcombdist(x = x, dist = "lnorm", coeff = lnorm_fit$coefficients, log = TRUE)

llr_vuong(x = pereo_loglike, y = lnorm_loglike, np.x = pereo_fit$np, np.y = lnorm_fit$np)
BIC type parameter correction
llr_vuong(x = pereo_loglike, y = lnorm_loglike, np.x = pereo_fit$np, np.y = lnorm_fit$np, corr = "BIC")
AIC type parameter correction
llr_vuong(x = pereo_loglike, y = lnorm_loglike, np.x = pereo_fit$np, np.y = lnorm_fit$np, corr = "AIC")
```

---

**lnorm**  
*The Lognormal distribution*

Description

Raw moments for the Lognormal distribution.

Usage

```r
mlnorm(r = 0, truncation = 0, meanlog = -0.5, sdlog = 0.5, lower.tail = TRUE)
```

Arguments

- `r`: rth raw moment of the distribution, defaults to 1.
- `truncation`: lower truncation parameter, defaults to 0.
- `meanlog, sdlog`: mean and standard deviation of the distribution on the log scale with default values of 0 and 1 respectively.
- `lower.tail`: logical; if TRUE (default), moments are \( E[x^r | X \leq y] \), otherwise, \( E[x^r | X > y] \)
Details

Probability and Cumulative Distribution Function:

\[ f(x) = \frac{1}{x \sqrt{2\pi \text{Var}}} e^{-\frac{(\ln x - \mu)^2}{2\text{Var}^2}}, \quad F_X(x) = \Phi\left(\frac{\ln x - \mu}{\text{Var}}\right) \]

The y-bounded r-th raw moment of the Lognormal distribution equals:

\[ \mu_y^r = e^{r \left( \frac{\text{Var}^2 + 2\mu}{2} \right)} \left[ 1 - \Phi\left( \frac{\ln y - (r \text{Var}^2 + \mu)}{\text{Var}} \right) \right] \]

Value

Provides the y-bounded, rth raw moment of the distribution.

Examples

```r
The zeroth truncated moment is equivalent to the probability function
plnorm(2, meanlog = -0.5, sdlog = 0.5)
mlnorm(truncation = 2)

The (truncated) first moment is equivalent to the mean of a (truncated) random sample, #for large enough samples.
x <- rlnorm(1e5, meanlog = -0.5, sdlog = 0.5)
mean(x)
mlnorm(r = 1, lower.tail = FALSE)
sum(x[x > quantile(x, 0.1)]) / length(x)
mlnorm(r = 1, truncation = quantile(x, 0.1), lower.tail = FALSE)
```

lnorm_plt

Log Normal coefficients of power-law transformed log normal

Description

Coefficients of a power-law transformed log normal distribution

Usage

`lnorm_plt(meanlog = 0, sdlog = 1, a = 1, b = 1, inv = FALSE)`
Arguments

- **meanlog, sdlog** mean and standard deviation of the log normal distributed variable, defaults to 0 and 1 respectively.
- **a, b** constant and power of power-law transformation, defaults to 1 and 1 respectively.
- **inv** logical indicating whether coefficients of the outcome variable of the power-law transformation should be returned (FALSE) or whether coefficients of the input variable being power-law transformed should be returned (TRUE). Defaults to FALSE.

Details

If the random variable \( y \) is log normally distributed with mean \( \text{meanlog} \) and standard deviation \( \text{sdlog} \), then the power-law transformed variable

\[
y = ax^b
\]

is log normally distributed with mean \( \frac{\text{meanlog} - \ln(a \cdot b)}{b} \) and standard deviation \( \frac{\text{sdlog}}{b} \).

Value

Returns a named list containing

- **coefficients** Named vector of coefficients

