Package ‘dlookr’

October 21, 2019

Type Package
Title Tools for Data Diagnosis, Exploration, Transformation
Version 0.3.12
Description A collection of tools that support data diagnosis, exploration, and transformation. Data diagnostics provides information and visualization of missing values and outliers and unique and negative values to help you understand the distribution and quality of your data. Data exploration provides information and visualization of the descriptive statistics of univariate variables, normality tests and outliers, correlation of two variables, and relationship between target variable and predictor. Data transformation supports binning for categorizing continuous variables, imputates missing values and outliers, resolving skewness. And it creates automated reports that support these three tasks.
License GPL-2 | file LICENSE
Encoding UTF-8
LazyData true
Depends R (>= 3.2.0), mice
Imports dplyr, magrittr, tidyr, ggplot2, RcmdrMisc, corrplot, rlang, purrr, tibble, tidyeval, classInt, moments, kableExtra, prettydoc, smbinning, xtable, knitr, rmarkdown, RColorBrewer, gridExtra, tinytex, methods, DMwR, rpart
Suggests ISLR, nycflights13, randomForest, dbplyr, DBI, RSQLite, testthat
Author Choonghyun Ryu [aut, cre]
Maintainer Choonghyun Ryu <choonghyun.ryu@gmail.com>
BugReports https://github.com/choonghyunryu/dlookr/issues
VignetteBuilder knitr
RoxygenNote 6.1.1
NeedsCompilation no
Repository CRAN
Date/Publication 2019-10-21 06:50:03 UTC
R topics documented:

dlookr-package .. 3
binning .. 4
binning_by ... 6
correlate .. 7
correlate.tbl_dbi ... 9
describe .. 12
describe.tbl_dbi .. 14
diagnose .. 16
diagnose.tbl_dbi .. 18
diagnose_category .. 21
diagnose_category.tbl_dbi 23
diagnose_numeric .. 25
diagnose_numeric.tbl_dbi 27
diagnose_outlier ... 29
diagnose_outlier.tbl_dbi 31
diagnose_report .. 33
diagnose_report.tbl_dbi 35
eda_report ... 37
eda_report.tbl_dbi ... 40
find_class ... 43
find_na .. 44
find_outliers ... 45
find_skewness .. 46
get_class .. 47
get_column_info .. 48
get_os .. 49
imputate_na ... 50
imputate_outlier .. 52
normality .. 54
normality.tbl_dbi ... 56
plot.bins .. 58
plot.imputation .. 59
plot.optimal_bins .. 61
plot.relate .. 62
plot.transform ... 63
plot_correlate .. 64
plot_correlate.tbl_dbi .. 66
plot_normality ... 68
plot_normality.tbl_dbi ... 70
plot_outlier ... 72
plot_outlier.tbl_dbi .. 73
print.relate ... 76
relate .. 77
summary.bins ... 79
summary.imputation .. 81
summary.transform ... 82
dlookr-package

dlookr: Tools for Data Diagnosis, Exploration, Transformation

Description

dlookr provides data diagnosis, data exploration and transformation of variables during data analy-

Details

It has three main goals:

• When data is acquired, it is possible to judge whether data is erroneous or to select a variable
to be corrected or removed through data diagnosis.
• Understand the distribution of data in the EDA process. We can also understand the relation-
ship between target variables and predictor variables for the prediction model.
• Imputates including missing value and outlier, standardization and resolving skewness, and
binning of continuous variables.

To learn more about dlookr, start with the vignettes: ‘browseVignettes(package = "dlookr")’

Author(s)

Maintainer: Choonghyun Ryu <choonghyun.ryu@gmail.com>

See Also

Useful links:

• Report bugs at https://github.com/choonghyunryu/dlookr/issues
Binning the Numeric Data

Description

The binning() converts a numeric variable to a categorization variable.

Usage

binning(x, nbins, type = c("quantile", "equal", "pretty", "kmeans", "bclust"), ordered = TRUE, labels = NULL)

Arguments

x numeric vector for binning.
nbins number of classes. required. if missing, nclass.Sturges is used.
type binning method. one of "quantile", "equal", "equal", "pretty", "kmeans", "bclust" The "quantile" style provides quantile breaks. The "equal" style divides the range of the variable into nbins parts. The "pretty" style chooses a number of breaks not necessarily equal to nbins using base::pretty function. The "kmeans" style uses stats::kmeans function to generate the breaks. The "bclust" style uses e1071::bclust function to generate the breaks using bagged clustering. "kmeans" and "bclust" type logic was implemented by classInt::classIntervals function.

ordered whether to build an ordered factor or not.
labels the label names to use for each of the bins.

Details

This function is useful when used with the mutate/transmute function of the dplyr package.

Value

An object of bins class. Attributes of bins class is as follows.

- type : binning type, "quantile", "equal", "pretty", "kmeans", "bclust".
- breaks : the number of intervals into which x is to be cut.
- levels : levels of binned value.
- raw : raw data, x argument value.

"bins" class attributes information

Attributes of the "bins" class that is as follows.

- class : "bins".
- levels : factor or ordered factor levels
• type : binning method
• breaks : breaks for binning
• raw : before the binned the raw data

See vignette("transformation") for an introduction to these concepts.

See Also

binning_by, print.bins, summary.bins.

Examples

Generate data for the example
carseats <- ISLR::Carseats
carseats[sample(seq(NROW(carseats)), 20), "Income"] <- NA
carseats[sample(seq(NROW(carseats)), 5), "Urban"] <- NA
Binning the carat variable. default type argument is "quantile"
bin <- binning(carseats$Income)
Print bins class object
bin
Summarise bins class object
summary(bin)
Plot bins class object
plot(bin)
Using labels argument
bin <- binning(carseats$Income, nbins = 4,
 labels = c("LQ1", "UQ1", "LQ3", "UQ3"))
bin
Using another type argument
bin <- binning(carseats$Income, nbins = 5, type = "equal")
bin
bin <- binning(carseats$Income, nbins = 5, type = "pretty")
bin
bin <- binning(carseats$Income, nbins = 5, type = "kmeans")
bin
bin <- binning(carseats$Income, nbins = 5, type = "bclust")
bin

Using pipes & dplyr

library(dplyr)
carseats %>%
 mutate(Income_bin = binning(carseats$Income)) %>%
 group_by(ShelveLoc, Income_bin) %>%
 summarise(freq = n()) %>%
 arrange(desc(freq)) %>%
 head(10)
binning_by

Description

The `binning_by()` function finding class intervals for numerical variables using optical binning. Optimal binning categorizes a numeric characteristic into bins for further usage in scoring modeling.

Usage

```
binning_by(df, y, x, p = 0.05, ordered = TRUE, labels = NULL)
```

Arguments

- `df`: a data frame.
- `y`: binary response variable (0,1). Integer(int) is required. Name of y must not have a dot. Name "default" is not allowed.
- `x`: continuous characteristic. At least 5 different values. Value Inf is not allowed. Name of x must not have a dot.
- `p`: percentage of records per bin. Default 5% (0.05). This parameter only accepts values greater than 0.00 (0%) and lower than 0.50 (50%).
- `ordered`: whether to build an ordered factor or not.
- `labels`: the label names to use for each of the bins.

Details

This function is useful when used with the `mutate/transmute` function of the `dplyr` package. And this function is implemented using `smbinning()` function of `smbinning` package.

Value

An object of `optimal_bins` class. Attributes of `optimal_bins` class is as follows.

- type: binning type, "optimal".
- breaks: the number of intervals into which x is to be cut.
- levels: levels of binned value.
- raw: raw data, x argument value.
- ivtable: information value table
- iv: information value
- flag: information value
"optimal_bins" class attributes information

Attributes of the "optimal_bins" class are as follows.

- class: "optimal_bins".
- levels: factor or ordered factor levels
- type: binning method
- breaks: breaks for binning
- raw: before the binned the raw data
- ivtable: information value table
- iv: information value
- target: binary response variable

See vignette("transformation") for an introduction to these concepts.

See Also

binning, smbinning.

Examples

```r
# Generate data for the example
carseats <- ISLR::Carseats
carseats[sample(seq(NROW(carseats)), 20), "Income"] <- NA
carseats[sample(seq(NROW(carseats)), 5), "Urban"] <- NA

# optimal binning
bin <- binning_by(carseats, "US", "Advertising")
bin
# summary optimal_bins class
summary(bin)
# visualize optimal_bins class
plot(bin, sub = "bins of Advertising variable")
```

correlate

Compute the correlation coefficient between two numerical data

Description

The `correlate()` function computes Pearson's correlation coefficient of the numerical data.

Usage

```r
correlate(.data, ...)
```

```r
## S3 method for class 'data.frame'
correlate(.data, ...)
```
correlate

Arguments

.data a data.frame or a tbl_df.
... one or more unquoted expressions separated by commas. You can treat variable
 names like they are positions. Positive values select variables; negative values to
 drop variables. If the first expression is negative, correlate() will automatically
 start with all variables. These arguments are automatically quoted and evaluated
 in a context where column names represent column positions. They support
 unquoting and splicing.

See vignette("EDA") for an introduction to these concepts.

Details

This function is useful when used with the group_by() function of the dplyr package. If you want

to compute by level of the categorical data you are interested in, rather than the whole observation,
you can use grouped_df as the group_by() function. This function is computed stats::cor() function
by use = "pairwise.complete.obs" option.

Correlation coefficient information

The information derived from the numerical data compute is as follows.

• var1 : names of numerical variable
• var2 : name of the corresponding numeric variable
• coef_corr : pearson’s correlation coefficient

See Also

cor, correlate.tbl_dbi.

Examples

Generate data for the example
carseats <- ISLR::Carseats
carseats[sample(seq(NROW(carseats)), 20), "Income"] <- NA
carseats[sample(seq(NROW(carseats)), 5), "Urban"] <- NA

Correlation coefficients of all numerical variables
correlate(carseats)

Select the variable to compute
correlate(carseats, Sales, Price)
correlate(carseats, -Sales, -Price)
correlate(carseats, "Sales", "Price")
correlate(carseats, 1)

Using dplyr::grouped_dt
library(dplyr)

gdata <- group_by(carseats, ShelveLoc, US)
correlate(gdata, "Sales")
correlate(gdata)

Using pipes -------------------------------
Correlation coefficients of all numerical variables
carseats %>%
correlate()
Positive values select variables
carseats %>%
correlate(Sales, Price)
Negative values to drop variables
carseats %>%
correlate(-Sales, -Price)
Positions values select variables
carseats %>%
correlate(-1)
Positions values select variables
carseats %>%
correlate(-1, -2, -3, -5, -6)
Correlation coefficient
that eliminates redundant combination of variables
carseats %>%
correlate() %>%
filter(as.integer(var1) > as.integer(var2))
carseats %>%
correlate(Sales, Price) %>%
filter(as.integer(var1) > as.integer(var2))

Using pipes & dplyr -----------------------
Compute the correlation coefficient of Sales variable by 'ShelveLoc'
and 'US' variables. And extract only those with absolute
value of correlation coefficient is greater than 0.5
carseats %>%
group_by(ShelveLoc, US) %>%
correlate(Sales) %>%
filter(abs(coef_corr) >= 0.5)

extract only those with 'ShelveLoc' variable level is "Good",
and compute the correlation coefficient of 'Sales' variable
by 'Urban' and 'US' variables.
And the correlation coefficient is negative and smaller than 0.5
carseats %>%
filter(ShelveLoc == "Good") %>%
group_by(Urban, US) %>%
correlate(Sales) %>%
filter(coef_corr < 0) %>%
filter(abs(coef_corr) > 0.5)
Description

The correlate() compute pearson’s the correlation coefficient of the numerical(INTEGER, NUMBER, etc.) column of the DBMS table through tbl_dbi.

Usage

```r
## S3 method for class 'tbl_dbi'
correlate(.data, ..., in_database = FALSE,
          collect_size = Inf)
```

Arguments

- `.data`: a tbl_dbi.
- `...`: one or more unquoted expressions separated by commas. You can treat variable names like they are positions. Positive values select variables; negative values to drop variables. If the first expression is negative, correlate() will automatically start with all variables. These arguments are automatically quoted and evaluated in a context where column names represent column positions. They support unquoting and splicing.
- `in_database`: Specifies whether to perform in-database operations. If TRUE, most operations are performed in the DBMS. If FALSE, table data is taken in R and operated in-memory. Not yet supported in_database = TRUE.
- `collect_size`: an integer. The number of data samples from the DBMS to R. Applies only if in_database = FALSE.

See vignette("EDA") for an introduction to these concepts.

Details

This function is useful when used with the group_by() function of the dplyr package. If you want to compute by level of the categorical data you are interested in, rather than the whole observation, you can use grouped_df as the group_by() function. This function is computed stats::cor() function by use = "pairwise.complete.obs" option.

Correlation coefficient information

The information derived from the numerical data compute is as follows.

- `var1`: names of numerical variable
- `var2`: name of the corresponding numeric variable
- `coef_corr`: pearson’s correlation coefficient

See Also
correlate.data.frame, cor.
Examples

```r
library(dplyr)

# Generate data for the example
carseats <- ISLR::Carseats
carseats[sample(seq(NROW(carseats)), 20), "Income"] <- NA
carseats[sample(seq(NROW(carseats)), 5), "Urban"] <- NA

# connect DBMS
con_sqlite <- DBI::dbConnect(RSQLite::SQLite(), ":memory:"

# copy carseats to the DBMS with a table named TB_CARSEATS
copy_to(con_sqlite, carseats, name = "TB_CARSEATS", overwrite = TRUE)

# Using pipes ---------------------------------
# Correlation coefficients of all numerical variables
con_sqlite %>%
  tbl("TB_CARSEATS") %>%
  correlate()

# Positive values select variables
con_sqlite %>%
  tbl("TB_CARSEATS") %>%
  correlate(Sales, Price)

# Negative values to drop variables, and In-memory mode and collect size is 200
con_sqlite %>%
  tbl("TB_CARSEATS") %>%
  correlate(-Sales, -Price, collect_size = 200)

# Positions values select variables
con_sqlite %>%
  tbl("TB_CARSEATS") %>%
  correlate(1)

# Positions values select variables
con_sqlite %>%
  tbl("TB_CARSEATS") %>%
  correlate(-1, -2, -3, -5, -6)

# Correlation coefficient
# that eliminates redundant combination of variables
con_sqlite %>%
  tbl("TB_CARSEATS") %>%
  correlate() %>%
  filter(as.integer(var1) > as.integer(var2))

con_sqlite %>%
  tbl("TB_CARSEATS") %>%
  correlate(Sales, Price) %>%
  filter(as.integer(var1) > as.integer(var2))
```
Using pipes & dplyr -------------------------
Compute the correlation coefficient of Sales variable by 'ShelveLoc'
and 'US' variables. And extract only those with absolute
value of correlation coefficient is greater than 0.5
con_sqlite %>%
 tbl("TB_CARSEATS") %>%
 group_by(ShelveLoc, US) %>%
 correlate(Sales) %>%
 filter(abs(coef_corr) >= 0.5)

extract only those with 'ShelveLoc' variable level is "Good",
and compute the correlation coefficient of 'Sales' variable
by 'Urban' and 'US' variables.
And the correlation coefficient is negative and smaller than 0.5
con_sqlite %>%
 tbl("TB_CARSEATS") %>%
 filter(ShelveLoc == "Good") %>%
 group_by(Urban, US) %>%
 correlate(Sales) %>%
 filter(coef_corr < 0) %>%
 filter(abs(coef_corr) > 0.5)

describe

Compute descriptive statistic

Description

The `describe()` compute descriptive statistic of numeric variable for exploratory data analysis.

