Package ‘dml’

October 13, 2022

Version 1.1.0
Date 2015-08-26
Title Distance Metric Learning in R
Description The state-of-the-art algorithms for distance metric learning, including global and local methods such as Relevant Component Analysis, Discriminative Component Analysis, Local Fisher Discriminant Analysis, etc. These distance metric learning methods are widely applied in feature extraction, dimensionality reduction, clustering, classification, information retrieval, and computer vision problems.

Depends MASS
Imports lfda
Suggests testthat
Author Yuan Tang <terrytangyuan@gmail.com>, Gao Tao <joegaotao@gmail.com>, Xiao Nan <road2stat@gmail.com>
Maintainer Yuan Tang <terrytangyuan@gmail.com>
License MIT + file LICENSE
URL https://github.com/terrytangyuan/dml
BugReports https://github.com/terrytangyuan/dml/issues
NeedsCompilation no
Repository CRAN
Date/Publication 2015-08-29 13:14:59

R topics documented:

dca ... 2
GdmDiag .. 4
GdmFull ... 6
rca ... 8

Index 11
dca

Discriminative Component Analysis

Description

Performs discriminative component analysis on the given data.

Usage

```r
dca(data, chunks, neglinks, useD = NULL)
```

Arguments

- `data`: \(n \times d \) data matrix. \(n \) is the number of data points, \(d \) is the dimension of the data. Each data point is a row in the matrix.
- `chunks`: length \(n \) vector describing the chunklets: -1 in the \(i \) th place means point \(i \) doesn’t belong to any chunklet; integer \(j \) in place \(i \) means point \(i \) belongs to chunklet \(j \). The chunklets indexes should be 1:(number of chunklets).
- `neglinks`: \(s \times s \) symmetric matrix describing the negative relationship between all the \(s \) chunklets. For the element \(neglinks_{ij} \): \(neglinks_{ij} = 1 \) means chunklet \(i \) and chunklet \(j \) have negative constraint(s); \(neglinks_{ij} = 0 \) means chunklet \(i \) and chunklet \(j \) don’t have negative constraints or we don’t have information about that.
- `useD`: Integer. Optional. When not given, DCA is done in the original dimension and \(B \) is full rank. When `useD` is given, DCA is preceded by constraints based LDA which reduces the dimension to `useD`. \(B \) in this case is of rank `useD`.

Details

Put DCA function details here.

Value

List of the DCA results:

- \(B \) DCA suggested Mahalanobis matrix
- \(\mathbf{DCA} \) DCA suggested transformation of the data. The dimension is (original data dimension) * `useD`
- `newData` DCA transformed data

For every two original data points \((x_1, x_2)\) in `newData` \((y_1, y_2)\):

\[
(x_2 - x_1)' \ast B \ast (x_2 - x_1) = ||(x_2 - x_1) \ast A||^2 = ||y_2 - y_1||^2
\]

Note

Put some note here.
Author(s)
Xiao Nan <http://www.road2stat.com>

References

Examples
```r
## Not run:
set.seed(123)
require(MASS) # generate synthetic Gaussian data
k = 100 # sample size of each class
n = 3 # specify how many class
N = k * n # total sample number
x1 = mvrnorm(k, mu = c(-10, 6), matrix(c(10, 4, 4, 10), ncol = 2))
x2 = mvrnorm(k, mu = c(0, 0), matrix(c(10, 4, 4, 10), ncol = 2))
x3 = mvrnorm(k, mu = c(10, -6), matrix(c(10, 4, 4, 10), ncol = 2))
data = as.data.frame(rbind(x1, x2, x3))
# The fully labeled data set with 3 classes
plot(data$V1, data$V2, bg = c("#E41A1C", "#377EB8", "#4DAF4A")[gl(n, k)],
pch = c(rep(22, k), rep(21, k), rep(25, k)))
Sys.sleep(3)
# Same data unlabeled; clearly the classes' structure is less evident
plot(x$V1, x$V2)
Sys.sleep(3)
chunk1 = sample(1:100, 5)
chunk2 = sample(setdiff(1:100, chunk1), 5)
chunk3 = sample(101:200, 5)
chunk4 = sample(setdiff(101:200, chunk3), 5)
chunk5 = sample(201:300, 5)
chks = list(chunk1, chunk2, chunk3, chunk4, chunk5)
chunks = rep(-1, 300)
# positive samples in the chunks
for (i in 1:5) {
  for (j in chks[[i]]) {
    chunks[j] = i
  }
}
# define the negative constrains between chunks
neglinks = matrix(c(0, 0, 1, 1, 1,
  0, 0, 1, 1, 1,
  1, 1, 0, 0, 0,
  1, 1, 0, 0, 1,
  1, 1, 1, 1, 0),
  ncol = 5, byrow = TRUE)
```