```r
Comparing probabilities of power-law transformed variables
plnorm(3, meanlog=-0.5, sdlog=0.5) coeff = lnorm_plt(meanlog=-0.5, sdlog=0.5, a=5, b=7)$coefficients
plnorm(5*3^7, meanlog=-0.5, sdlog=0.5) coeff = lnorm_plt(meanlog=-0.5, sdlog=0.5, a=5, b=7, inv=TRUE)$coefficients
plnorm(0.8, meanlog=coeff["meanlog"], sdlog=coeff["sdlog"])

Comparing the first moments and sample means of power-law transformed variables for large enough samples
x = rlnorm(1e5, meanlog=-0.5, sdlog=0.5) coeff = lnorm_plt(meanlog=-0.5, sdlog=0.5, a=2, b=0.5)$coefficients
y = rlnorm(1e5, meanlog=coeff["meanlog"], sdlog=coeff["sdlog"]) mean(2*x^0.5) mean(y) mlnorm(r=1, meanlog=coeff["meanlog"], sdlog=coeff["sdlog"], lower.tail=FALSE)
```

**nmad_test**

Normalized Absolute Deviation

Description

Calculates the Normalized Absolute Deviation between the empirical moments and the moments of the provided distribution. Corresponds to the Kolmogorov-Smirnov test statistic for the zeroth moment.
nmad_test(
  x,
  r = 0,
  dist,
  prior = 1,
  coeff,
  stat = c("NULL", "max", "sum"),
  ...
)

Arguments

x data vector
r moment parameter
dist character vector containing distribution
prior named list of priors, defaults to 1
coeff named list of coefficients
stat character vector indicating which statistic should be calculated: none (NULL), the maximum deviation "max" or the sum of deviations "sum". Defaults to NULL.
...

Additional arguments can be passed to the parametric moment call.

Examples

x <- rlnorm(1e2, meanlog = -0.5, sdlog = 0.5)
nmad_test(x = x, r = 0, dist = "lnorm", coeff = c(meanlog = -0.5, sdlog = 0.5))
nmad_test(x = x, r = 0, dist = "lnorm", coeff = c(meanlog = -0.5, sdlog = 0.5), stat = "max")
nmad_test(x = x, r = 0, dist = "lnorm", coeff = c(meanlog = -0.5, sdlog = 0.5), stat = "sum")

pareto

The Pareto distribution

Description

Density, distribution function, quantile function, raw moments and random generation for the Pareto distribution.

Usage

dpareto(x, k = 2, xmin = 1, log = FALSE, na.rm = FALSE)
ppareto(q, k = 2, xmin = 1, lower.tail = TRUE, log.p = FALSE, na.rm = FALSE)
pareto(p, k = 2, xmin = 1, lower.tail = TRUE, log.p = FALSE)

mpareto(r = 0, truncation = xmin, k = 2, xmin = 1, lower.tail = TRUE)

rpareto(n, k = 2, xmin = 1)

Arguments

x, q  
vector of quantiles

xmin, k  
Scale and shape of the Pareto distribution, defaults to 1 and 2 respectively.

log, log.p  
logical; if TRUE, probabilities p are given as log(p).

na.rm  
Removes values that fall outside the support of the distribution

lower.tail  
logical; if TRUE (default), probabilities (moments) are

The y-bounded r-th raw moment of the Pareto distribution equals:

\[ \mu_y^r = k x_{\text{min}}^k \frac{y^{r-k}}{r-k}, \quad k > r \]

Value

dpareto returns the density, ppareto the distribution function, qpareto the quantile function, mpareto
the rth moment of the distribution and rpareto generates random deviates.

The length of the result is determined by n for rpareto, and is the maximum of the lengths of the
numerical arguments for the other functions.

Examples

```r
Pareto density
plot(x = seq(1, 5, length.out = 100), y = dpareto(x = seq(1, 5, length.out = 100), k = 2, xmin = 1))