Usage

```r
describe(.data, ...)
```

S3 method for class 'data.frame'
```r
describe(.data, ...)
```

Arguments

- `.data` a data.frame or a `tbl_df`.
- `...` one or more unquoted expressions separated by commas. You can treat variable names like they are positions. Positive values select variables; negative values to drop variables. If the first expression is negative, `describe()` will automatically start with all variables. These arguments are automatically quoted and evaluated in a context where column names represent column positions. They support unquoting and splicing.

See vignette("EDA") for an introduction to these concepts.
describe

Details

This function is useful when used with the `group_by` function of the dplyr package. If you want to calculate the statistic by level of the categorical data you are interested in, rather than the whole statistic, you can use `grouped_df` as the `group_by()` function.

Value

An object of the same class as `.data`.

Descriptive statistic information

The information derived from the numerical data `describe` is as follows:

- `n`: number of observations excluding missing values
- `na`: number of missing values
- `mean`: arithmetic average
- `sd`: standard deviation
- `se_mean`: standard error mean. `sd/sqrt(n)`
- `IQR`: interquartile range (Q3-Q1)
- `skewness`: skewness
- `kurtosis`: kurtosis
- `p25`: Q1. 25% percentile
- `p50`: median. 50% percentile
- `p75`: Q3. 75% percentile
- `p01`, `p05`, `p10`, `p20`, `p30`: 1%, 5%, 20%, 30% percentiles
- `p40`, `p60`, `p70`, `p80`: 40%, 60%, 70%, 80% percentiles
- `p90`, `p95`, `p99`, `p100`: 90%, 95%, 99%, 100% percentiles

See Also

describe.tbl_dbi, diagnose_numeric.data.frame.

Examples

```r
# Generate data for the example
carseats <- ISLR::Carseats
carseats[sample(seq(NROW(carseats)), 20), "Income"] <- NA
carseats[sample(seq(NROW(carseats)), 5), "Urban"] <- NA

# Describe descriptive statistics of numerical variables
describe(carseats)

# Select the variable to describe
describe(carseats, Sales, Price)
describe(carseats, -Sales, -Price)
describe(carseats, 5)
```
Using dplyr::grouped_dt
library(dplyr)

gdata <- group_by(carseats, ShelveLoc, US)
describe(gdata, "Income")

Using pipes -------------------------------
Positive values select variables
carseats %>%
 describe(Sales, CompPrice, Income)

Negative values to drop variables
carseats %>%
 describe(-Sales, -CompPrice, -Income)

Using pipes & dplyr -----------------------
Find the statistic of all numerical variables by 'ShelveLoc' and 'US',
and extract only those with 'ShelveLoc' variable level is "Good".
carseats %>%
 group_by(ShelveLoc, US) %>%
 describe() %>%
 filter(ShelveLoc == "Good")

extract only those with 'Urban' variable level is "Yes",
and find 'Sales' statistics by 'ShelveLoc' and 'US'
carseats %>%
 filter(Urban == "Yes") %>%
 group_by(ShelveLoc, US) %>%
 describe(Sales)

describe.tbl_dbi

Compute descriptive statistic

Description

The `describe()` compute descriptive statistic of numerical(INTEGER, NUMBER, etc.) column of the DBMS table through `tbl_dbi` for exploratory data analysis.

Usage

```r
## S3 method for class 'tbl_dbi'
describe(.data, ..., in_database = FALSE,
         collect_size = Inf)
```

Arguments

`.data` a `tbl_dbi`.

```r
```
one or more unquoted expressions separated by commas. You can treat variable
names like they are positions. Positive values select variables; negative values to
drop variables. If the first expression is negative, describe() will automatically
start with all variables. These arguments are automatically quoted and evaluated
in a context where column names represent column positions. They support
unquoting and splicing.

in_database Specifies whether to perform in-database operations. If TRUE, most operations
 are performed in the DBMS. If FALSE, table data is taken in R and operated
 in-memory. Not yet supported in_database = TRUE.

collect_size a integer. The number of data samples from the DBMS to R. Applies only if
 in_database = FALSE.

See vignette("EDA") for an introduction to these concepts.

Details

This function is useful when used with the group_by function of the dplyr package. If you want
to calculate the statistic by level of the categorical data you are interested in, rather than the whole
statistic, you can use grouped_df as the group_by() function.

Value

An object of the same class as .data.

Descriptive statistic information

The information derived from the numerical data describe is as follows.

- n : number of observations excluding missing values
- na : number of missing values
- mean : arithmetic average
- sd : standard deviation
- se_mean : standard error mean. sd/sqrt(n)
- IQR : interquartile range (Q3-Q1)
- skewness : skewness
- kurtosis : kurtosis
- p25 : Q1. 25% percentile
- p50 : median. 50% percentile
- p75 : Q3. 75% percentile
- p01, p05, p10, p20, p30 : 1%, 5%, 20%, 30% percentiles
- p40, p60, p70, p80 : 40%, 60%, 70%, 80% percentiles
- p90, p95, p99, p100 : 90%, 95%, 99%, 100% percentiles

See Also

describe.data.frame, diagnose_numeric.tbl_dbi.
Examples

library(dplyr)

Generate data for the example
carseats <- ISLR::Carseats
carseats[sample(seq(NROW(carseats)), 20), "Income"] <- NA
carseats[sample(seq(NROW(carseats)), 5), "Urban"] <- NA

connect DBMS
con_sqlite <- DBI::dbConnect(RSQLite::SQLite(), ":memory:"

copy carseats to the DBMS with a table named TB_CARSEATS
copy_to(con_sqlite, carseats, name = "TB_CARSEATS", overwrite = TRUE)

Using pipes -----------------------------
Positive values select variables
con_sqlite %>%
 tbl("TB_CARSEATS") %>%
 describe(Sales, CompPrice, Income)

Negative values to drop variables, and In-memory mode and collect size is 200
con_sqlite %>%
 tbl("TB_CARSEATS") %>%
 describe(-Sales, -CompPrice, -Income, collect_size = 200)

Using pipes & dplyr ---------------------
Find the statistic of all numerical variables by 'ShelveLoc' and 'US',
and extract only those with 'ShelveLoc' variable level is "Good".
con_sqlite %>%
 tbl("TB_CARSEATS") %>%
 group_by(ShelveLoc, US) %>%
 describe() %>%
 filter(ShelveLoc == "Good")

extract only those with 'Urban' variable level is "Yes",
and find 'Sales' statistics by 'ShelveLoc' and 'US'
con_sqlite %>%
 tbl("TB_CARSEATS") %>%
 filter(Urban == "Yes") %>%
 group_by(ShelveLoc, US) %>%
 describe(Sales)

diagnose

Diagnose data quality of variables

Description

The diagnose() produces information for diagnosing the quality of the variables of data.frame or tbl_df.
Usage

diagnose(.data, ...)

S3 method for class 'data.frame'
diagnose(.data, ...)

Arguments

- `.data` a data.frame or a `tbl_df`.
- `...` one or more unquoted expressions separated by commas. You can treat variable names like they are positions. Positive values select variables; negative values to drop variables. If the first expression is negative, diagnose() will automatically start with all variables. These arguments are automatically quoted and evaluated in a context where column names represent column positions. They support unquoting and splicing.

Details

The scope of data quality diagnosis is information on missing values and unique value information. Data quality diagnosis can determine variables that require missing value processing. Also, the unique value information can determine the variable to be removed from the data analysis.

Value

An object of tbl_df.

Diagnostic information

The information derived from the data diagnosis is as follows.:

- variables: variable names
- types: data type of the variable or to select a variable to be corrected or removed through data diagnosis.
 - integer, numeric, factor, ordered, character, etc.
- missing_count: number of missing values
- missing_percent: percentage of missing values
- unique_count: number of unique values
- unique_rate: ratio of unique values. unique_count / number of observation

See vignette("diagnosis") for an introduction to these concepts.

See Also

diagnose.tbl_dbi, diagnose_category.data.frame, diagnose_numeric.data.frame.
Examples

Generate data for the example
carseats <- ISLR::Carseats
carseats[sample(seq(NROW(carseats)), 20), "Income"] <- NA
carseats[sample(seq(NROW(carseats)), 5), "Urban"] <- NA

Diagnosis of all variables
diagnose(carseats)

Select the variable to diagnose
diagnose(carseats, Sales, Income, Age)
diagnose(carseats, -Sales, -Income, -Age)
diagnose(carseats, "Sales", "Income", "Age")
diagnose(carseats, 1, 3, 8)

Using pipes -----------------------------
library(dplyr)

carseats %>%
diagnose()

carseats %>%
diagnose(Sales, Income, Age)

carseats %>%
diagnose(-Sales, -Income, -Age)

carseats %>%
diagnose(1, 3, 8)

carseats %>%
diagnose(-8, -9, -10)

Using pipes & dplyr ---------------------
Diagnosis of missing variables
carseats %>%
diagnose() %>%
filter(missing_count > 0)

###

diagnose.tbl_dbi
Diagnose data quality of variables in the DBMS

Description

The diagnose() produces information for diagnosing the quality of the column of the DBMS table through tbl_dbi.
Usage

```r
## S3 method for class 'tbl_dbi'
diagnose(.data, ..., in_database = TRUE,
          collect_size = Inf)
```

Arguments

- `.data` a `tbl_dbi`.
- `...` one or more unquoted expressions separated by commas. You can treat variable names like they are positions. Positive values select variables; negative values to drop variables. If the first expression is negative, `diagnose()` will automatically start with all variables. These arguments are automatically quoted and evaluated in a context where column names represent column positions. They support unquoting and splicing.
- `in_database` a logical. Specifies whether to perform in-database operations. If TRUE, most operations are performed in the DBMS. if FALSE, table data is taken in R and operated in-memory.
- `collect_size` a integer. The number of data samples from the DBMS to R. Applies only if `in_database = FALSE`.

Details

The scope of data quality diagnosis is information on missing values and unique value information. Data quality diagnosis can determine variables that require missing value processing. Also, the unique value information can determine the variable to be removed from the data analysis.

Value

An object of `tbl_df`.

Diagnostic information

The information derived from the data diagnosis is as follows.:

- variables: column names
- types: data type of the variable or to select a variable to be corrected or removed through data diagnosis.
 - integer, numeric, factor, ordered, character, etc.
- `missing_count`: number of missing values
- `missing_percent`: percentage of missing values
- `unique_count`: number of unique values
- `unique_rate`: ratio of unique values. `unique_count / number of observation`

See vignette("diagnosis") for an introduction to these concepts.
diagnose.tbl_dbi

See Also
diagnose.data.frame, diagnose_category.tbl_dbi, diagnose_numeric.tbl_dbi.

Examples

library(dplyr)

Generate data for the example
carseats <- ISLR::Carseats
carseats[sample(seq(NROW(carseats)), 20), "Income"] <- NA
carseats[sample(seq(NROW(carseats)), 5), "Urban"] <- NA

connect DBMS
con_sqlite <- DBI::dbConnect(RSQLite::SQLite(), ":memory:"

copy carseats to the DBMS with a table named TB_CARSEATS
copy_to(con_sqlite, carseats, name = "TB_CARSEATS", overwrite = TRUE)

Using pipes -----------------------------
Diagnosis of all columns
con_sqlite %>%
 tbl("TB_CARSEATS") %>%
 diagnose()

Positive values select columns
con_sqlite %>%
 tbl("TB_CARSEATS") %>%
 diagnose(Sales, Income, Age)

Negative values to drop columns
con_sqlite %>%
 tbl("TB_CARSEATS") %>%
 diagnose(-Sales, -Income, -Age)

Positions values select columns, and In-memory mode
con_sqlite %>%
 tbl("TB_CARSEATS") %>%
 diagnose(1, 3, 8, in_database = FALSE)

Positions values select columns, and In-memory mode and collect size is 200
con_sqlite %>%
 tbl("TB_CARSEATS") %>%
 diagnose(-8, -9, -10, in_database = FALSE, collect_size = 200)

Using pipes & dplyr ---------------------
Diagnosis of missing variables
con_sqlite %>%
 tbl("TB_CARSEATS") %>%
 diagnose() %>%
 filter(missing_count > 0)
diagnose_category

Diagnose data quality of categorical variables

Description

The `diagnose_category()` produces information for diagnosing the quality of the variables of data.frame or `tbl_df`.

Usage

```r
diagnose_category(.data, ...)
```

S3 method for class 'data.frame'

```r
diagnose_category(.data, ..., top = 10,
add_character = TRUE)
```

Arguments

- `.data` a data.frame or a `tbl_df`.
- `...` one or more unquoted expressions separated by commas. You can treat variable names like they are positions. Positive values select variables; negative values to drop variables. If the first expression is negative, `diagnose_category()` will automatically start with all variables. These arguments are automatically quoted and evaluated in a context where column names represent column positions. They support unquoting and splicing.
- `top` an integer. Specifies the upper top rank to extract. Default is 10.
- `add_character` logical. Decide whether to include text variables in the diagnosis of categorical data. The default value is TRUE, which also includes character variables.

Details

The scope of the diagnosis is the occupancy status of the levels in categorical data. If a certain level of occupancy is close to 100 then the removal of this variable in the forecast model will have to be considered. Also, if the occupancy of all levels is close to 0 variable is likely to be an identifier.

Value

an object of `tbl_df`.

Categorical diagnostic information

The information derived from the categorical data diagnosis is as follows.

- `variables`: variable names
- `levels`: level names
- `N`: number of observation
• freq: number of observation at the levels
• ratio: percentage of observation at the levels
• rank: rank of occupancy ratio of levels

See vignette("diagonosis") for an introduction to these concepts.

See Also
diagnose_category.tbl_dbi, diagnose.data.frame, diagnose_numeric.data.frame, diagnose_outlier.data.frame.

