Package ‘div’

October 13, 2022

Type Package

Title Report on Diversity and Inclusion in a Corporate Setting

Version 0.3.1

Maintainer Philippe J.S. De Brouwer <philippe@de-brouwer.com>

License AGPL (>= 3)

URL http://www.de-brouwer.com/div/

BugReports https://github.com/DrPhilippeDB/div/issues/

Description Facilitate the analysis of teams in a corporate setting:

- assess the diversity per grade and job, present the results,
- search for bias (in hiring and/or promoting processes).
- It also provides methods to simulate the effect of bias, random team-data, etc.

Encoding UTF-8

Collate 'headers.R' 'diversity.R' 'div_conf_colour.R'

- 'div_fake_team.R' 'div_ci_median.R' 'div_paygap.R'
- 'div_parse_paygap.R' 'div_round_paygap.R' 'div_gauge_plot.R'
- 'div_plot_paygap_distribution.R' 'div_add_median_label.R'
- 'print.paygap.R' 'summary.paygap.R'

Depends R (>= 3.4.0), tidyverse

Imports rlang, dplyr, tibble, tidyr, stringr, magrittr, ggplot2,

gridExtra, plotly, pryr, rpart, kableExtra

Suggests flexdashboard, knitr, rmarkdown, grid, lattice

RoxygenNote 7.1.1

NeedsCompilation no

Repository CRAN

Author Philippe J.S. De Brouwer [aut, cre]

Date/Publication 2021-05-06 08:00:02 UTC
 Calculate the diversity index

This function calculates the entropy of a system with discrete states

```
diversity(x, prior = NULL)
```

Arguments

- `x`: numeric vector, observed probabilities of the classes
- `prior`: numeric vector, the prior probabilities of the classes

Value

the entropy or diversity measure

Examples

```r
x <- c(0.4, 0.6)
diversity(x)
```
div_add_median_label

Adds a column with new labels (H)igh and (L)ow for a given colName (within a given grade and jobID)

Description

This function calculates the entropy of a system with discrete states

Usage

div_add_median_label(
 d,
 colName = "age",
 value1 = "T",
 value2 = "F",
 newColName = "isYoung"
)

Arguments

d tibble, a tibble with team data columns as defined in the documentation (at least the column colName (as set by next parameter), 'grade', and 'jobID')

colName the name of the columns that contains the factor object to be used as explaining dimension for the paygap (defaults to 'gender')

value1 character, the label to be used for the first half of observations (the smallest ones)

value2 character, the label to be used for the second half of observations (the biggest ones)

newColName the value in new column name that will hold the values value1 and value2

Value

dataframe (with columns grade, jobID, salary_selectedValue, salary_others, n_selectedValue, n_others, paygap, confidence), where "confidence" is one of the following: NA = not available (numbers are too low), "" = no bias detectable, "." = there might be some bias, but we're not sure, "+" = bias detected with some degree of confidence, "**" = quite sure there is bias, "***" = trust us, this is biased.

Examples

df <- div_add_median_label(div_fake_team())
colnames(df)
div_ci_median
Function to calculate the confidence interval for the median

Description

Function to calculate the confidence interval for the median

Usage

```r
div_ci_median(x, conf = 0.95)
```

Arguments

- `x` numeric, data from which the median is calculated
- `conf` numeric, the confidence interval as 1 - P(x < x0)

Value

- `ci` (confidence interval object)

Examples

```r
x <- 1:100
div_ci_median(x)
```

div_conf_colour

return a colour code given a number of stars for the confidence level of bias

Description

This function returns a colour (R named colour) based on the confidence level

Usage

```r
div_conf_colour(x)
```

Arguments

- `x` the string associated to the paygap confidence: NA, '.', '..', '*', '***', '****'

Value

- string (named colour)

Examples

```r
div_conf_colour("*")
```
Generate randomly team-data

Description

This function generates a data frame with data for a team (with salaries, gender, FTE, etc). This is a
good start to test the package and to experiment what level of bias will be visible in the paygap for
example.