Pareto relates to the exponential distribution available in the stats package
ppareto(q = 5, k = 2, xmin = 3)
pexp(q = log(5 / 3), rate = 2)
```
## Demonstration of log functionality for probability and quantile function

qpareto(ppareto(2, log.p = TRUE), log.p = TRUE)

## The zeroth truncated moment is equivalent to the probability function

ppareto(2)

mpareto(truncation = 2)

## The (truncated) first moment is equivalent to the mean of a (truncated) random sample, #for large enough samples.

x <- rpareto(1e5)

mean(x)

mpareto(r = 1, lower.tail = FALSE)

sum(x[x > quantile(x, 0.1)]) / length(x)

mpareto(r = 1, truncation = quantile(x, 0.1), lower.tail = FALSE)

---

### pareto.mle

#### Pareto MLE

**Description**

Maximum likelihood estimation of the Pareto shape parameter using the Hill estimator.

**Usage**

```r
pareto.mle(x, xmin = NULL, clauset = FALSE, q = 0, lower = 1e-10, upper = Inf)
```

**Arguments**

- `x` data vector
- `xmin` scale parameter of the Pareto distribution, set to min(x) if not provided
- `clauset` Indicator variable for calculating the scale parameter using the clauset method, overrides provided xmin
- `q` Percentage of data to search over (starting from the largest values), defaults to 0.
- `lower, upper` Lower and upper bounds to the estimated shape parameter, defaults to 1e-10 and Inf respectively

**Details**

The Hill estimator equals

\[
\hat{k} = \frac{1}{n} \sum_{i=1}^{n} \log \frac{x_i}{x_{\text{min}}}
\]
Value

Returns a named list containing a

coefficients Named vector of coefficients
convergence logical indicator of convergence
n Length of the fitted data vector
np Nr. of coefficients

Examples

x <- rpareto(1e3, k = 2, xmin = 2)

## Pareto fit with xmin set to the minimum of the sample
pareto.mle(x = x)

## Pareto fit with xmin set to its real value
pareto.mle(x = x, xmin = 2)

## Pareto fit with xmin determined by the Clauset method
pareto.mle(x = x, clauset = TRUE)

---

pareto_plt Pareto coefficients after power-law transformation

Description

Coefficients of a power-law transformed Pareto distribution

Usage

pareto_plt(xmin = 1, k = 2, a = 1, b = 1, inv = FALSE)

Arguments

xmin, k Scale and shape of the Pareto distribution, defaults to 1 and 2 respectively.
a, b constant and power of power-law transformation, defaults to 1 and 1 respectively.
inv logical indicating whether coefficients of the outcome variable of the power-law transformation should be returned (FALSE) or whether coefficients of the input variable being power-law transformed should be returned (TRUE). Defaults to FALSE.
Details

If the random variable $x$ is Pareto-distributed with scale $x_{\text{min}}$ and shape $k$, then the power-law transformed variable

$$y = ax^b$$

is Pareto distributed with scale $(\frac{x_{\text{min}}}{a})^{\frac{1}{b}}$ and shape $b \cdot k$.

Value

Returns a named list containing

- **coefficients** Named vector of coefficients

Examples

```r
Comparing probabilities of power-law transformed variables
ppareto(3, k = 2, xmin = 2)
coeff <- pareto_plt(xmin = 2, k = 2, a = 5, b = 7)$coefficients
ppareto(5 * 3^7, k = coeff['k'], xmin = coeff['xmin'])

ppareto(5 * 0.9^7, k = 2, xmin = 2)
coeff <- pareto_plt(xmin = 2, k = 2, a = 5, b = 7, inv = TRUE)$coefficients
ppareto(0.9, k = coeff['k'], xmin = coeff['xmin'])