Examples

Generate data for the example
carseats <- ISLR::Carseats
carseats[sample(seq(NROW(carseats)), 20), "Income"] <- NA
carseats[sample(seq(NROW(carseats)), 5), "Urban"] <- NA

diagnose_category(carseats)

diagnose_category(carseats, ShelveLoc, Urban)
diagnose_category(carseats, -ShelveLoc, -Urban)
diagnose_category(carseats, "ShelveLoc", "Urban")
diagnose_category(carseats, 7)

Using pipes ---------------------------------
library(dplyr)

diagnose_category(carseats)

diagnose_category(Urban, US)
diagnose_category(-Urban, -US)
diagnose_category(7)
diagnose_category(-7)
diagnose_category(top = 2)

Using pipes & dplyr -------------------------
Extraction of level that is more than 60% of categorical data
diagnose_category(top = 2)
Diagnose data quality of categorical variables in the DBMS

Description

The `diagnose_category()` produces information for diagnosing the quality of the character (CHAR, VARCHAR, VARCHAR2, etc.) column of the DBMS table through `tbl_dbi`.

Usage

```r
## S3 method for class 'tbl_dbi'
diagnose_category(.data, ..., top = 10,
in_database = TRUE, collect_size = Inf)
```

Arguments

- `.data` a `tbl_dbi`.
- `...` one or more unquoted expressions separated by commas. You can treat variable names like they are positions. Positive values select variables; negative values to drop variables. If the first expression is negative, `diagnose_category()` will automatically start with all variables. These arguments are automatically quoted and evaluated in a context where column names represent column positions. They support unquoting and splicing.
- `top` an integer. Specifies the upper top rank to extract. Default is 10.
- `in_database` Specifies whether to perform in-database operations. If TRUE, most operations are performed in the DBMS. If FALSE, table data is taken in R and operated in-memory.
- `collect_size` a integer. The number of data samples from the DBMS to R. Applies only if `in_database = FALSE`.

Details

The scope of the diagnosis is the occupancy status of the levels in categorical data. If a certain level of occupancy is close to 100 then the removal of this variable in the forecast model will have to be considered. Also, if the occupancy of all levels is close to 0 variable is likely to be an identifier.

Value

an object of tbl_df.
Categorical diagnostic information

The information derived from the categorical data diagnosis is as follows.

- variables: variable names
- levels: level names
- N: number of observation
- freq: number of observation at the levels
- ratio: percentage of observation at the levels
- rank: rank of occupancy ratio of levels

See vignette("diagonosis") for an introduction to these concepts.

See Also
diagnose_category.data.frame, diagnose.tbl_dbi, diagnose_category.tbl_dbi, diagnose_numeric.tbl_dbi, diagnose_outlier.tbl_dbi.

Examples

library(dplyr)

Generate data for the example
carseats <- ISLR::Carseats
carseats[sample(seq(NROW(carseats)), 20), "Income"] <- NA
carseats[sample(seq(NROW(carseats)), 5), "Urban"] <- NA

Connect DBMS
con_sqlite <- DBI::dbConnect(RSQLite::SQLite(), ":memory:")

copy_to(con_sqlite, carseats, name = "TB_CARSEATS", overwrite = TRUE)

Using pipes -----------------------------
Diagnosis of all categorical variables
con_sqlite %>%
 tbl("TB_CARSEATS") %>%
 diagnose_category()

Positive values select variables
con_sqlite %>%
 tbl("TB_CARSEATS") %>%
 diagnose_category(Urban, US)

Negative values to drop variables, and In-memory mode
con_sqlite %>%
 tbl("TB_CARSEATS") %>%
 diagnose_category(-Urban, -US, in_database = FALSE)

Positions values select variables, and In-memory mode and collect size is 200
con_sqlite %>%
diagnose_numeric

Diagnose data quality of numerical variables

Description

The `diagnose_numeric()` produces information for diagnosing the quality of the numerical data.

Usage

```r
diagnose_numeric(.data, ...)  
```

Arguments

- **.data**
 - a `data.frame` or a `tbl_df`.

- **...**
 - one or more unquoted expressions separated by commas. You can treat variable names like they are positions. Positive values select variables; negative values to drop variables. If the first expression is negative, `diagnose_numeric()` will automatically start with all variables. These arguments are automatically quoted and evaluated in a context where column names represent column positions. They support unquoting and splicing.
Details

The scope of the diagnosis is to calculate a statistic that can be used to understand the distribution of numerical data. min, Q1, mean, median, Q3, max can be used to estimate the distribution of data. If the number of zero or minus is large, it is necessary to suspect the error of the data. If the number of outliers is large, a strategy of eliminating or replacing outliers is needed.

Value

an object of tbl_df.

Numerical diagnostic information

The information derived from the numerical data diagnosis is as follows.

- variables: variable names
- min: minimum
- Q1: 25 percentile
- mean: arithmetic average
- median: median. 50 percentile
- Q3: 75 percentile
- max: maximum
- zero: count of zero values
- minus: count of minus values
- outlier: count of outliers

See vignette("diagnosis") for an introduction to these concepts.

See Also
diagnose_numeric.tbl_dbi, diagnose.data.frame, diagnose_category.data.frame, diagnose_outlier.data.frame.

Examples

Generate data for the example
carseats <- ISLR::Carseats
carseats[sample(seq(NROW(carseats)), 20), "Income"] <- NA
carseats[sample(seq(NROW(carseats)), 5), "Urban"] <- NA

Diagnosis of numerical variables
diagnose_numeric(carseats)

Select the variable to diagnose
diagnose_numeric(carseats, Sales, Income)
diagnose_numeric(carseats, -Sales, -Income)
diagnose_numeric(carseats, "Sales", "Income")
diagnose_numeric(carseats, 5)

Using pipes ---------------------------------
library(dplyr)

Diagnosis of all numerical variables
carseats %>%
diagnose_numeric()

Positive values select variables
carseats %>%
diagnose_numeric(Sales, Income)

Negative values to drop variables
carseats %>%
diagnose_numeric(-Sales, -Income)

Positions values select variables
carseats %>%
diagnose_numeric(5)

Positions values select variables
carseats %>%
diagnose_numeric(-1, -5)

Using pipes & dplyr -------------------------
Information records of zero variable more than 0
carseats %>%
diagnose_numeric() %>%
filter(zero > 0)

diagnose_numeric.tbl_dbi

Diagnose data quality of numerical variables in the DBMS

Description

The diagnose_numeric() produces information for diagnosing the quality of the numerical(INTEGER, NUMBER, etc.) column of the DBMS table through tbl_dbi.

Usage

```r
## S3 method for class 'tbl_dbi'
diagnose_numeric(.data, ..., in_database = FALSE,
                  collect_size = Inf)
```

Arguments

- `.data` a tbl_dbi.
- `...` one or more unquoted expressions separated by commas. You can treat variable names like they are positions. Positive values select variables; negative values to drop variables. If the first expression is negative, diagnose_numeric() will automatically start with all variables. These arguments are automatically quoted and evaluated in a context where column names represent column positions. They support unquoting and splicing.
in_database Specifies whether to perform in-database operations. If TRUE, most operations are performed in the DBMS. If FALSE, table data is taken in R and operated in-memory. Not yet supported in_database = TRUE.

collect_size a integer. The number of data samples from the DBMS to R. Applies only if in_database = FALSE.

Details

The scope of the diagnosis is calculate a statistic that can be used to understand the distribution of numerical data. min, Q1, mean, median, Q3, max can be used to estimate the distribution of data. If the number of zero or minus is large, it is necessary to suspect the error of the data. If the number of outliers is large, a strategy of eliminating or replacing outliers is needed.

Value

an object of tbl_df.

Numerical diagnostic information

The information derived from the numerical data diagnosis is as follows.

- variables : variable names
- min : minimum
- Q1 : 25 percentile
- mean : arithmetic average
- median : median. 50 percentile
- Q3 : 75 percentile
- max : maximum
- zero : count of zero values
- minus : count of minus values
- outlier : count of outliers

See vignette("diagnosis") for an introduction to these concepts.

See Also
diagnose_numeric.data.frame, diagnose.tbl_dbi, diagnose_category.tbl_dbi, diagnose_outlier.tbl_dbi.

Examples

library(dplyr)

Generate data for the example
carseats <- ISLR::Carseats
carseats[sample(seq(NROW(carseats)), 20), "Income"] <- NA
carseats[sample(seq(NROW(carseats)), 5), "Urban"] <- NA

connect DBMS
con_sqlite <- DBI::dbConnect(RSQLite::SQLite(), "memory:"

copy cars to the DBMS with a table named TB_CARSEATS
copy_to(con_sqlite, cars, name = "TB_CARSEATS", overwrite = TRUE)

Using pipes ---------------------------------
Diagnosis of all numerical variables
con_sqlite %>%
 tbl("TB_CARSEATS") %>%
 diagnose_numeric()

Positive values select variables, and In-memory mode and collect size is 200
con_sqlite %>%
 tbl("TB_CARSEATS") %>%
 diagnose_numeric(Sales, Income, collect_size = 200)

Negative values to drop variables
con_sqlite %>%
 tbl("TB_CARSEATS") %>%
 diagnose_numeric(-Sales, -Income)

Positions values select variables
con_sqlite %>%
 tbl("TB_CARSEATS") %>%
 diagnose_numeric(5)

Positions values select variables
con_sqlite %>%
 tbl("TB_CARSEATS") %>%
 diagnose_numeric(-1, -5)

Using pipes & dplyr -------------------------
Information records of zero variable more than 0
con_sqlite %>%
 tbl("TB_CARSEATS") %>%
 diagnose_numeric()
 filter(zero > 0)

diagnose_outlier

Diagnose outlier of numerical variables

Description

The `diagnose_outlier()` produces outlier information for diagnosing the quality of the numerical data.

Usage

`diagnose_outlier(.data, ...)`
S3 method for class 'data.frame'
diagnose_outlier(.data, ...)

Arguments

- `.data` a data.frame or a `tbl_df`.
- `...` one or more unquoted expressions separated by commas. You can treat variable names like they are positions. Positive values select variables; negative values to drop variables. If the first expression is negative, `diagnose_outlier()` will automatically start with all variables. These arguments are automatically quoted and evaluated in a context where column names represent column positions. They support unquoting and splicing.

Details

The scope of the diagnosis is the provide a outlier information. If the number of outliers is small and the difference between the averages including outliers and the averages not including them is large, it is necessary to eliminate or replace the outliers.

Value

- an object of `tbl_df`.

Outlier Diagnostic information

The information derived from the numerical data diagnosis is as follows.

- `variables` : variable names
- `outliers_cnt` : count of outliers
- `outliers_ratio` : percent of outliers
- `outliers_mean` : arithmetic average of outliers
- `with_mean` : arithmetic average of with outliers
- `without_mean` : arithmetic average of without outliers

See vignette("diagnosis") for an introduction to these concepts.

See Also

- `diagnose_outlier.tbl_dbi`, `diagnose.data.frame`, `diagnose_category.data.frame`, `diagnose_numeric.data.frame`.

Examples

```r
# Generate data for the example
carseats <- ISLR::Carseats
carseats[sample(seq(NROW(carseats)), 20), "Income"] <- NA
carseats[sample(seq(NROW(carseats)), 5), "Urban"] <- NA

# Diagnosis of numerical variables
```
diagnose_outlier(carseats)

Select the variable to diagnose
diagnose_outlier(carseats, Sales, Income)
diagnose_outlier(carseats, -Sales, -Income)
diagnose_outlier(carseats, "Sales", "Income")
diagnose_outlier(carseats, 5)

Using pipes -----------------------------
library(dplyr)

Diagnosis of all numerical variables
carseats %>%
diagnose_outlier()

Positive values select variables
carseats %>%
diagnose_outlier(Sales, Income)

Negative values to drop variables
carseats %>%
diagnose_outlier(-Sales, -Income)

Positions values select variables
carseats %>%
diagnose_outlier(5)

Positions values select variables
carseats %>%
diagnose_outlier(-1, -5)

Using pipes & dplyr ----------------------
outlier_ratio is more than 1%
carseats %>
diagnose_outlier() %>
filter(outliers_ratio > 1)

diagnose_outlier.tbl_dbi

Diagnose outlier of numerical variables in the DBMS

Description

The diagnose_outlier() produces outlier information for diagnosing the quality of the numerical(INTEGER, NUMBER, etc.) column of the DBMS table through tbl_dbi.

Usage

S3 method for class 'tbl_dbi'
diagnose_outlier(.data, ..., in_database = FALSE,
 collect_size = Inf)
Arguments

- `data` a tbl_dbi.
- `...` one or more unquoted expressions separated by commas. You can treat variable names like they are positions. Positive values select variables; negative values to drop variables. If the first expression is negative, diagnose_outlier() will automatically start with all variables. These arguments are automatically quoted and evaluated in a context where column names represent column positions. They support unquoting and splicing.

- `in_database` Specifies whether to perform in-database operations. If TRUE, most operations are performed in the DBMS. if FALSE, table data is taken in R and operated in-memory. Not yet supported in_database = TRUE.

- `collect_size` a integer. The number of data samples from the DBMS to R. Applies only if in_database = FALSE.

Details

The scope of the diagnosis is to provide outlier information. If the number of outliers is small and the difference between the averages including outliers and the averages not including them is large, it is necessary to eliminate or replace the outliers.

Value

an object of tbl_df.

Outlier Diagnostic information

The information derived from the numerical data diagnosis is as follows.

- variables : variable names
- outliers_cnt : count of outliers
- outliers_ratio : percent of outliers
- outliers_mean : arithmetic average of outliers
- with_mean : arithmetic average of with outliers
- without_mean : arithmetic average of without outliers

See vignette("diagnosis") for an introduction to these concepts.

See Also

- diagnose_outlier.data.frame
- diagnose.tbl_dbi
- diagnose_category.tbl_dbi
- diagnose_numeric.tbl_dbi
Examples

```r
library(dplyr)

# Generate data for the example
carseats <- ISLR::Carseats
carseats[sample(seq(NROW(carseats)), 20), "Income"] <- NA
carseats[sample(seq(NROW(carseats)), 5), "Urban"] <- NA

# connect DBMS
con_sqlite <- DBI::dbConnect(RSQLite::SQLite(), ":memory:"

# copy carseats to the DBMS with a table named TB_CARSEATS
copy_to(con_sqlite, carseats, name = "TB_CARSEATS", overwrite = TRUE)

# Using pipes -----------------------------
# Diagnosis of all numerical variables
con_sqlite %>%
  tbl("TB_CARSEATS") %>%
  diagnose_outlier()

# Positive values select variables, and In-memory mode and collect size is 200
con_sqlite %>%
  tbl("TB_CARSEATS") %>%
  diagnose_outlier(Sales, Income, collect_size = 200)

# Negative values to drop variables
con_sqlite %>%
  tbl("TB_CARSEATS") %>%
  diagnose_outlier(-Sales, -Income)

# Positions values select variables
con_sqlite %>%
  tbl("TB_CARSEATS") %>%
  diagnose_outlier(5)

# Using pipes & dplyr ------------------------
# outlier_ratio is more than 1%
con_sqlite %>%
  tbl("TB_CARSEATS") %>%
  diagnose_outlier() %>%
  filter(outliers_ratio > 1)
```

diagnose_report
Reporting the information of data diagnosis
Description

The diagnose_report() report the information for diagnosing the quality of the data.