Usage

div_fake_team(
 seed = 100,
 N = 200,
 genders = c("F", "M", "O"),
 gender_prob = c(0.4, 0.58, 0.02),
 gender_salaryBias = c(1, 1.1, 1),
 jobIDs = c("sales", "analytics"),
 jobID_prob = c(0.6, 0.4),
 citizenships = c("Polish", "German", "Italian", "Indian", "Other"),
 citizenship_prob = c(0.6, 0.2, 0.1, 0.05, 0.05)
)

Arguments

seed numeric, the seed to be used in set.seed()
N numeric, the size of the team to be used (default = 200)
genders character, a vector of the genders to be used
gender_prob numeric, relative probabilities of the different genders to occur (must have the
 same length as 'genders')
gender_salaryBias numeric, vector with the relative salaries of the different genders (must have the
 same length as 'genders')
jobIDs character, a vector with the labels of the job categories in the team (they will
 appear in each grade)
jobID_prob numeric, a vector with the relative sizes of the different jobs in the team (must
 have the same length as 'jobIDs')
citizenships character, a vector of the citizenships to be generated
citizenship_prob numeric, relative probabilities of the different citizenships to occur (must have
 the same length as 'citizenships')

Value

dataframe (employees of the random team)
Examples

library(div)
d <- div_fake_team()
head(d)
diversity(table(d$gender))

div_gauge_plot

Uses ggplot2 to produce a gauge plot in RAG colour

Description

This function produces one or more gauge plots coloured in red (R), amber (A) or green (G) for a value between 0 and 1.

Usage

div_gauge_plot(df, breaks = c(0, 0.8, 0.95, 1), ncol = NULL, nbrSize = 6)

Arguments

df tibble, a tibble with columns "value" and "label" (value = the values between 0 and 1; - label = text to show e.g. paste("group", colnames(t)))
breaks numeric vector with the lower limit, the border between green and amber, the border between amber and red, and the upper limit
ncol numeric, the number of columns to produce
nbrSize numeric, the font size for the label

Value

ggplot object

Examples

d <- div_fake_team()
tbl_gender_div <- table(d$gender, d$grade) %>%
 apply(2, diversity, prior = c(50.2, 49.8)) %>%
 tibble(value = ., label = paste("Grade", names(.)))
div_gauge_plot(tbl_gender_div, ncol = 2, nbrSize = 4)
div_parse_paygap

Prepare the paygap matrix to be published in **LaTeX**

Description

This function formats the paygap matrix (created by `div_paygap()`) and prepares it for printing via the function `knitr::kable()`.

Usage

```r
div_parse_paygap(
  pg,
  label = NULL,
  min_nbr_show = NULL,
  max_length_jobID = 12,
  max_length_colnames = 9
)
```

Arguments

- `pg` paygap object as created by `div::div_paygap()`. This is an S3 object with a specific structure.
- `label` character, the label to be used in the caption of the `kable` object.
- `min_nbr_show` numeric, if provided then only groups that have more than `min_nbr_show` employees in both categories (`selectedValue` and `others`) will be shown.
- `max_length_jobID` numeric, if provided the maximal length of the column `jobID` (in characters).
- `max_length_colnames` numeric, if provided the maximal length of the column names (in characters).

Value

`knitr::kable` object (for **LaTeX**)

Examples

```r
d <- div_fake_team()
pg <- div_paygap(d)
div_parse_paygap(pg)
```
div_paygap
Function to calculate the paygap as a ratio.

Description

This function calculates the entropy of a system with discrete states.

Usage

```r
div_paygap(d, x = "gender", y = "salary", x_ctrl = "F", ctrl_var = "age")
```

Arguments

- `d`
 tibble, a tibble with columns as defined

- `x`
 the name of the columns that contains the factor object to be used as explaining dimension for the paygap (defaults to 'gender')

- `y`
 the name of the columns that contains the numeric value to be used to calculate the paygap (could be salary or bonus for example)

- `x_ctrl`
 the value in the column defined by `x` that should be isolated (this versus the others), defaults to 'F'

- `ctrl_var`
 a control variable to be added (shows median per group for that variable)

Value

dataframe (with columns grade, jobID, salary_x_ctrl, salary_others, n_x_ctrl, n_others, paygap, confidence), where "confidence" is one of the following: NA = not available (numbers are too low), "" = no bias detectable, "." = there might be some bias, but we’re not sure, "*" = bias detected with some degree of confidence, "**" = quite sure there is bias, "***" = trust us, this is biased.