Comparing the first moments and sample means of power-law transformed variables for large enough samples
x <- rpareto(1e5, k = 2, xmin = 2)
coeff <- pareto_plt(xmin = 2, k = 2, a = 2, b = 0.5)$coefficients
y <- rpareto(1e5, k = coeff['k'], xmin = coeff['xmin'])
mean(2 * x^0.5)
mean(y)
mpareto(r = 1, k = coeff['k'], xmin = coeff['xmin'], lower.tail = FALSE)
```

The Right-Pareto Lognormal distribution

Description

Density, distribution function, quantile function and random generation for the Right-Pareto Lognormal distribution.
Usage

\[
drightparetolognormal(\quad x, \quad \text{shape2} = 1.5, \quad \text{meanlog} = -0.5, \quad \text{sdlog} = 0.5, \quad \text{log} = \text{FALSE})
\]

\[
prightparetolognormal(\quad q, \quad \text{shape2} = 1.5, \quad \text{meanlog} = -0.5, \quad \text{sdlog} = 0.5, \quad \text{lower.tail} = \text{TRUE}, \quad \text{log.p} = \text{FALSE})
\]

\[
qrightparetolognormal(\quad p, \quad \text{shape2} = 1.5, \quad \text{meanlog} = -0.5, \quad \text{sdlog} = 0.5, \quad \text{lower.tail} = \text{TRUE}, \quad \text{log.p} = \text{FALSE})
\]

\[
mrightparetolognormal(\quad r = 0, \quad \text{truncation} = 0, \quad \text{shape2} = 1.5, \quad \text{meanlog} = -0.5, \quad \text{sdlog} = 0.5, \quad \text{lower.tail} = \text{TRUE})
\]

\[
rrightparetolognormal(\quad n, \quad \text{shape2} = 1.5, \quad \text{meanlog} = -0.5, \quad \text{sdlog} = 0.5, \quad \text{lower.tail} = \text{TRUE})
\]

Arguments

\[
\text{x, q} \quad \text{vector of quantiles}
\]
shape2, meanlog, sdlog
Shape, mean and variance of the Right-Pareto Lognormal distribution respectively.

log, log.p
logical; if TRUE, probabilities p are given as log(p).

lower.tail
logical; if TRUE (default), probabilities (moments) are $P[X \leq x] (E[x^r|X \leq y])$, otherwise, $P[X > x] (E[x^r|X > y])$

p
vector of probabilities

r
rth raw moment of the Pareto distribution

truncation
lower truncation parameter, defaults to xmin

n
number of observations

Details
Probability and Cumulative Distribution Function as provided by (Reed and Jorgensen 2004):

\[
f(x) = \text{shape}^2 e^{\text{shape}^2 x \text{meanlog} + \frac{\text{shape}^2 \text{sdlog}^2}{2}} \Phi\left(\frac{\ln x - \text{meanlog} - \text{shape}^2 \text{sdlog}^2}{\text{sdlog}}\right),
\]

\[
F_X(x) = \Phi\left(\frac{\ln x - \text{meanlog} - \text{shape}^2 \text{sdlog}^2}{\text{sdlog}}\right) - e^{\text{shape}^2 x \text{meanlog} + \frac{\text{shape}^2 \text{sdlog}^2}{2}} \Phi\left(\frac{\ln x - \text{meanlog} - \text{shape}^2 \text{sdlog}^2}{\text{sdlog}}\right).
\]

The y-bounded r-th raw moment of the Right-Pareto Lognormal distribution equals:

\[
\text{meanlog}^r_y = -\text{shape}^2 e^{\text{shape}^2 \text{meanlog} + \frac{\text{shape}^2 \text{sdlog}^2}{2}} y^r e^{\text{shape}^2 \text{sdlog}^2} \Phi\left(\frac{\ln y - \text{meanlog} - \text{shape}^2 \text{sdlog}^2}{\text{sdlog}}\right), \quad \text{shape}^2 > r
\]

Value

drightparetolognormal gives the density, prightparetolognormal gives the distribution function, qrightparetolognormal gives the quantile function, mrightparetolognormal gives the rth moment of the distribution and rrightparetolognormal generates random deviates.

The length of the result is determined by n for rrightparetolognormal, and is the maximum of the lengths of the numerical arguments for the other functions.

References

Examples