Usage

diagnose_report(.data, output_format, output_file, output_dir, ...)

S3 method for class 'data.frame'
diagnose_report(.data, output_format = c("pdf", "html"), output_file = NULL, output_dir = tempdir(),
 font_family = NULL, browse = TRUE, ...)

Arguments

.data a data.frame or a tbl_df.
output_format report output type. Choose either "pdf" and "html". "pdf" create pdf file by knitr::knit(). "html" create html file by rmarkdown::render().
output_file name of generated file. default is NULL.
output_dir name of directory to generate report file. default is tempdir().
... arguments to be passed to methods.
font_family character. font family name for figure in pdf.
browse logical. choose whether to output the report results to the browser.

Details

Generate generalized data diagnostic reports automatically. You can choose to output to pdf and html files. This is useful for diagnosing a data frame with a large number of variables than data with a small number of variables. For pdf output, Korean Gothic font must be installed in Korean operating system.

Reported information

Reported from the data diagnosis is as follows.

- Diagnose Data
 - Overview of Diagnosis
 * List of all variables quality
 * Diagnosis of missing data
 * Diagnosis of unique data(Text and Category)
 * Diagnosis of unique data(Numerical)
 - Detailed data diagnosis
 * Diagnosis of categorical variables
 * Diagnosis of numerical variables
 * List of numerical diagnosis (zero)
 * List of numerical diagnosis (minus)
• Diagnose Outliers
 – Overview of Diagnosis
 * Diagnosis of numerical variable outliers
 * Detailed outliers diagnosis

See vignette("diagonosis") for an introduction to these concepts.

Examples

carseats <- ISLR::Carseats
carseats[sample(seq(NROW(carseats)), 20), "Income"] <- NA
carseats[sample(seq(NROW(carseats)), 5), "Urban"] <- NA

reporting the diagnosis information -------------------------
create pdf file. file name is DataDiagnosis_Report.pdf
diagnose_report(carseats)
create pdf file. file name is Diagn.pdf
diagnose_report(carseats, output_file = "Diagn.pdf")
create pdf file. file name is ./Diagn.pdf and not browse
diagnose_report(carseats, output_dir = ".", output_file = "Diagn.pdf", browse = FALSE)
create html file. file name is Diagnosis_Report.html
diagnose_report(carseats, output_format = "html")
create html file. file name is Diagn.html
diagnose_report(carseats, output_format = "html", output_file = "Diagn.html")

diagnose_report.tbl_dbi

 Reporting the information of data diagnosis for table of the DBMS

Description

The diagnose_report() report the information for diagnosing the quality of the DBMS table through tbl_dbi

Usage

S3 method for class 'tbl_dbi'
diagnose_report(.data, output_format = c("pdf", "html"), output_file = NULL, output_dir = tempdir(), font_family = NULL, in_database = FALSE, collect_size = Inf, ...)
Arguments

- `.data` a `tbl_dbi`.
- `output_file` name of generated file. default is `NULL`.
- `output_dir` name of directory to generate report file. default is `tempdir()`.
- `font_family` character. font family name for figure in pdf.
- `in_database` Specifies whether to perform in-database operations. If TRUE, most operations are performed in the DBMS, if FALSE, table data is taken in R and operated in-memory. Not yet supported `in_database = TRUE`.
- `collect_size` a integer. The number of data samples from the DBMS to R. Applies only if `in_database = FALSE`.
- `...` arguments to be passed to methods.

Details

Generate generalized data diagnostic reports automatically. You can choose to output to pdf and html files. This is useful for diagnosing a data frame with a large number of variables than data with a small number of variables. For pdf output, Korean Gothic font must be installed in Korean operating system.

Reported information

Reported from the data diagnosis is as follows.

- **Diagnose Data**
 - Overview of Diagnosis
 * List of all variables quality
 * Diagnosis of missing data
 * Diagnosis of unique data(Text and Category)
 * Diagnosis of unique data(Numerical)
 - Detailed data diagnosis
 * Diagnosis of categorical variables
 * Diagnosis of numerical variables
 * List of numerical diagnosis (zero)
 * List of numerical diagnosis (minus)

- **Diagnose Outliers**
 - Overview of Diagnosis
 * Diagnosis of numerical variable outliers
 * Detailed outliers diagnosis

See vignette("diagnosis") for an introduction to these concepts.
See Also
diagnose_report.data.frame.

Examples

library(dplyr)

Generate data for the example
carseats <- ISLR::Carseats
carseats[sample(seq(NROW(carseats)), 20), "Income"] <- NA
carseats[sample(seq(NROW(carseats)), 5), "Urban"] <- NA

connect DBMS
con_sqlite <- DBI::dbConnect(RSQLite::SQLite(), "::memory:"

copy carseats to the DBMS with a table named TB_CARSEATS
copy_to(con_sqlite, carseats, name = "TB_CARSEATS", overwrite = TRUE)

reporting the diagnosis information -------------------------
create pdf file. file name is DataDiagnosis_Report.pdf
con_sqlite %>%
 tbl("TB_CARSEATS") %>%
 diagnose_report()

create pdf file. file name is Diagn.pdf, and collect size is 350
con_sqlite %>%
 tbl("TB_CARSEATS") %>%
 diagnose_report(collect_size = 350, output_file = "Diagn.pdf")

create html file. file name is Diagnosis_Report.html
con_sqlite %>%
 tbl("TB_CARSEATS") %>%
 diagnose_report(output_format = "html")

create html file. file name is Diagn.html
con_sqlite %>%
 tbl("TB_CARSEATS") %>%
 diagnose_report(output_format = "html", output_file = "Diagn.html")

eda_report

Reporting the information of EDA

Description

The eda_report() report the information of Exploratory data analysis for object inheriting from data.frame.
Usage

eda_report(.data, ...)

S3 method for class 'data.frame'
eda_report(.data, target = NULL,
 output_format = c("pdf", "html"), output_file = NULL,
 output_dir = tempdir(), font_family = NULL, browse = TRUE, ...)

Arguments

.data a data.frame or a tbl_df.
... arguments to be passed to methods.
target target variable.
output_format report output type. Choose either "pdf" and "html". "pdf" create pdf file by knitr::knit(). "html" create html file by rmarkdown::render().
output_file name of generated file. default is NULL.
output_dir name of directory to generate report file. default is tempdir().
font_family character. font family name for figure in pdf.
browse logical. choose whether to output the report results to the browser.

Details

Generate generalized data EDA reports automatically. You can choose to output to pdf and html files. This is useful for EDA a data frame with a large number of variables than data with a small number of variables. For pdf output, Korean Gothic font must be installed in Korean operating system.

Reported information

The EDA process will report the following information:

- Introduction
 - Information of Dataset
 - Information of Variables
 - About EDA Report
- Univariate Analysis
 - Descriptive Statistics
 - Normality Test of Numerical Variables
 * Statistics and Visualization of (Sample) Data
- Relationship Between Variables
 - Correlation Coefficient
 * Correlation Coefficient by Variable Combination
 * Correlation Plot of Numerical Variables
- Target based Analysis
- Grouped Descriptive Statistics
 * Grouped Numerical Variables
 * Grouped Categorical Variables
- Grouped Relationship Between Variables
 * Grouped Correlation Coefficient
 * Grouped Correlation Plot of Numerical Variables

See vignette("EDA") for an introduction to these concepts.

Examples

```
library(dplyr)

# Generate data for the example
carseats <- ISLR::Carseats
carseats[sample(seq(NROW(carseats)), 20), "Income"] <- NA
carseats[sample(seq(NROW(carseats)), 5), "Urban"] <- NA

## target variable is categorical variable
# reporting the EDA information
# create pdf file. file name is EDA_Report.pdf
eda_report(carseats, US)

# create pdf file. file name is EDA.pdf
eda_report(carseats, "US", output_file = "EDA.pdf")

# create pdf file. file name is EDA.pdf and not browse
eda_report(carseats, "US", output_dir = ".", output_file = "EDA.pdf", browse = FALSE)

# create html file. file name is EDA_Report.html
eda_report(carseats, "US", output_format = "html")

# create html file. file name is EDA.html
eda_report(carseats, US, output_format = "html", output_file = "EDA.html")

## target variable is numerical variable
# reporting the EDA information
eda_report(carseats, Sales)

# create pdf file. file name is EDA2.pdf
eda_report(carseats, "Sales", output_file = "EDA2.pdf")

# create html file. file name is EDA_Report.html
eda_report(carseats, "Sales", output_format = "html")

# create html file. file name is EDA2.html
eda_report(carseats, Sales, output_format = "html", output_file = "EDA2.html")

## target variable is null
# reporting the EDA information
```
eda_report(carseats)

create pdf file. file name is EDA2.pdf
eda_report(carseats, output_file = "EDA2.pdf")

create html file. file name is EDA_Report.html
eda_report(carseats, output_format = "html")

create html file. file name is EDA2.html
eda_report(carseats, output_format = "html", output_file = "EDA2.html")

eda_report.tbl_dbi Reporting the information of EDA for table of the DBMS

Description
The eda_report() report the information of Exploratory data analysis for object inheriting from the DBMS table through tbl_dbi

Usage
S3 method for class 'tbl_dbi'
eda_report(.data, target = NULL,
 output_format = c("pdf", "html"), output_file = NULL,
 font_family = NULL, output_dir = tempdir(), in_database = FALSE,
 collect_size = Inf, ...)

Arguments
.data a tbl_dbi.
target target variable.
output_format report output type. Choose either "pdf" and "html". "pdf" create pdf file by knitr::knit(). "html" create html file by rmarkdown::render().
output_file name of generated file. default is NULL.
font_family character. font family name for figure in pdf.
output_dir name of directory to generate report file. default is tempdir().
in_database Specifies whether to perform in-database operations. If TRUE, most operations are performed in the DBMS. if FALSE, table data is taken in R and operated in-memory. Not yet supported in_database = TRUE.
collect_size a integer. The number of data samples from the DBMS to R. Applies only if in_database = FALSE.
... arguments to be passed to methods.
Details

Generate generalized data EDA reports automatically. You can choose to output to pdf and html files. This is useful for EDA a data frame with a large number of variables than data with a small number of variables. For pdf output, Korean Gothic font must be installed in Korean operating system.

Reported information

The EDA process will report the following information:

- Introduction
 - Information of Dataset
 - Information of Variables
 - About EDA Report
- Univariate Analysis
 - Descriptive Statistics
 - Normality Test of Numerical Variables
 * Statistics and Visualization of (Sample) Data
- Relationship Between Variables
 - Correlation Coefficient
 * Correlation Coefficient by Variable Combination
 * Correlation Plot of Numerical Variables
- Target based Analysis
 - Gruped Descriptive Statistics
 * Gruped Numerical Variables
 * Gruped Categorical Variables
 - Gruped Relationship Between Variables
 * Gruped Correlation Coefficient
 * Gruped Correlation Plot of Numerical Variables

See vignette("EDA") for an introduction to these concepts.

See Also

eda_report.data.frame.

Examples

library(dplyr)

Generate data for the example
carseats <- ISLR::Carseats
carseats[sample(seq(NROW(carseats)), 20), "Income"] <- NA
carseats[sample(seq(NROW(carseats)), 5), "Urban"] <- NA
connect DBMS
con_sqlite <- DBI::dbConnect(RSQLite::SQLite(), "::memory:"
)

copy cars to the DBMS with a table named TB_CARSEATS
copy_to(con_sqlite, cars, name = "TB_CARSEATS", overwrite = TRUE)

target variable is categorical variable
reporting the EDA information
create pdf file. file name is EDA_Report.pdf
con_sqlite %>%
 tbl("TB_CARSEATS") %>%
 eda_report(US)

create pdf file. file name is EDA.pdf
con_sqlite %>%
 tbl("TB_CARSEATS") %>%
 eda_report("US", output_file = "EDA.pdf")

create html file. file name is EDA_Report.html
con_sqlite %>%
 tbl("TB_CARSEATS") %>%
 eda_report("US", output_format = "html")

create html file. file name is EDA.html
con_sqlite %>%
 tbl("TB_CARSEATS") %>%
 eda_report(US, output_format = "html", output_file = "EDA.html")

target variable is numerical variable
reporting the EDA information, and collect size is 350
con_sqlite %>%
 tbl("TB_CARSEATS") %>%
 eda_report(Sales, collect_size = 350)

create pdf file. file name is EDA2.pdf
con_sqlite %>%
 tbl("TB_CARSEATS") %>%
 eda_report("Sales", output_file = "EDA2.pdf")

create html file. file name is EDA_Report.html
con_sqlite %>%
 tbl("TB_CARSEATS") %>%
 eda_report("Sales", output_format = "html")

create html file. file name is EDA2.html
con_sqlite %>%
 tbl("TB_CARSEATS") %>%
 eda_report(Sales, output_format = "html", output_file = "EDA2.html")

target variable is null
reporting the EDA information
con_sqlite %>%
 tbl("TB_CARSEATS") %>%
find_class

extract variable names or indices of a specific class

Description

The find_class() extracts variable information having a certain class from an object inheriting data.frame.

Usage

find_class(df, type = c("numerical", "categorical", "categorical2"), index = TRUE)

Arguments

df a data.frame or objects inheriting from data.frame
type character. Defines a group of classes to be searched. "numerical" searches for "numeric" and "integer" classes, "categorical" searches for "factor" and "ordered" classes. "categorical2" adds "character" class to "categorical".
index logical. If TRUE is return numeric vector that is variables index. and if FALSE is return character vector that is variables name. defualt is TRUE.

Value

character vector or numeric vector. The meaning of vector according to data type is as follows.

- character vector : variables name
- numeric vector : variables index
find_na

Finding variables including missing values

Description

Find the variable that contains the missing value in the object that inherits the data.frame or data.frame.

Usage

find_na(.data, index = TRUE, rate = FALSE)

Arguments

.data a data.frame or a tbl_df.
index logical. When representing the information of a variable including missing values, specify whether or not the variable is represented by an index. Returns an index if TRUE or a variable names if FALSE.
rate logical. If TRUE, returns the percentage of missing values in the individual variable.

Value

Information on variables including missing values.

See Also

get_class.