GdmDiag

Global Distance Metric Learning

Description

Performs Global Distance Metric Learning (GDM) on the given data, learning a diagonal matrix.

Usage

GdmDiag(data, simi, dism, C0 = 1, threshold = 0.001)

Arguments

data n * d data matrix. n is the number of data points, d is the dimension of the data. Each data point is a row in the matrix.
simi n * 2 matrix describing the similar constrains. Each row of matrix is serial number of a similar pair in the original data. For example, pair(1, 3) represents the first observation is similar to the 3th observation in the original data.
dism n * 2 matrix describing the dissimilar constrains as simi. Each row of matrix is serial number of a dissimilar pair in the original data.
C0 numeric, the bound of similar constrains.
threshold numeric, the threshold of stopping the learning iteration.

Details

Put GdmDiag function details here.

Value

list of the GdmDiag results:

- newData GdmDiag transformed data
- diagonalA suggested Mahalanobis matrix
- dm1A matrix to transform data, square root of diagonalA
- error the precision of obtained distance metric by Newton-Raphson optimization

For every two original data points (x1, x2) in newData (y1, y2):

\[(x2 - x1)' * A * (x2 - x1) = ||(x2 - x1) * B||^2 = ||y2 - y1||^2\]
Note

Be sure to check whether the dimension of original data and constrains’ format are valid for the function.

Author(s)

Gao Tao <http://www.gaotao.name>

References

Examples

```r
## Not run:
set.seed(602)
library(MASS)
library(scatterplot3d)

# generate simulated Gaussian data
k = 100
m <- matrix(c(1, 0.5, 1, 0.5, 2, -1, 1, -1, 3), nrow =3, byrow = T)
x1 <- mvrnorm(k, mu = c(1, 1, 1), Sigma = m)
x2 <- mvrnorm(k, mu = c(-1, 0, 0), Sigma = m)
data <- rbind(x1, x2)

# define similar constrains
simi <- rbind(t(combn(1:k, 2)), t(combn((k+1):(2*k), 2)))
temp <- as.data.frame(t(simi))
tol <- as.data.frame(combn(1:(2*k), 2))

# define disimilar constrains
dism <- t(as.matrix(tol[!tol %in% simi]))

# transform data using GdmDiag
result <- GdmDiag(data, simi, dism)
newData <- result$newData

# plot original data
color <- gl(2, k, labels = c("red", "blue"))
par(mfrow = c(2, 1), mar = rep(0, 4) + 0.1)
scatterplot3d(data, color = color, cex.symbols = 0.6,
             xlim = range(data[, 1], newData[, 1]),
             ylim = range(data[, 2], newData[, 2]),
             zlim = range(data[, 3], newData[, 3]),
             main = "Original Data")

# plot GdmDiag transformed data
scatterplot3d(newData, color = color, cex.symbols = 0.6,
             xlim = range(data[, 1], newData[, 1]),
             ylim = range(data[, 2], newData[, 2]),
             zlim = range(data[, 3], newData[, 3]),
```
Description

Performs Global Distance Metric Learning (GDM) on the given data, learning a full matrix.