```r
Right-Pareto Lognormal density
plot(x = seq(0, 5, length.out = 100), y = drightparetolognormal(x = seq(0, 5, length.out = 100)))
plot(x = seq(0, 5, length.out = 100), y = drightparetolognormal(x = seq(0, 5, length.out = 100), shape2 = 1))

Right-Pareto Lognormal relates to the Lognormal if the shape parameter goes to infinity
prightparetolognormal(q = 6, shape2 = 1e20, meanlog = -0.5, sdlog = 0.5)
plnorm(q = 6, meanlog = -0.5, sdlog = 0.5)
```
## Demonstration of log functionality for probability and quantile function

```r
qrightparetolognormal(prightparetolognormal(2, log.p = TRUE), log.p = TRUE)
```

## The zeroth truncated moment is equivalent to the probability function

```r
prightparetolognormal(2)
mrightparetolognormal(truncation = 2)
```

## The (truncated) first moment is equivalent to the mean of a (truncated) random sample, #for large enough samples.

```r
x <- rrightparetolognormal(1e5, shape2 = 3)
mean(x)
mrightparetolognormal(r = 1, shape2 = 3, lower.tail = FALSE)
sum(x[x > quantile(x, 0.1)]) / length(x)
mrightparetolognormal(r = 1, shape2 = 3, truncation = quantile(x, 0.1), lower.tail = FALSE)
```

---

rightparetolognormal.mle

**Right-Pareto Lognormal MLE**

### Description

Maximum likelihood estimation of the parameters of the Right-Pareto Lognormal distribution.

### Usage

```r
rightparetolognormal.mle(
 x,
 lower = c(1e-10, 1e-10),
 upper = c(Inf, Inf),
 start = NULL
)
```

### Arguments

- **x**: data vector
- **lower**, **upper**: Upper and lower bounds for the estimation procedure on the parameters c(shape2,sdlog), defaults to c(1e-10,1e-10) and c(Inf,Inf) respectively.
- **start**: named vector with starting values, default to c(shape2=2,sdlog=sd(log(x)))

### Value

Returns a named list containing a

- **coefficients**: Named vector of coefficients
- **convergence**: logical indicator of convergence
- **n**: Length of the fitted data vector
- **np**: Nr. of coefficients
Examples

```r
x <- rrightparetolognormal(1e3)
Pareto fit with xmin set to the minimum of the sample
rrightparetolognormal.mle(x = x)
```

Description

Coefficients of a power-law transformed Right-Pareto Lognormal distribution

Usage

```r
rrightparetolognormal_plt(
 shape2 = 1.5,
 meanlog = -0.5,
 sdlog = 0.5,
 a = 1,
 b = 1,
 inv = FALSE
)
```

Arguments

- `shape2, meanlog, sdlog` Shapes, mean and variance of the Right-Pareto Lognormal distribution respectively.
- `a, b` constant and power of power-law transformation, defaults to 1 and 1 respectively.
- `inv` logical indicating whether coefficients of the outcome variable of the power-law transformation should be returned (FALSE) or whether coefficients of the input variable being power-law transformed should be returned (TRUE). Defaults to FALSE.

Details

If the random variable $y$ is Right-Pareto Lognormal distributed with mean `meanlog` and standard deviation `sdlog`, then the power-law transformed variable

$$y = ax^b$$

is Right-Pareto Lognormal distributed with $\frac{meanlog - \log(a)}{b}$, $\frac{sdlog}{b}$, $shape2 * b$. 
truncdist

Value

Returns a named list containing

**coefficients** Named vector of coefficients

```r
Comparing probabilities of power-law transformed transformed variables
prightparetolognormal(3, shape2 = 3, meanlog = -0.5, sdlg = 0.5) coeff = rightparetolognormal_plt(shape2 = 3, meanlog = -0.5, sdlg = 0.5,a=5,b=7)$coefficients
prightparetolognormal(5*0.9^7,shape2 = 3, meanlog = -0.5, sdlg = 0.5) coeff = rightparetolognormal_plt(shape2 = 3, meanlog = -0.5, sdlg = 0.5,a=5,b=7, inv=TRUE)$coefficients
```

### Description

Density, distribution function, quantile function, raw moments and random generation for a truncated distribution.

#### Usage