Examples

Not run:
data.frame
find_class(iris, "numerical")
find_class(iris, "numerical", index = FALSE)
find_class(iris, "categorical")
find_class(iris, "categorical", index = FALSE)

tbl_df
find_class(ISLR::Carseats, "numerical")
find_class(ISLR::Carseats, "numerical", index = FALSE)
find_class(ISLR::Carseats, "categorical")
find_class(ISLR::Carseats, "categorical", index = FALSE)

type is "categorical2"
iris2 <- data.frame(iris, char = "chars",
stringsAsFactors = FALSE)
find_class(iris2, "categorical", index = FALSE)
find_class(iris2, "categorical2", index = FALSE)

End(Not run)
find_outliers

Finding variables including outliers

Find the numerical variable that contains outliers in the object that inherits the data.frame or data.frame.

Usage

find_outliers(.data, index = TRUE, rate = FALSE)

Arguments

.data a data.frame or a tbl_df.
index logical. When representing the information of a variable including outliers, specify whether or not the variable is represented by an index. Returns an index if TRUE or a variable names if FALSE.
rate logical. If TRUE, returns the percentage of outliers in the individual variable.

Value

Information on variables including outliers.
find_skewness

See Also

find_na, imputate_outlier.

Examples

Not run:
Not run:
Generate data for the example
carseats <- ISLR::Carseats
carseats[sample(seq(NROW(carseats)), 20), "Income"] <- NA
carseats[sample(seq(NROW(carseats)), 5), "Urban"] <- NA

find_outliers(carseats)

find_outliers(carseats, index = FALSE)

find_outliers(carseats, rate = TRUE)

using dplyr -------------------------------------
library(dplyr)

Perform simple data quality diagnosis of variables with outliers.
carseats %>%
 select(find_outliers(.)) %>%
 diagnose()

End(Not run)

find_skewness

Finding skewed variables

Description

Find the numerical variable that skewed variable that inherits the data.frame or data.frame.

Usage

find_skewness(.data, index = TRUE, value = FALSE, thres = NULL)

Arguments

.data a data.frame or a tbl_df.
index logical. When representing the information of a skewed variable, specify whether or not the variable is represented by an index. Returns an index if TRUE or a variable names if FALSE.
value logical. If TRUE, returns the skewness value in the individual variable.
thres Returns a skewness threshold value that has an absolute skewness greater than thres. The default is NULL to ignore the threshold. but, If value = TRUE, default to 0.5.
Value

Information on variables including skewness.

See Also

find_na, find_outliers.

Examples

```r
## Not run:
# Generate data for the example
carseats <- ISLR::Carseats
carseats[sample(seq(NROW(carseats)), 20), "Income"] <- NA
carseats[sample(seq(NROW(carseats)), 5), "Urban"] <- NA

find_skewness(carseats)

find_skewness(carseats, index = FALSE)

find_skewness(carseats, thres = 0.1)

find_skewness(carseats, value = TRUE)

find_skewness(carseats, value = TRUE, thres = 0.1)

## using dplyr -------------------------------------
library(dplyr)

# Perform simple data quality diagnosis of variables with outliers.
carseats %>%
  select(find_skewness(.)) %>%
  diagnose()

## End(Not run)
```

get_class

Extracting a class of variables

Description

The get_class() gets class of variables in data.frame or tbl_df.

Usage

get_class(df)

Arguments

df a data.frame or objects inheriting from data.frame
get_column_info

Value

a data.frame Variables of data.frame is as follows.

- variable : variables name
- class : class of variables

See Also

find_class.

Examples

Not run:
data.frame
get_class(iris)

tbl_df
get_class(ggplot2::diamonds)

library(dplyr)
get_class(ggplot2::diamonds) %>%
 filter(class %in% c("integer", "numeric"))

End(Not run)

get_column_info Describe column of table in the DBMS

Description

The get_column_info() retrieves the column information of the DBMS table through the tbl_bdi object of dplyr.

Usage

get_column_info(df)

Arguments

df a tbl_bdi.

Value

An object of data.frame.
Column information of the DBMS table

- **SQLite DBMS connected RSQLite::SQLite()**:
 - name: column name
 - type: data type in R

- **MySQL/MariaDB DBMS connected RMySQL::MySQL()**:
 - name: column name
 - Sclass: data type in R
 - type: data type of column in the DBMS
 - length: data length in the DBMS

- **Oracle DBMS connected ROracle::dbConnect()**:
 - name: column name
 - Sclass: column type in R
 - type: data type of column in the DBMS
 - len: length of column(CHAR/VARCHAR/VARCHAR2 data type) in the DBMS
 - precision: precision of column(NUMBER data type) in the DBMS
 - scale: decimal places of column(NUMBER data type) in the DBMS
 - nullOK: nullability

Examples

```r
library(dplyr)

# Generate data for the example
carseats <- ISLR::Carseats
carseats[sample(seq(NROW(carseats)), 20), "Income"] <- NA
carseats[sample(seq(NROW(carseats)), 5), "Urban"] <- NA

# connect DBMS
con_sqlite <- DBI::dbConnect(RSQLite::SQLite(), ":memory:"

# copy carseats to the DBMS with a table named TB_CARSEATS
copy_to(con_sqlite, carseats, name = "TB_CARSEATS", overwrite = TRUE)

con_sqlite %>%
tbl("TB_CARSEATS") %>%
get_column_info
```

get_os

Finding Users Machine’s OS

Description

Get the operating system that users machines.
Usage

get_os()

Value

OS names. "windows" or "osx" or "linux"

Examples

get_os()

imputate_na
Impute Missing values

Description

Missing values are imputated with some representative values and statistical methods.

Usage

imputate_na(.data, xvar, yvar, method, seed, print_flag, no_attrs)

Arguments

- `.data`
a data.frame or a `tbl_df`.
- `xvar`
variable name to replace missing value.
- `yvar`
target variable.
- `method`
method of missing values imputation.
- `seed`
integer. the random seed used in mice. only used "mice" method.
- `print_flag`
logical. If TRUE, mice will print history on console. Use print_flag=FALSE for silent computation. Used only when method is "mice".
- `noAttrs`
logical. If TRUE, return numerical variable or categorical variable. else If FALSE, imputation class.

Details

imputate_na () creates an imputation class. The ‘imputation’ class includes missing value position, imputed value, and method of missing value imputation, etc. The ‘imputation’ class compares the imputed value with the original value to help determine whether the imputed value is used in the analysis.

See vignette("transformation") for an introduction to these concepts.
Value

An object of imputation class. or numerical variable or categorical variable. If no_attrs is FALSE then return imputation class, else no_attrs is TRUE then return numerical vector or factor. Attributes of imputation class is as follows.

- var_type: the data type of predictor to replace missing value.
- method: method of missing value imputation.
 - predictor is numerical variable
 * "mean": arithmetic mean
 * "median": median
 * "mode": mode
 * "knn": K-nearest neighbors
 * "rpart": Recursive Partitioning and Regression Trees
 * "mice": Multivariate Imputation by Chained Equations
 - predictor is categorical variable
 * "mode": mode
 * "rpart": Recursive Partitioning and Regression Trees
 * "mice": Multivariate Imputation by Chained Equations
- na_pos: position of missing value in predictor.
- seed: the random seed used in mice. only used "mice" method.
- type: "missing values". type of imputation.
- message: a message tells you if the result was successful.
- success: Whether the imputation was successful.

See Also

imputate_outlier.

Examples

```r
# Generate data for the example
carseats <- ISLR::Carseats
carseats[sample(seq(NROW(carseats)), 20), "Income"] <- NA
carseats[sample(seq(NROW(carseats)), 5), "Urban"] <- NA

# Replace the missing value of the Income variable with median
imputate_na(carseats, Income, method = "median")

# Replace the missing value of the Income variable with rpart
# The target variable is US.
imputate_na(carseats, Income, US, method = "rpart")

# Replace the missing value of the Urban variable with median
imputate_na(carseats, Urban, method = "mode")
```
Replace the missing value of the Urban variable with mice
The target variable is US.
impute_na(carseats, Urban, US, method = "mice")

using dplyr -------------------------------------
library(dplyr)

The mean before and after the imputation of the Income variable
carseats %>%
 mutate(Income_imp = imputate_na(carseats, Income, US, method = "knn", no_attrs = TRUE)) %>%
 group_by(US) %>%
 summarise(orig = mean(Income, na.rm = TRUE),
 imputation = mean(Income_imp))

If the variable of interest is a numerical variable
income <- imputate_na(carseats, Income, US, method = "rpart")
income
summary(income)
plot(income)

If the variable of interest is a categorical variable
urban <- imputate_na(carseats, Urban, US, method = "mice")
urban
summary(urban)
plot(urban)

imputate_outlier
Impute Outliers

Description

Outliers are imputated with some representative values and statistical methods.

Usage

```r
imputate_outlier(.data, xvar, method, no_attrs)
```

Arguments

- `.data` : a data.frame or a `tbl_df`
- `xvar` : variable name to replace missing value.
- `method` : method of missing values imputation.
- `no_attrs` : logical. If TRUE, return numerical variable or categorical variable. else If FALSE, imputation class.
Details

`imputate_outlier()` creates an imputation class. The ‘imputation’ class includes missing value position, imputated value, and method of missing value imputation, etc. The ‘imputation’ class compares the imputated value with the original value to help determine whether the imputated value is used in the analysis.

See vignette("transformation") for an introduction to these concepts.

Value

An object of imputation class, or numerical variable. If `no_attrs` is FALSE then return imputation class, else no_attrs is TRUE then return numerical vector. Attributes of imputation class is as follows.

- `method`: method of missing value imputation.
 - predictor is numerical variable
 * "mean": arithmetic mean
 * "median": median
 * "mode": mode
 * "capping": Impute the upper outliers with 95 percentile, and Impute the bottom outliers with 5 percentile.
 - `outlier_pos`: position of outliers in predictor.
 - `outliers`: outliers. outliers corresponding to outlier_pos.
 - `type`: "outliers", type of imputation.

See Also

`imputate_na`.

Examples

```r
# Generate data for the example
carseats <- ISLR::Carseats
carseats[sample(seq(NROW(carseats)), 20), "Income"] <- NA
carseats[sample(seq(NROW(carseats)), 5), "Urban"] <- NA

# Replace the missing value of the Price variable with median
imputate_outlier(carseats, Price, method = "median")

# Replace the missing value of the Price variable with rpart
# The target variable is US.
imputate_outlier(carseats, Price, method = "capping")

## using dplyr -------------------------------
library(dplyr)

carseats %>%
  mutate(Price_imp = imputate_outlier(carseats, Price, method = "capping", noAttrs = TRUE)) %>%
```
```r
# Group by the US
group_by(US) %>%
  summarise(orig = mean(Price, na.rm = TRUE),
            imputation = mean(Price_imp, na.rm = TRUE))

# If the variable of interest is a numerical variable
price <- impute_outlier(carseats, Price)
price
summary(price)
plot(price)
```

normality
Performs the Shapiro-Wilk test of normality

Description

The `normality()` performs Shapiro-Wilk test of normality of numeric values.

Usage

```r
normality(.data, ...)
```

Arguments

- `.data`
 a data.frame or a `tbl_df`.

- `...`
 one or more unquoted expressions separated by commas. You can treat variable names like they are positions. Positive values select variables; negative values to drop variables. If the first expression is negative, `normality()` will automatically start with all variables. These arguments are automatically quoted and evaluated in a context where column names represent column positions. They support unquoting and splicing.

- `sample`
 the number of samples to perform the test.

See vignette("EDA") for an introduction to these concepts.

Details

This function is useful when used with the `group_by` function of the `dplyr` package. If you want to test by level of the categorical data you are interested in, rather than the whole observation, you can use `group_if` as the `group_by` function. This function is computed `shapiro.test` function.

Value

An object of the same class as `.data`.

Normality test information

The information derived from the numerical data test is as follows.

- **statistic**: the value of the Shapiro-Wilk statistic.
- **p_value**: an approximate p-value for the test. This is said in Roystion (1995) to be adequate for p_value < 0.1.
- **sample**: the number of samples to perform the test. The number of observations supported by the stats::shapiro.test function is 3 to 5000.

See Also

normality.tbl_dbi, diagnose_numeric.data.frame, describe.data.frame, plot_normality.data.frame.

Examples

```r
# Generate data for the example
carseats <- ISLR::Carseats
carseats[sample(seq(NROW(carseats)), 20), "Income"] <- NA
carseats[sample(seq(NROW(carseats)), 5), "Urban"] <- NA

# Normality test of numerical variables
normality(carseats)

# Select the variable to describe
normality(carseats, Sales, Price)
normality(carseats, -Sales, -Price)
normality(carseats, 1)
normality(carseats, Sales, Price, sample = 300)

# Using dplyr::grouped_dt
library(dplyr)
gdata <- group_by(carseats, ShelveLoc, US)
normality(gdata, "Sales")
normality(gdata, sample = 250)

# Using pipes ------------------------------
# Normality test of all numerical variables
carseats %>%
  normality()

# Positive values select variables
carseats %>%
  normality(Sales, Price)

# Positions values select variables
carseats %>%
  normality(1)

# Using pipes & dplyr -----------------------
```
Test all numerical variables by 'ShelveLoc' and 'US',
and extract only those with 'ShelveLoc' variable level is "Good".
carseats %>%
group_by(ShelveLoc, US) %>%
normality() %>%
filter(ShelveLoc == "Good")

extract only those with 'Urban' variable level is "Yes",
and test 'Sales' by 'ShelveLoc' and 'US'
carseats %>%
filter(Urban == "Yes") %>%
group_by(ShelveLoc, US) %>%
normality(Sales)

Test log(Income) variables by 'ShelveLoc' and 'US',
and extract only p.value greater than 0.01.
carseats %>%
mutate(log_income = log(Income)) %>%
group_by(ShelveLoc, US) %>%
normality(log_income) %>%
filter(p_value > 0.01)

normality.tbl_dbi
Performs the Shapiro-Wilk test of normality

Description

The normality() performs Shapiro-Wilk test of normality of numerical(INTEGER, NUMBER, etc.)
column of the DBMS table through tbl_dbi.

Usage

```r
## S3 method for class 'tbl_dbi'
normality(.data, ..., sample = 5000,
in_database = FALSE, collect_size = Inf)
```

Arguments

- `.data`
a tbl_dbi.

- `...`
one or more unquoted expressions separated by commas. You can treat variable
names like they are positions. Positive values select variables; negative values to
drop variables. If the first expression is negative, normality() will automatically
start with all variables. These arguments are automatically quoted and evaluated
in a context where column names represent column positions. They support
unquoting and splicing.

- `sample`
the number of samples to perform the test.
in_database Specifies whether to perform in-database operations. If TRUE, most operations are performed in the DBMS. If FALSE, table data is taken in R and operated in-memory. Not yet supported in_database = TRUE.

collect_size a integer. The number of data samples from the DBMS to R. Applies only if in_database = FALSE.
See vignette("EDA") for an introduction to these concepts.

Details
This function is useful when used with the group_by function of the dplyr package. If you want to test by level of the categorical data you are interested in, rather than the whole observation, you can use group_if as the group_by function. This function is computed shapiro.test function.