Examples

```r
df <- div_paygap(div_fake_team())
df
```

div_plot_paygap_distribution

Produce a histogram and normal distribution

Description

Plots a histogram, a normal distribution with the same standard deviation and mean as well as one with a mean centred around 1.
div_round_paygap

Usage

div_plot_paygap_distribution(x, label = "Gender", mu_unbiased = 1)

Arguments

x numeric vector, column of paygap observations
label character, prefix for the title
mu_unbiased numeric, the mean of the unbiased distribution (for paygaps this should be 1)

Value

ggplot2 object

Examples

d <- div_fake_team()
pg <- div_paygap(d)
div_plot_paygap_distribution(pg$data$paygap)

div_round_paygap

Rounds all numbers in the paygap data-frame

Description

This function all numbers to zero decimals, except the paygap (which is rounded to 2 decimals):

Usage

div_round_paygap(x)

Arguments

x paygap object (output of div::div_paygap())

Value

the paygap data-frame (tibble only, not the whole paygap object)

Examples

d <- div_fake_team()
pg <- div_paygap(d)
div_round_paygap(pg)
print.paygap

print the paygap object in the terminal

Description

print the paygap object in the terminal

Usage

S3 method for class 'paygap'
print(x, ...)

Arguments

x paygap object, as created by the function div_paygpa()
...
arguments passed on to the generic print function: print(x$data)

Value

text output

Examples

library(div)
div_fake_team() %>%
div_paygap %>%
print

summary.paygap

Description

Title

Usage

S3 method for class 'paygap'
summary(object, ...)

Arguments

object paygap S3 object, as created by the function dif_paygap()
...
passed on to summary()
summary.paygap

Value

a summary of the paygap object

Examples

library(div)
d <- div_fake_team()
pg <- div_paygap(d)
summary(pg)
Index

- (seniority)
 div_add_median_label, 3
 div_paygap, 8
- (type)
 div_add_median_label, 3
 div_paygap, 8
- *
 div_add_median_label, 3
 div_paygap, 8
- and
 div_add_median_label, 3
 div_paygap, 8
- a
 div_add_median_label, 3
 div_paygap, 8
- by
 div_add_median_label, 3
 div_paygap, 8
- calculate
 div_add_median_label, 3
 div_paygap, 8
- controlled
 div_add_median_label, 3
 div_paygap, 8
- dataset
 div_add_median_label, 3
 div_paygap, 8
- distribution
 div_plot_paygap_distribution, 8
- d
 div_add_median_label, 3
 div_paygap, 8
- entropy
 diversity, 2
- equity
 div_plot_paygap_distribution, 8
- for
 div_add_median_label, 3
 div_paygap, 8
 *
- gauge
 div_gauge_plot, 6
- grade
 div_add_median_label, 3
 div_paygap, 8
- jobID
 div_add_median_label, 3
 div_paygap, 8
- of
 div_add_median_label, 3
 div_paygap, 8
- parse
 div_conf_colour, 4
 div_parse_paygap, 7
- paygap
 div_add_median_label, 3
 div_conf_colour, 4
 div_parse_paygap, 7
 div_paygap, 8
- plot
 div_gauge_plot, 6
- role
 div_add_median_label, 3
 div_paygap, 8
- the
 div_add_median_label, 3
 div_paygap, 8
 div_add_median_label, 3
 div_ci_median, 4
 div_conf_colour, 4
 div_fake_team, 5
 div_gauge_plot, 6
 div_parse_paygap, 7
 div_paygap, 8
 div_plot_paygap_distribution, 8
 div_round_paygap, 9
 diversity, 2
 print.paygap, 10
summary.paygap.10