```r
dtruncdist(
x,
 dist = c("lnormtrunc"),
 coeff = list(meanlog = 0, sdlg = 1),
 lowertrunc = 0,
 uppertrunc = Inf,
 log = FALSE
)
```

```r
ptruncdist(
q,
 dist = c("lnormtrunc"),
 coeff = list(meanlog = 0, sdlg = 1),
 lowertrunc = 0,
 uppertrunc = Inf,
 log.p = FALSE,
 lower.tail = TRUE
)
```

```r
qtruncdist(
 p,
 dist = c("lnormtrunc"),
 coeff = list(meanlog = 0, sdlg = 1),
 lowertrunc = 0,
 uppertrunc = Inf,
```
lower.tail = TRUE,
log.p = FALSE
)

mtruncdist(
  r,
  truncation = 0,
  dist = c("lnormtrunc"),
  coeff = list(meanlog = 0, sdlog = 1),
  lowertrunc = 0,
  uppertrunc = Inf,
  lower.tail = TRUE
)

rtruncdist(
  n,
  dist = c("lnormtrunc"),
  coeff = list(meanlog = 0, sdlog = 1),
  lowertrunc = 0,
  uppertrunc = Inf
)

Arguments

- `x, q`: vector of quantiles
- `dist`: distribution to be truncated, defaults to lnorm
- `coeff`: list of parameters for the truncated distribution, defaults to list(meanlog=0,sdlog=1)
- `lowertrunc, uppertrunc`: lowertrunc- and uppertrunc truncation points, defaults to 0 and Inf respectively
- `log, log.p`: logical; if TRUE, probabilities p are given as log(p).
- `lower.tail`: logical; if TRUE (default), probabilities (moments) are $P[ X \leq x ]$ ($E[ x^r | X \leq y ]$), otherwise, $P[ X > x ]$ ($E[ x^r | X > y ]$)
- `p`: vector of probabilities
- `r`: rth raw moment of the distribution
- `truncation`: lowertrunc truncation parameter, defaults to 0.
- `n`: number of observations

Details

Probability and Cumulative Distribution Function:

\[
f(x) = \frac{g(x)}{F(uppertrunc) - F(lowertrunc)}, \quad F_X(x) = \frac{F(x) - F(lowertrunc)}{F(uppertrunc) - F(lowertrunc)}
\]
Value

dtruncdist gives the density, ptruncdist gives the distribution function, qtruncdist gives the quantile function, mtruncdist gives the rth moment of the distribution and rtruncdist generates random deviates.

The length of the result is determined by n for rpareto, and is the maximum of the lengths of the numerical arguments for the other functions.

Examples

```r
Truncated lognormal density
plot(x = seq(0.5, 3, length.out = 100), y = dtruncdist(x = seq(0.5, 5, length.out = 100),
 dist = "lnorm", coeff = list(meanlog = 0.5, sdlog = 0.5), lowertrunc = 0.5, uppertrunc = 5))
lines(x = seq(0, 6, length.out = 100), y = dlnorm(x = seq(0, 6, length.out = 100),
 meanlog = 0.5, sdlog = 0.5))

Compare quantities
dtruncdist(0.5) # dlnorm(0.5)
dtruncdist(0.5, lowertrunc = 0.5, uppertrunc = 3) # ptruncdist(2)
ptruncdist(2) # plnorm(2)
ptruncdist(2, lowertrunc = 0.5, uppertrunc = 3) # qtruncdist(0.25)
qtruncdist(0.25) # qlnorm(0.25)
qtruncdist(0.25, lowertrunc = 0.5, uppertrunc = 3) # mtruncdist(r = 0, truncation = 2)
mlnorm(r = 0, truncation = 2, meanlog = 0, sdlog = 1)
mtruncdist(r = 0, truncation = 2, lowertrunc = 0.5, uppertrunc = 3) # mtruncdist(r = 1, truncation = 2)
mlnorm(r = 1, truncation = 2, meanlog = 0, sdlog = 1)
mtruncdist(r = 1, truncation = 2, lowertrunc = 0.5, uppertrunc = 3)
```

weibull

The Weibull distribution

Description

Raw moments for the Weibull distribution.

Usage