Value
An object of the same class as .data.

Normality test information
The information derived from the numerical data test is as follows.

- statistic: the value of the Shapiro-Wilk statistic.
- p_value: an approximate p-value for the test. This is said in Roystion(1995) to be adequate for p_value < 0.1.
- sample: the number of samples to perform the test. The number of observations supported by the stats::shapiro.test function is 3 to 5000.

See Also
normality.data.frame, diagnose_numeric.tbl_dbi, describe.tbl_dbi, plot_normality.tbl_dbi.

Examples

library(dplyr)

Generate data for the example
carseats <- ISLR::Carseats
carseats[sample(seq(NROW(carseats)), 20), "Income"] <- NA
carseats[sample(seq(NROW(carseats)), 5), "Urban"] <- NA

connect DBMS
con_sqlite <- DBI::dbConnect(RSQLite::SQLite(), "memory:"

copy carseats to the DBMS with a table named TB_CARSEATS
copy_to(con_sqlite, carseats, name = "TB_CARSEATS", overwrite = TRUE)

Using pipes ---------------------------------------
Normality test of all numerical variables
con_sqlite %>%
tbl("TB_CARSEATS") %>%
 normality()

Positive values select variables, and In-memory mode and collect size is 200
con_sqlite %>%
 tbl("TB_CARSEATS") %>%
 normality(Sales, Price, collect_size = 200)

Positions values select variables
con_sqlite %>%
 tbl("TB_CARSEATS") %>%
 normality(1)

Using pipes & dplyr -------------------------
Test all numerical variables by 'ShelveLoc' and 'US',
and extract only those with 'ShelveLoc' variable level is "Good".
con_sqlite %>%
 tbl("TB_CARSEATS") %>%
 group_by(ShelveLoc, US) %>%
 normality() %>%
 filter(ShelveLoc == "Good")

extract only those with 'Urban' variable level is "Yes",
and test 'Sales' by 'ShelveLoc' and 'US'
con_sqlite %>%
 tbl("TB_CARSEATS") %>%
 filter(Urban == "Yes") %>%
 group_by(ShelveLoc, US) %>%
 normality(Sales)

Test log(Income) variables by 'ShelveLoc' and 'US',
and extract only p.value greater than 0.01.

SQLite extension functions for log
RSSQLite::initExtension(con_sqlite)

con_sqlite %>%
 tbl("TB_CARSEATS") %>%
 mutate(log_income = log(Income)) %>%
 group_by(ShelveLoc, US) %>%
 normality(log_income) %>%
 filter(p_value > 0.01)
Description

Visualize both plots on a single screen. The plot at the top is a histogram representing the frequency of the level. The plot at the bottom is a bar chart representing the frequency of the level.

Usage

```r
## S3 method for class 'bins'
plot(x, ...)
```

Arguments

- `x`: an object of class "bins", usually, a result of a call to binning().
- `...`: arguments to be passed to methods, such as graphical parameters (see par).

See Also

`binning`, `print.bins`, `summary.bins`.

Examples

```r
# Generate data for the example
carseats <- ISLR::Carseats
carseats[sample(seq(NROW(carseats)), 20), "Income"] <- NA
carseats[sample(seq(NROW(carseats)), 5), "Urban"] <- NA

# Binning the carat variable. default type argument is "quantile"
bin <- binning(carseats$Income, nbins = 5)
plot(bin)
# Using another type argument
bin <- binning(carseats$Income, nbins = 5, type = "equal")
plot(bin)
bin <- binning(carseats$Income, nbins = 5, type = "pretty")
plot(bin)
bin <- binning(carseats$Income, nbins = 5, type = "kmeans")
plot(bin)
bin <- binning(carseats$Income, nbins = 5, type = "bclust")
plot(bin)
```

Description

Visualize two kinds of plot by attribute of ‘imputation’ class. The imputation of a numerical variable is a density plot, and the imputation of a categorical variable is a bar plot.
Usage

```r
## S3 method for class 'imputation'
plot(x, ...)
```

Arguments

- **x**: an object of class "imputation", usually, a result of a call to `imputate_na()` or `imputate_outlier()`.
- **...**: arguments to be passed to methods, such as graphical parameters (see `par`). Only applies when the model argument is `TRUE`, and is used for ... of the `plot.lm()` function.

See Also

- `imputate_na`
- `imputate_outlier`
- `summary.imputation`

Examples

```r
# Generate data for the example
carseats <- ISLR::Carseats
carseats[sample(seq(NROW(carseats)), 20), "Income"] <- NA
carseats[sample(seq(NROW(carseats)), 5), "Urban"] <- NA

carseats <- ISLR::Carseats
carseats[sample(seq(NROW(carseats)), 20), "Income"] <- NA
carseats[sample(seq(NROW(carseats)), 5), "Urban"] <- NA

# Impute missing values -----------------------------
# If the variable of interest is a numerical variable
income <- imputate_na(carseats, Income, US, method = "rpart")
income
summary(income)
plot(income)

# Impute missing values -----------------------------
# If the variable of interest is a categorical variable
urban <- imputate_na(carseats, Urban, US, method = "mice")
urban
summary(urban)
plot(urban)

# Impute outliers -----------------------------
# If the variable of interest is a numerical variable
price <- imputate_outlier(carseats, Price, method = "capping")
price
summary(price)
plot(price)
```
plot.optimal_bins

Visualize Distribution for an "optimal_bins" Object

Description
It generates plots for distribution, bad rate, and weight of evidence after running smbinning and saving its output.
See vignette("transformation") for an introduction to these concepts.

Usage
S3 method for class 'optimal_bins'
plot(x, type = c("dist", "goodrate", "badrate", "WoE"), sub = "", ...)

Arguments
x an object of class "optimal_bins", usually, a result of a call to binning_by().
type options for visualization. Distribution ("dist"), Good Rate ("goodrate"), Bad Rate ("badrate"), and Weight of Evidence ("WoE").
sub subtitle for the chart (optional).
... arguments to be passed to methods, such as graphical parameters (see par). only applies to the first graph that is implemented with the boxplot() function.

See Also
binning_by, plot.bins, smbinning.plot.

Examples
Generate data for the example
carseats <- ISLR::Carseats
carseats[sample(seq(NROW(carseats)), 20), "Income"] <- NA
carseats[sample(seq(NROW(carseats)), 5), "Urban"] <- NA

optimal binning
bin <- binning_by(carseats, "US", "Advertising")
bin

summary optimal_bins class
summary(bin)

information value
attr(bin, "iv")

information value table
attr(bin, "ivtable")
visualize optimal_bins class
plot(bin, sub = "bins of Advertising variable")

plot.relate
Visualize Information for an "relate" Object

Description

Visualize four kinds of plot by attribute of relate class.

Usage

```r
## S3 method for class 'relate'
plot(x, model = FALSE, hex_thres = 1000,
     pal = RColorBrewer::brewer.pal(7, "YlOrRd"), ...)
```

Arguments

- `x`
an object of class "relate", usually, a result of a call to `relate()`.

- `model`
logical. This argument selects whether to output the visualization result to the visualization of the object of the lm model to grasp the relationship between the numerical variables.

- `hex_thres`
an integer. Use only when the target and predictor are numeric variables. Used when the number of observations is large. Specify the threshold of the observations to draw hexbin plots that are not scatterplots. The default value is 1000.

- `pal`
Color palette to paint hexabin. Use only when the target and predictor are numeric variables. Applied only when the number of observations is greater than `hex_thres`.

- `...`
arguments to be passed to methods, such as graphical parameters (see par). only applies when the model argument is TRUE, and is used for `...` of the `plot.lm()` function.

See Also

`relate`, `print.relate`.

Examples

```r
# Generate data for the example
carseats <- ISLR::Carseats
carseats[sample(seq(NROW(carseats)), 20), "Income"] <- NA
carseats[sample(seq(NROW(carseats)), 5), "Urban"] <- NA

# If the target variable is a categorical variable
categ <- target_by(carseats, US)

# If the variable of interest is a numerical variable
```
cat_num <- relate(categ, Sales)
cat_num
summary(cat_num)
plot(cat_num)

If the variable of interest is a categorical variable
cat_cat <- relate(categ, ShelveLoc)
cat_cat
summary(cat_cat)
plot(cat_cat)

#---
If the target variable is a categorical variable
num <- target_by(carseats, Sales)

If the variable of interest is a numerical variable
num_num <- relate(num, Price)
num_num
summary(num_num)
plot(num_num)
plot(num_num, hex_thres = 400)

If the variable of interest is a categorical variable
num_cat <- relate(num, ShelveLoc)
num_cat
summary(num_cat)
plot(num_cat)

plot.transform
Visualize Information for an "transform" Object

Description

Visualize two kinds of plot by attribute of 'transform' class. The Transformation of a numerical variable is a density plot.

Usage

S3 method for class 'transform'
plot(x, ...)

Arguments

x an object of class "transform", usually, a result of a call to transform()

... arguments to be passed to methods, such as graphical parameters (see par).

See Also

transform, summary.transform.
Examples

```r
# Generate data for the example
carseats <- ISLR::Carseats
carseats[sample(seq(NROW(carseats)), 20), "Income"] <- NA
carseats[sample(seq(NROW(carseats)), 5), "Urban"] <- NA

# Standardization ------------------------------
advertising_minmax <- transform(carseats$Advertising, method = "minmax")
advertising_minmax
summary(advertising_minmax)
plot(advertising_minmax)

# Resolving Skewness --------------------------
advertising_log <- transform(carseats$Advertising, method = "log")
advertising_log
summary(advertising_log)
plot(advertising_log)
```

plot_correlate

Visualize correlation plot of numerical data

Description

The `plot_correlate()` visualize correlation plot for find relationship between two numerical variables.

Usage

```r
plot_correlate(.data, ...)
```

```r
## S3 method for class 'data.frame'
plot_correlate(.data, ...)
```

Arguments

- `.data` a data.frame or a `tbl_df`.
- `...` one or more unquoted expressions separated by commas. You can treat variable names like they are positions. Positive values select variables; negative values to drop variables. If the first expression is negative, `plot_correlate()` will automatically start with all variables. These arguments are automatically quoted and evaluated in a context where column names represent column positions. They support unquoting and splicing. See vignette("EDA") for an introduction to these concepts.

Details

The scope of the visualization is the provide a correlation information. Since the plot is drawn for each variable, if you specify more than one variable in the `...` argument, the specified number of plots are drawn.
See Also

plot_correlate.tbl_dbi, plot_outlier.data.frame.

Examples

Generate data for the example
carseats <- ISLR::Carseats
carseats[sample(seq(NROW(carseats)), 20), "Income"] <- NA
carseats[sample(seq(NROW(carseats)), 5), "Urban"] <- NA

Visualize correlation plot of all numerical variables
plot_correlate(carseats)

Select the variable to compute
plot_correlate(carseats, Sales, Price)
plot_correlate(carseats, -Sales, -Price)
plot_correlate(carseats, "Sales", "Price")
plot_correlate(carseats, 1)

Using dplyr::grouped_dt
library(dplyr)
gdata <- group_by(carseats, ShelveLoc, US)
plot_correlate(gdata, "Sales")
plot_correlate(gdata)

Using pipes ---------------------------------
Visualize correlation plot of all numerical variables

carseats %>%
 plot_correlate()

Positive values select variables

carseats %>%
 plot_correlate(Sales, Price)

Negative values to drop variables

carseats %>%
 plot_correlate(-Sales, -Price)

Positions values select variables

carseats %>%
 plot_correlate(1)

Positions values select variables

carseats %>%
 plot_correlate(-1, -2, -3, -5, -6)

Using pipes & dplyr -------------------------
Visualize correlation plot of 'Sales' variable by 'ShelveLoc'
and 'US' variables.
carseats %>%
 group_by(ShelveLoc, US) %>%
 plot_correlate(Sales)

Extract only those with 'ShelveLoc' variable level is "Good",
and visualize correlation plot of 'Sales' variable by 'Urban'
and 'US' variables.
carseats %>%
 filter(ShelveLoc == "Good") %>%
 group_by(Urban, US) %>%
 plot_correlate(Sales)

plot_correlate.tbl_dbi

Visualize correlation plot of numerical data

Description

The `plot_correlate()` visualize correlation plot for find relationship between two numerical (INTEGER, NUMBER, etc.) column of the DBMS table through tbl_dbi.

Usage

```r
## S3 method for class 'tbl_dbi'
plot_correlate(.data, ..., in_database = FALSE, collect_size = Inf)
```

Arguments

- `.data` a tbl_dbi.
- `...` one or more unquoted expressions separated by commas. You can treat variable names like they are positions. Positive values select variables; negative values to drop variables. If the first expression is negative, `plot_correlate()` will automatically start with all variables. These arguments are automatically quoted and evaluated in a context where column names represent column positions. They support unquoting and splicing.
- `in_database` Specifies whether to perform in-database operations. If TRUE, most operations are performed in the DBMS. if FALSE, table data is taken in R and operated in-memory. Not yet supported in_database = TRUE.
- `collect_size` a integer. The number of data samples from the DBMS to R. Applies only if in_database = FALSE. See vignette("EDA") for an introduction to these concepts.

Details

The scope of the visualization is the provide a correlation information. Since the plot is drawn for each variable, if you specify more than one variable in the `...` argument, the specified number of plots are drawn.

See Also

`plot_correlate.data.frame`, `plot_outlier.tbl_dbi`.
Examples

library(dplyr)

Generate data for the example
carseats <- ISLR::Carseats
carseats[sample(seq(NROW(carseats)), 20), "Income"] <- NA
carseats[sample(seq(NROW(carseats)), 5), "Urban"] <- NA

connect DBMS
con_sqlite <- DBI::dbConnect(RSQLite::SQLite(), ":memory:"

copy carseats to the DBMS with a table named TB_CARSEATS
copy_to(con_sqlite, carseats, name = "TB_CARSEATS", overwrite = TRUE)

Using pipes -----------------------------------
Visualize correlation plot of all numerical variables
con_sqlite %>%
tbl("TB_CARSEATS") %>%
plot_correlate()

Positive values select variables, and In-memory mode and collect size is 200
con_sqlite %>%
tbl("TB_CARSEATS") %>%
plot_correlate(Sales, Price, collect_size = 200)

Negative values to drop variables
con_sqlite %>%
tbl("TB_CARSEATS") %>%
plot_correlate(-Sales, -Price)

Positions values select variables
con_sqlite %>%
tbl("TB_CARSEATS") %>%
plot_correlate(1)

Positions values select variables
con_sqlite %>%
tbl("TB_CARSEATS") %>%
plot_correlate(-1, -2, -3, -5, -6)

Using pipes & dplyr -------------------------
Visualize correlation plot of 'Sales' variable by 'ShelveLoc'
and 'US' variables.
con_sqlite %>%
tbl("TB_CARSEATS") %>%
group_by(ShelveLoc, US) %>%
plot_correlate(Sales)

Extract only those with 'ShelveLoc' variable level is "Good",
and visualize correlation plot of 'Sales' variable by 'Urban'
and 'US' variables.
con_sqlite %>%
plot("TB_CARSEATS") %>%
 filter(ShelveLoc == "Good") %>%
 group_by(Urban, US) %>%
 plot_correlate(Sales)

plot_normality

Plot distribution information of numerical data

Description

The `plot_normality()` visualize distribution information for normality test of the numerical data.