```r
mweibull(r = 0, truncation = 0, shape = 2, scale = 1, lower.tail = TRUE)
```
weibull

Arguments

- r: rth raw moment of the distribution, defaults to 1.
- truncation: lower truncation parameter, defaults to 0.
- shape, scale: shape and scale of the distribution with default values of 2 and 1 respectively.
- lower.tail: logical; if TRUE (default), moments are $E[x^r|X \leq y]$, otherwise, $E[x^r|X > y]$

Details

Probability and Cumulative Distribution Function:

$$f(x) = \frac{\text{shape}}{\text{scale}} \left( \frac{\omega}{\text{scale}} \right)^{\text{shape}-1} e^{-\left( \frac{\omega}{\text{scale}} \right)^{\text{shape}}}$$

$$F_X(x) = 1 - e^{-\left( \frac{\omega}{\text{scale}} \right)^{\text{shape}}}$$

The y-bounded r-th raw moment of the distribution equals:

$$\mu_{y}^{r} = \text{scale}^{r} \Gamma\left(\frac{r}{\text{shape}} + 1, \frac{y}{\text{scale}}\right)^{\text{shape}}$$

where $\Gamma(\cdot, \cdot)$ denotes the upper incomplete gamma function.

Value

returns the truncated rth raw moment of the distribution.

Examples

```r
The zeroth truncated moment is equivalent to the probability function
pweibull(2, shape = 2, scale = 1)
mweibull(truncation = 2)

The (truncated) first moment is equivalent to the mean of a (truncated) random sample, #for large enough samples.
x <- rweibull(1e5, shape = 2, scale = 1)
mean(x)
mweibull(r = 1, lower.tail = FALSE)

sum(x[x > quantile(x, 0.1)]) / length(x)
mweibull(r = 1, truncation = quantile(x, 0.1), lower.tail = FALSE)
```
weibull_plt

Weibull coefficients of power-law transformed Weibull

Description

Coefficients of a power-law transformed Weibull distribution

Usage

weibull_plt(scale = 1, shape = 2, a = 1, b = 1, inv = FALSE)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>shape, scale</td>
<td>shape and scale of the distribution with default values of 2 and 1 respectively.</td>
</tr>
<tr>
<td>a, b</td>
<td>constant and power of power-law transformation, defaults to 1 and 1 respectively.</td>
</tr>
<tr>
<td>inv</td>
<td>logical indicating whether coefficients of the outcome variable of the power-law transformation should be returned (FALSE) or whether coefficients of the input variable being power-law transformed should be returned (TRUE). Defaults to FALSE.</td>
</tr>
</tbody>
</table>

Details

If the random variable y is Weibull distributed with mean meanlog and standard deviation sdlog, then the power-law transformed variable

\[ y = ax^b \]

is Weibull distributed with scale \( \left( \frac{\text{scale}}{a} \right)^\frac{1}{b} \) and shape \( b \times \text{shape} \).

Value

Returns a named list containing

- **coefficients** Named vector of coefficients

```r
Comparing probabilities of power-law transformed transformed variables
pweibull(3,shape=2,scale=1)
coeff = weibull_plt(shape=2, scale=1, a=5, b=7)$coefficients
pweibull(5*3^7, shape=coeff["shape"], scale=coeff["scale"])

pweibull(5*0.8^7, shape=2, scale=1)
coeff = weibull_plt(shape=2, scale=1, a=5, b=7, inv=TRUE)$coefficients
pweibull(0.8, shape=coeff["shape"], scale=coeff["scale"])
```

## Comparing the first moments and sample means of power-law transformed variables for large enough samples
```r
x = rweibull(1e5, shape=2, scale=1)
coeff = weibull_plt(shape=2, scale=1, a=2, b=0.5)$coefficients
y = rweibull(1e5, shape=coeff["shape"], scale=coeff["scale"])
mean(2*x^0.5)
mean(y)
mweibull(r=1, shape=coeff["shape"])
```
Index

* datasets
  fit_US_cities, 28
  burr, 2
  burr_plt, 4
  clauset.xmax, 5
  clauset.xmin, 6
  coeffcomposite, 7
  combdist, 9
  combdist.mle, 11
  combdist.plt, 13
  composite, 15
  composite.mle, 18
  composite_plt, 19
  dburr (burr), 2
  dcombdist (combdist), 9
  dcomposite (composite), 15
  ddoubleparetolognormal (doubleparetolognormal), 20
  demprirical (empirical), 25
  dfrechet (frechet), 29
  dinvpareto (invpareto), 33
  dleftparetolognormal (leftparetolognormal), 37
  doubleparetolognormal, 20
  doubleparetolognormal.mle, 23
  doubleparetolognormal.plt, 24
  dpareto (pareto), 45
  drightparetolognormal (rightparetolognormal), 49
  dtruncdist (truncdist), 54
  empirical, 25
  exp, 27
  fit_US_cities, 28
  frechet, 29
  frechet.mle, 30
  frechet_plt, 31
  gamma, 32
  invpareto, 33
  invpareto.mle, 35
  invpareto_plt, 36
  leftrightparetolognormal, 37
  leftrightparetolognormal.mle, 39
  leftrightparetolognormal_plt, 40
  llr_vuong, 41
  lnorm, 42
  lnorm_plt, 43
  mburr (burr), 2
  mcombdist (combdist), 9
  mcomposite (composite), 15
  mdoubleparetolognormal (doubleparetolognormal), 20
  memprirical (empirical), 25
  mexp (exp), 27
  mfrechet (frechet), 29
  mgamma (gamma), 32
  minvpareto (invpareto), 33
  mleftparetolognormal (leftparetolognormal), 37
  mlnorm (lnorm), 42
  mpareto (pareto), 45
  mrightparetolognormal (rightparetolognormal), 49
  mtruncdist (truncdist), 54
  mweibull (weibull), 56
  nmad_test, 44
  pareto, 45
  pareto.mle, 47
  pareto_plt, 48
  pburr (burr), 2
  pcombdist (combdist), 9
  pcomposite (composite), 15
pdoubleparetolognormal
  (doubleparetolognormal), 20
pempirical (empirical), 25
pfrechet (frechet), 29
pinvpareto (invpareto), 33
pleftparetolognormal
  (leftparetolognormal), 37
ppareto (pareto), 45
prightparetolognormal
  (rightparetolognormal), 49
ptruncdist (truncdist), 54
qburr (burr), 2
qcombdist (combdist), 9
qcomposite (composite), 15
qdoubledparetolognormal
  (doubleparetolognormal), 20
qempirical (empirical), 25
qfrechet (frechet), 29
qinvpareto (invpareto), 33
qleftparetolognormal
  (leftparetolognormal), 37
qpareto (pareto), 45
qrightparetolognormal
  (rightparetolognormal), 49
qtruncdist (truncdist), 54
rburr (burr), 2
rcombdist (combdist), 9
rcomposite (composite), 15
rdoubledparetolognormal
  (doubleparetolognormal), 20
rfrechet (frechet), 29
rightparetolognormal, 49
rightparetolognormal.mle, 52
rightparetolognormal_plt, 53
rinvpareto (invpareto), 33
rleftparetolognormal
  (leftparetolognormal), 37
rpareto (pareto), 45
rrightparetolognormal
  (rightparetolognormal), 49
rtruncdist (truncdist), 54
truncdist, 54
weibull, 56
weibull_plt, 58