Usage

```r
plot_normality(.data, ...)
```

```r
## S3 method for class 'data.frame'
plot_normality(.data, ...)
```

Arguments

- `.data` a data.frame or a `tbl_df`.
- `...` one or more unquoted expressions separated by commas. You can treat variable names like they are positions. Positive values select variables; negative values to drop variables. If the first expression is negative, `plot_normality()` will automatically start with all variables. These arguments are automatically quoted and evaluated in a context where column names represent column positions. They support unquoting and splicing.

See vignette("EDA") for an introduction to these concepts.

Details

The scope of the visualization is the provide a distribution information. Since the plot is drawn for each variable, if you specify more than one variable in the `...` argument, the specified number of plots are drawn.

Distribution information

The plot derived from the numerical data visualization is as follows.

- histogram by original data
- q-q plot by original data
- histogram by log transfer data
- histogram by square root transfer data
See Also

plot_normality.tbl_dbi, plot_outlier.data.frame.

Examples

Generate data for the example
carseats <- ISLR::Carseats
carseats[sample(seq(NROW(carseats)), 20), "Income"] <- NA
carseats[sample(seq(NROW(carseats)), 5), "Urban"] <- NA

Visualization of all numerical variables
plot_normality(carseats)

Select the variable to plot
plot_normality(carseats, Income, Price)
plot_normality(carseats, -Income, -Price)
plot_normality(carseats, 1)

Using dplyr::grouped_dt
library(dplyr)
gdata <- group_by(carseats, ShelveLoc, US)
plot_normality(carseats)
plot_normality(carseats, "Sales")

Using pipes -----------------------------
Visualization of all numerical variables
carseats %>%
 plot_normality()

Positive values select variables
carseats %>%
 plot_normality(Income, Price)

Positions values select variables
carseats %>%
 plot_normality(1)

Using pipes & dplyr ---------------------
Plot 'Sales' variable by 'ShelveLoc' and 'US'
carseats %>%
 group_by(ShelveLoc, US) %>%
 plot_normality(Sales)

extract only those with 'ShelveLoc' variable level is "Good",
and plot 'Income' by 'US'
carseats %>%
 filter(ShelveLoc == "Good") %>%
 group_by(US) %>%
 plot_normality(Income)
Description

The `plot_normality()` visualize distribution information for normality test of the numerical (INTEGER, NUMBER, etc.) column of the DBMS table through `tbl_dbi`.

Usage

```r
## S3 method for class 'tbl_dbi'
plot_normality(.data, ..., in_database = FALSE,
               collect_size = Inf)
```

Arguments

- `.data` a `tbl_dbi`.
- `...` one or more unquoted expressions separated by commas. You can treat variable names like they are positions. Positive values select variables; negative values to drop variables. If the first expression is negative, `plot_normality()` will automatically start with all variables. These arguments are automatically quoted and evaluated in a context where column names represent column positions. They support unquoting and splicing.
- `in_database` Specifies whether to perform in-database operations. If TRUE, most operations are performed in the DBMS, if FALSE, table data is taken in R and operated in-memory. Not yet supported `in_database = TRUE`.
- `collect_size` a integer. The number of data samples from the DBMS to R. Applies only if `in_database = FALSE`. See vignette("EDA") for an introduction to these concepts.

Details

The scope of the visualization is the provide a distribution information. Since the plot is drawn for each variable, if you specify more than one variable in the `...` argument, the specified number of plots are drawn.

Distribution information

The plot derived from the numerical data visualization is as follows.

- histogram by original data
- q-q plot by original data
- histogram by log transfer data
- histogram by square root transfer data
See Also

plot_normality.data.frame, plot_outlier.tbl_dbi.

Examples

library(dplyr)

Generate data for the example
carseats <- ISLR::Carseats
carseats[sample(seq(NROW(carseats)), 20), "Income"] <- NA
carseats[sample(seq(NROW(carseats)), 5), "Urban"] <- NA

connect DBMS
con_sqlite <- DBI::dbConnect(RSQLite::SQLite(), ":memory:"

copy carseats to the DBMS with a table named TB_CARSEATS
copy_to(con_sqlite, carseats, name = "TB_CARSEATS", overwrite = TRUE)

Using pipes -----------------------------
Visualization of all numerical variables
con_sqlite %>%
tbl("TB_CARSEATS") %>%
plot_normality()

Positive values select variables, and In-memory mode and collect size is 200
con_sqlite %>%
tbl("TB_CARSEATS") %>%
plot_normality(Income, Price, collect_size = 200)

Positions values select variables
con_sqlite %>%
tbl("TB_CARSEATS") %>%
plot_normality(1)

Using pipes & dplyr ----------------------
Plot 'Sales' variable by 'ShelveLoc' and 'US'
con_sqlite %>%
tbl("TB_CARSEATS") %>%
group_by(ShelveLoc, US) %>%
plot_normality(Sales)

extract only those with 'ShelveLoc' variable level is "Good",
and plot 'Income' by 'US'
con_sqlite %>%
tbl("TB_CARSEATS") %>%
filter(ShelveLoc == "Good") %>%
group_by(US) %>%
plot_normality(Income)
Description
The `plot_outlier()` visualize outlier information for diagnosing the quality of the numerical data.

Usage

```r
plot_outlier(.data, ...)
```

```r
## S3 method for class 'data.frame'
plot_outlier(.data, ..., col = "lightblue")
```

Arguments

- `.data` a data.frame or a `tbl_df`.
- `...` one or more unquoted expressions separated by commas. You can treat variable names like they are positions. Positive values select variables; negative values to drop variables. If the first expression is negative, `plot_outlier()` will automatically start with all variables. These arguments are automatically quoted and evaluated in a context where column names represent column positions. They support unquoting and splicing.
- `col` a color to be used to fill the bars. The default is "lightblue".

Details
The scope of the diagnosis is the provide a outlier information. Since the plot is drawn for each variable, if you specify more than one variable in the `...` argument, the specified number of plots are drawn.

Outlier diagnostic information
The plot derived from the numerical data diagnosis is as follows.

- With outliers box plot
- Without outliers box plot
- With outliers histogram
- Without outliers histogram

See vignette("diagnosis") for an introduction to these concepts.

See Also

- `plot_outlier.tbl_dbi`
- `diagnose_outlier.data.frame`
Examples

Generate data for the example
carseats <- ISLR::Carseats
carseats[sample(seq(NROW(carseats)), 20), "Income"] <- NA
carseats[sample(seq(NROW(carseats)), 5), "Urban"] <- NA

Visualization of all numerical variables
plot_outlier(carseats)

Select the variable to diagnose
plot_outlier(carseats, Sales, Price)
plot_outlier(carseats, -Sales, -Price)
plot_outlier(carseats, "Sales", "Price")
plot_outlier(carseats, 6)

Using the col argument
plot_outlier(carseats, Sales, col = "gray")

Using pipes ---------------------------
library(dplyr)

Visualization of all numerical variables
carseats %>%
 plot_outlier()
Positive values select variables
carseats %>%
 plot_outlier(Sales, Price)
Negative values to drop variables
carseats %>%
 plot_outlier(-Sales, -Price)
Positions values select variables
carseats %>%
 plot_outlier(6)
Positions values select variables
carseats %>%
 plot_outlier(-1, -5)

Using pipes & dplyr -----------------
Visualization of numerical variables with a ratio of
outliers greater than 1%
carseats %>%
 plot_outlier(carseats %>%
 diagnose_outlier() %>%
 filter(outliers_ratio > 1) %>%
 select(variables) %>%
 pull())
Description

The `plot_outlier()` visualize outlier information for diagnosing the quality of the numerical (INTEGER, NUMBER, etc.) column of the DBMS table through `tbl_dbi`.

Usage

```r
## S3 method for class 'tbl_dbi'
plot_outlier(.data, ..., col = "lightblue",
             in_database = FALSE, collect_size = Inf)
```

Arguments

- `.data` a `tbl_dbi`.
- `...` one or more unquoted expressions separated by commas. You can treat variable names like they are positions. Positive values select variables; negative values to drop variables. If the first expression is negative, `plot_outlier()` will automatically start with all variables. These arguments are automatically quoted and evaluated in a context where column names represent column positions. They support unquoting and splicing.
- `col` a color to be used to fill the bars. The default is "lightblue".
- `in_database` Specifies whether to perform in-database operations. If TRUE, most operations are performed in the DBMS. if FALSE, table data is taken in R and operated in-memory. Not yet supported in `in_database = TRUE`.
- `collect_size` a integer. The number of data samples from the DBMS to R. Applies only if `in_database = FALSE`.

Details

The scope of the diagnosis is the provide a outlier information. Since the plot is drawn for each variable, if you specify more than one variable in the `...` argument, the specified number of plots are drawn.

Outlier diagnostic information

The plot derived from the numerical data diagnosis is as follows.

- With outliers box plot
- Without outliers box plot
- With outliers histogram
- Without outliers histogram

See vignette("diagonosis") for an introduction to these concepts.

See Also

`plot_outlier.data.frame`, `diagnose_outlier.tbl_dbi`
Examples

```r
library(dplyr)

# Generate data for the example
carseats <- ISLR::Carseats
carseats[sample(seq(NROW(carseats)), 20), "Income"] <- NA
carseats[sample(seq(NROW(carseats)), 5), "Urban"] <- NA

# connect DBMS
con_sqlite <- DBI::dbConnect(RSQLite::SQLite(), "/:memory:")

# copy carseats to the DBMS with a table named TB_CARSEATS
copy_to(con_sqlite, carseats, name = "TB_CARSEATS", overwrite = TRUE)

# Using pipes -----------------------------
# Visualization of all numerical variables
con_sqlite %>%
  tbl("TB_CARSEATS") %>%
  plot_outlier()

# Positive values select variables
con_sqlite %>%
  tbl("TB_CARSEATS") %>%
  plot_outlier(Sales, Price)

# Negative values to drop variables, and In-memory mode and collect size is 200
con_sqlite %>%
  tbl("TB_CARSEATS") %>%
  plot_outlier(-Sales, -Price, collect_size = 200)

# Positions values select variables
con_sqlite %>%
  tbl("TB_CARSEATS") %>%
  plot_outlier(6)

# Positions values select variables
carseats %>%
  plot_outlier(-1, -5)

# Using pipes & dplyr ---------------------
# Visualization of numerical variables with a ratio of
# outliers greater than 1%
con_sqlite %>%
  tbl("TB_CARSEATS") %>%
  plot_outlier(con_sqlite %>%
    tbl("TB_CARSEATS") %>%
    diagnose_outlier() %>%
    filter(outliers_ratio > 1) %>%
    select(variables) %>%
    pull())
```

print.relate

Summarizing relate information

Description

print and summary method for "relate" class.

Usage

S3 method for class 'relate'
print(x, ...)

Arguments

x an object of class "relate", usually, a result of a call to relate().

... further arguments passed to or from other methods.

Details

print.relate tries to be smart about formatting four kinds of relate. summary.relate tries to be smart about formatting four kinds of relate.

See Also

plot.relate.

Examples

Not run:
Generate data for the example
diamonds2 <- diamonds
diamonds2[sample(seq(NROW(diamonds2)), 250), "price"] <- NA
diamonds2[sample(seq(NROW(diamonds2)), 20), "clarity"] <- NA

Binning the carat variable. default type argument is "quantile"
bin <- binning(diamonds2$carat)

Print bins class object
bin

Summarise bins class object
summary(bin)

End(Not run)

Generate data for the example
carseats <- ISLR::Carseats
carseats[sample(seq(NROW(carseats)), 20), "Income"] <- NA
carseats[sample(seq(NROW(carseats)), 5), "Urban"] <- NA

If the target variable is a categorical variable
categ <- target_by(carseats, US)

If the variable of interest is a numerical variable
cat_num <- relate(categ, Sales)
cat_num
summary(cat_num)
plot(cat_num)

If the variable of interest is a categorical variable
cat_cat <- relate(categ, ShelveLoc)
cat_cat
summary(cat_cat)
plot(cat_cat)

##---
If the target variable is a categorical variable
num <- target_by(carseats, Sales)

If the variable of interest is a numerical variable
num_num <- relate(num, Price)
num_num
summary(num_num)
plot(num_num)

If the variable of interest is a categorical variable
num_cat <- relate(num, ShelveLoc)
num_cat
summary(num_cat)
plot(num_cat)

relate
Relationship between target variable and variable of interest

Description

The relationship between the target variable and the variable of interest (predictor) is briefly analyzed.

Usage

relate(.data, predictor)

Arguments

<table>
<thead>
<tr>
<th>.data</th>
<th>A target_df.</th>
</tr>
</thead>
<tbody>
<tr>
<td>predictor</td>
<td>variable of interest. predictor.</td>
</tr>
</tbody>
</table>

See vignette("relate") for an introduction to these concepts.
Details

Returns the four types of results that correspond to the combination of the target variable and the data type of the variable of interest.

- target variable: categorical variable
 - predictor: categorical variable
 * contingency table
 * c("xtabs", "table") class
 - predictor: numerical variable
 * descriptive statistic for each levels and total observation.

- target variable: numerical variable
 - predictor: categorical variable
 * ANOVA test. "lm" class.
 - predictor: numerical variable
 * simple linear model. "lm" class.

Value

An object of the class as relate. Attributes of relate class is as follows.

- target : name of target variable
- predictor : name of predictor
- model : levels of binned value.
- raw : table_df with two variables target and predictor.

Descriptive statistic information

The information derived from the numerical data describe is as follows.

- mean : arithmetic average
- sd : standard deviation
- se_mean : standard error mean. sd/sqrt(n)
- IQR : interquartile range (Q3-Q1)
- skewness : skewness
- kurtosis : kurtosis
- p25 : Q1. 25% percentile
- p50 : median. 50% percentile
- p75 : Q3. 75% percentile
- p01, p05, p10, p20, p30 : 1%, 5%, 20%, 30% percentiles
- p40, p60, p70, p80 : 40%, 60%, 70%, 80% percentiles
- p90, p95, p99, p100 : 90%, 95%, 99%, 100% percentiles
See Also

print.relate, plot.relate.

Examples

Generate data for the example
carseats <- ISLR::Carseats
carseats[sample(seq(NROW(carseats)), 20), "Income"] <- NA
carseats[sample(seq(NROW(carseats)), 5), "Urban"] <- NA

If the target variable is a categorical variable
categ <- target_by(carseats, US)

If the variable of interest is a numerical variable
cat_num <- relate(categ, Sales)
cat_num
summary(cat_num)
plot(cat_num)

If the variable of interest is a categorical variable
cat_cat <- relate(categ, ShelveLoc)
cat_cat
summary(cat_cat)
plot(cat_cat)

#---
If the target variable is a categorical variable
num <- target_by(carseats, Sales)

If the variable of interest is a numerical variable
num_num <- relate(num, Price)
num_num
summary(num_num)
plot(num_num)

If the variable of interest is a categorical variable
num_cat <- relate(num, ShelveLoc)
num_cat
summary(num_cat)
plot(num_cat)
Usage

```r
## S3 method for class 'bins'
summary(object, ...)
```

```r
## S3 method for class 'bins'
print(x, ...)
```

Arguments

- `object`: an object of class "bins" and "optimal_bins", usually, a result of a call to `binning()`.
- `...`: further arguments passed to or from other methods.
- `x`: an object of class "bins" and "optimal_bins", usually, a result of a call to `binning()`.

Details

`print.bins()` tries to be smart about formatting the frequency of bins, binned type, number of bins.

`summary.bins` tries to be smart about formatting the levels, frequency of levels(bins), the ratio of levels in total observations. And this information is data.frame object.

See vignette("transformation") for an introduction to these concepts.

Value

The function `summary.bins()` computes and returns a data.frame of summary statistics of the binned given in object. Variables of data frame is as follows.

- `levels`: levels of factor.
- `freq`: frequency of levels.
- `rate`: ratio of levels in total observations. it is not percentage.

See Also

`binning`

Examples

```r
# Generate data for the example
carseats <- ISLR::Carseats
carseats[sample(seq(NROW(carseats)), 20), "Income"] <- NA
carseats[sample(seq(NROW(carseats)), 5), "Urban"] <- NA

# Binning the carat variable. default type argument is "quantile"
bin <- binning(carseats$Income)

# Print bins class object
bin

# Summarize bins class object
summary(bin)
```
Summary.imputation
Summarizing imputation information

Description

print and summary method for "imputation" class.

Usage

```r
## S3 method for class 'imputation'
summary(object, ...)
```

Arguments

- `object` - an object of class "imputation", usually, a result of a call to `imputate_na()` or `imputate_outlier()`.
- `...` - further arguments passed to or from other methods.

Details

`summary.imputation` tries to be smart about formatting two kinds of imputation.

See Also

`imputate_na`, `imputate_outlier`, `summary.imputation`.

Examples

```r
# Generate data for the example
carseats <- ISLR::Carseats
carseats[sample(seq(NROW(carseats)), 20), "Income"] <- NA
carseats[sample(seq(NROW(carseats)), 5), "Urban"] <- NA

carseats
summary(carseats)
plot(carseats)

# If the variable of interest is a numerical variable
income <- imputate_na(carseats, Income, US, method = "rpart")
summary(income)
plot(income)

# If the variable of interest is a categorical variable
urban <- imputate_na(carseats, Urban, US, method = "mice")
summary(urban)
plot(urban)
```

Imputation outliers

```r
# If the variable of interest is a numerical variable
```
```r
price <- imputate_outlier(carseats, Price, method = "capping")
price
summary(price)
plot(price)
```

summary.transform
Summarizing transformation information

Description
print and summary method for "transform" class.

Usage
```r
## S3 method for class 'transform'
summary(object, ...)  
```

Arguments
- `object` an object of class "transform", usually, a result of a call to transform().
- `...` further arguments passed to or from other methods.

Details
summary.transform compares the distribution of data before and after data conversion.

See Also
- `transform`, `summary.transform`.

Examples
```r
# Generate data for the example
carseats <- ISLR::Carseats
carseats[sample(seq(NROW(carseats)), 20), "Income"] <- NA
carseats[sample(seq(NROW(carseats)), 5), "Urban"] <- NA

# Standardization -------------------------------
advertising_minmax <- transform(carseats$Advertising, method = "minmax")
advertising_minmax
summary(advertising_minmax)
plot(advertising_minmax)

# Resolving Skewness ---------------------------
advertising_log <- transform(carseats$Advertising, method = "log")
advertising_log
summary(advertising_log)
plot(advertising_log)
```
Description

In the data analysis, a target_df class is created to identify the relationship between the target variable and the other variable.

Usage

target_by(.data, target, ...)

S3 method for class 'data.frame'
target_by(.data, target, ...)

Arguments

.data a data.frame or a tbl_df.
target target variable.
... arguments to be passed to methods.

Details

Data analysis proceeds with the purpose of predicting target variables that correspond to the facts of interest, or examining associations and relationships with other variables of interest. Therefore, it is a major challenge for EDA to examine the relationship between the target variable and its corresponding variable. Based on the derived relationships, analysts create scenarios for data analysis.

target_by() inherits the grouped_df class and returns a target_df class containing information about the target variable and the variable.

See vignette("EDA") for an introduction to these concepts.

Value

an object of target_df class. Attributes of target_df class is as follows.

- type_y : the data type of target variable.

See Also

relate.
Examples

Generate data for the example
carseats <- ISLR::Carseats
carseats[sample(seq(NROW(carseats)), 20), "Income"] <- NA
carseats[sample(seq(NROW(carseats)), 5), "Urban"] <- NA

If the target variable is a categorical variable
categ <- target_by(carseats, US)

If the variable of interest is a numerical variable
cat_num <- relate(categ, Sales)
cat_num
summary(cat_num)
plot(cat_num)

If the variable of interest is a categorical variable
cat_cat <- relate(categ, ShelveLoc)
cat_cat
summary(cat_cat)
plot(cat_cat)

If the target variable is a categorical variable
num <- target_by(carseats, Sales)

If the variable of interest is a numerical variable
num_num <- relate(num, Price)
num_num
summary(num_num)
plot(num_num)

If the variable of interest is a categorical variable
num_cat <- relate(num, ShelveLoc)
num_cat
summary(num_cat)
plot(num_cat)

target_by.tbl_dbi Target by one column in the DBMS

Description

In the data analysis, a target_df class is created to identify the relationship between the target column and the other column of the DBMS table through tbl_dbi

Usage

S3 method for class 'tbl_dbi'
target_by(.data, target, in_database = FALSE,
 collect_size = Inf, ...)

target_by.tbl_dbi

Arguments

- `.data` a tbl_dbi.
- `target` target variable.
- `in_database` Specifies whether to perform in-database operations. If TRUE, most operations are performed in the DBMS. if FALSE, table data is taken in R and operated in-memory. Not yet supported in_database = TRUE.
- `collect_size` a integer. The number of data samples from the DBMS to R. Applies only if in_database = FALSE.
- `...` arguments to be passed to methods.

Details

Data analysis proceeds with the purpose of predicting target variables that correspond to the facts of interest, or examining associations and relationships with other variables of interest. Therefore, it is a major challenge for EDA to examine the relationship between the target variable and its corresponding variable. Based on the derived relationships, analysts create scenarios for data analysis.

target_by() inherits the `grouped_df` class and returns a target_df class containing information about the target variable and the variable.

See vignette("EDA") for an introduction to these concepts.

Value

an object of target_df class. Attributes of target_df class is as follows.

- `type_y` : the data type of target variable.

See Also

target_by.data.frame, relate.

Examples

library(dplyr)

Generate data for the example
carseats <- ISLR::Carseats
carseats[sample(seq(NROW(carseats)), 20), "Income"] <- NA
carseats[sample(seq(NROW(carseats)), 5), "Urban"] <- NA

connect DBMS
con_sqlite <- DBI::dbConnect(RSQLite::SQLite(), ":memory:"

copy carseats to the DBMS with a table named TB_CARSEATS
copy_to(con_sqlite, carseats, name = "TB_CARSEATS", overwrite = TRUE)

If the target variable is a categorical variable
categ <- target_by(con_sqlite %>% tbl("TB_CARSEATS"), US)

If the variable of interest is a numerical variable
transform

Data Transformations

Description

Performs variable transformation for standardization and resolving skewness of numerical variables.

Usage

transform(x, method = c("zscore", "minmax", "log", "log+1", "sqrt", "1/x", "x^2", "x^3"))

Arguments

x numeric vector for transformation.
method method of transformations.

Details

transform() creates an transform class. The ‘transform’ class includes original data, transformed data, and method of transformation.
See vignette("transformation") for an introduction to these concepts.
An object of transform class. Attributes of transform class is as follows.

- method : method of transformation data.
 - Standardization
 - "zscore" : z-score transformation. \((x - \mu) / \sigma \)
 - "minmax" : minmax transformation. \((x - \text{min}) / (\text{max} - \text{min}) \)
 - Resolving Skewness
 - "log" : log transformation. \(\log(x) \)
 - "log+1" : log transformation. \(\log(x + 1) \). Used for values that contain 0.
 - "sqrt" : square root transformation.
 - "1/x" : \(1 / x \) transformation
 - "x^2" : \(x \) square transformation
 - "x^3" : \(x^3 \) square transformation

See Also

summary.transform, plot.transform.

Examples

```r
# Generate data for the example
carseats <- ISLR::Carseats
carseats[sample(seq(NROW(carseats)), 20), "Income"] <- NA
carseats[sample(seq(NROW(carseats)), 5), "Urban"] <- NA

# Standardization ------------------------------
advertising_minmax <- transform(carseats$Advertising, method = "minmax")
summary(advertising_minmax)
plot(advertising_minmax)

# Resolving Skewness --------------------------
advertising_log <- transform(carseats$Advertising, method = "log")
summary(advertising_log)
plot(advertising_log)

# Using dplyr ----------------------------------
library(dplyr)
carseats %>%
  mutate(Advertising_log = transform(Advertising, method = "log+1")) %>%
  lm(Sales ~ Advertising_log, data = .)
```
transformation_report Reporting the information of transformation

Description

The transformation_report() report the information of transformate numerical variables for object inheriting from data.frame.

Usage

transformation_report(.data, target = NULL, output_format = c("pdf", "html"), output_file = NULL, output_dir = tempdir(), font_family = NULL, browse = TRUE)

Arguments

.data a data.frame or a tbl_df.
.target target variable. If the target variable is not specified, the method of using the target variable information is not performed when the missing value is imputed. and Optimal binning is not performed if the target variable is not a binary class.
.output_format report output type. Choose either "pdf" and "html". "pdf" create pdf file by knitr::knit(). "html" create html file by rmarkdown::render().
.output_file name of generated file. default is NULL.
.output_dir name of directory to generate report file. default is tempdir().
.font_family character. font family name for figure in pdf.
.browse logical. choose whether to output the report results to the browser.

Details

Generate transformation reports automatically. You can choose to output to pdf and html files. This is useful for Binning a data frame with a large number of variables than data with a small number of variables. For pdf output, Korean Gothic font must be installed in Korean operating system.

Reported information

The transformation process will report the following information:

- Imputation
 - Missing Values
 * * Variable names including missing value
 - Outliers
 * * Variable names including outliers
- Resolving Skewness
 - Skewed variables information
Variable names with an absolute value of skewness greater than or equal to 0.5

- Binning
 - Numerical Variables for Binning
 - Binning
 * Numeric variable names
 - Optimal Binning
 * Numeric variable names

See vignette("transformation") for an introduction to these concepts.

Examples

```r
# Generate data for the example
carseats <- ISLR::Carseats
carseats[sample(seq(NROW(carseats)), 20), "Income"] <- NA
carseats[sample(seq(NROW(carseats)), 5), "Urban"] <- NA

# reporting the Binning information -------------------------
# create pdf file. file name is Transformation_Report.pdf & No target variable
transformation_report(carseats)
# create pdf file. file name is Transformation_Report.pdf
transformation_report(carseats, US)
# create pdf file. file name is Transformation.pdf
# create html file. file name is Transformation_Report.html
transformation_report(carseats, "US", output_format = "html")
# create html file. file name is Transformation.html
transformation_report(carseats, US, output_format = "html", output_file = "Transformation.html")
```
Index

binning, 4, 7, 59, 80
binning_by, 5, 6, 61

cor, 8, 10
correlate, 7
correlate.data.frame, 10
correlate.tbl_dbi, 8, 9

describe, 12
describe.data.frame, 15, 55
describe.tbl_dbi, 13, 14, 57
diagnose, 16
diagnose.data.frame, 20, 22, 26, 30
diagnose.tbl_dbi, 17, 18, 24, 28, 32
diagnose_category, 21
diagnose_category.data.frame, 17, 24, 26, 30
diagnose_category.tbl_dbi, 20, 22, 23, 24, 28, 32
diagnose_numeric, 25
diagnose_numeric.data.frame, 13, 17, 22, 28, 30, 55
diagnose_numeric.tbl_dbi, 15, 20, 24, 26, 27, 32, 57
diagnose_outlier, 29
diagnose_outlier.data.frame, 22, 26, 32, 72
diagnose_outlier.tbl_dbi, 24, 28, 30, 31, 74
diagnose_report, 33
diagnose_report.data.frame, 37
diagnose_report.tbl_dbi, 35

dlookr (dlookr-package), 3
dlookr-package, 3

eda_report, 37
eda_report.data.frame, 41
eda_report.tbl_dbi, 40

find_class, 43, 48

find_na, 44, 45–47
find_outliers, 45, 47
find_skewness, 46

generate, 44, 47
generate_column_info, 48
generate_os, 49
group_by, 13, 15, 54, 57
grouped_df, 8, 10, 83, 85

impute_na, 45, 50, 53, 60, 81
impute_outlier, 46, 51, 52, 60, 81

normality, 54
normality.data.frame, 57
normality.tbl_dbi, 55, 56

plot.bins, 58, 61
plot.imputation, 59
plot.optimal_bins, 61
plot.relate, 62, 76, 79
plot.transform, 63, 87
plot.correlate, 64
plot.correlate.data.frame, 66
plot.correlate.tbl_dbi, 65, 66
plot.normality, 68
plot.normality.data.frame, 55, 71
plot.normality.tbl_dbi, 57, 69, 70
plot.outlier, 72
plot.outlier.data.frame, 65, 69, 74
plot.outlier.tbl_dbi, 66, 71, 72, 73
print.bins, 5, 59
print.bins (summary.bins), 79
print.relate, 62, 76, 79

relate, 62, 77, 83, 85

shapiro.test, 54, 57
smbinning, 7
smbinning.plot, 61
summary.bins, 5, 59, 79
summary.imputation, 60, 81, 81
summary.transform, 63, 82, 82, 87

target_by, 83
target_by.data.frame, 85
target_by.tbl_dbi, 84
tbl_df, 8, 12, 17, 21, 25, 30, 34, 38, 44–46,

50, 52, 54, 64, 68, 72, 83, 88
transform, 63, 82, 86
transformation_report, 88