Usage

GdmFull(data, simi, dism, maxiter = 100)

Arguments

- **data** `n * d` data matrix. `n` is the number of data points, `d` is the dimension of the data. Each data point is a row in the matrix.
- **simi** `n * 2` matrix describing the similar constrains. Each row of matrix is serial number of a similar pair in the original data. For example, pair(1, 3) represents the first observation is similar the 3th observation in the original data.
- **dism** `n * 2` matrix describing the dissimilar constrains as simi. Each row of matrix is serial number of a dissimilar pair in the original data.
- **maxiter** numeric, the number of iteration.

Details

Put GdmFull function details here.

Value

list of the GdmDiag results:

- **newData** GdmDiag transformed data
- **fullA** suggested Mahalanobis matrix
- **dmlA** matrix to transform data, square root of diagonalA
- **converged** whether the iteration-projection optimization is converged or not

For every two original data points `(x1, x2)` in newData `(y1, y2)`: $(x2 - x1)' * A * (x2 - x1) = ||(x2 - x1) * B||^2 = ||y2 - y1||^2$

Note

Be sure to check whether the dimension of original data and constrains’ format are valid for the function.
GdmFull

Author(s)

Gao Tao <http://www.gaotao.name>

References

Examples

```r
## Not run:
set.seed(123)
library(MASS)
library(scatterplot3d)

# generate simulated Gaussian data
k = 100
m <- matrix(c(1, 0.5, 1, 0.5, 2, -1, 1, -1, 3), nrow = 3, byrow = T)
x1 <- mvrnorm(k, mu = c(1, 1, 1), Sigma = m)
x2 <- mvrnorm(k, mu = c(-1, 0, 0), Sigma = m)
data <- rbind(x1, x2)

# define similar constrains
simi <- rbind(t(combn(1:k, 2)), t(combn((k+1):(2*k), 2)))
temp <- as.data.frame(t(simi))
tol <- as.data.frame(combn(1:(2*k), 2))

# define disimilar constrains
dism <- t(as.matrix(tol[!tol %in% simi]))

# transform data using GdmFull
result <- GdmFull(data, simi, dism)
ewData <- result$newData

# plot original data
color <- gl(2, k, labels = c("red", "blue"))
par(mfrow = c(2, 1), mar = rep(0, 4) + 0.1)
scatterplot3d(data, color = color, cex.symbols = 0.6,
xlim = range(data[, 1], newData[, 1]),
ylim = range(data[, 2], newData[, 2]),
zlim = range(data[, 3], newData[, 3]),
main = "Original Data")

# plot GdmFull transformed data
scatterplot3d(newData, color = color, cex.symbols = 0.6,
xlim = range(data[, 1], newData[, 1]),
ylim = range(data[, 2], newData[, 2]),
zlim = range(data[, 3], newData[, 3]),
main = "Transformed Data")

## End(Not run)
```
Relevant Component Analysis

Description
Performs relevant component analysis on the given data.

Usage
rca(x, chunks)

Arguments
x matrix or data frame of original data. Each row is a feature vector of a data instance.
chunks list of k numerical vectors. Each vector represents a chunklet, the elements in the vectors indicate where the samples locate in x. See examples for more information.

Details
The RCA function takes a data set and a set of positive constraints as arguments and returns a linear transformation of the data space into better representation, alternatively, a Mahalanobis metric over the data space.

Relevant component analysis consists of three steps:
1. locate the test point
2. compute the distances between the test points
3. find k shortest distances and the bla

The new representation is known to be optimal in an information theoretic sense under a constraint of keeping equivalent data points close to each other.

Value
list of the RCA results:
B The RCA suggested Mahalanobis matrix. Distances between data points x1, x2 should be computed by \((x2 - x1)^T \cdot B \cdot (x2 - x1)\)
A The RCA suggested transformation of the data. The data should be transformed by \(A \cdot \text{data}\)
newX The data after the RCA transformation (A). \(\text{newData} = A \cdot \text{data}\)

The three returned argument are just different forms of the same output. If one is interested in a Mahalanobis metric over the original data space, the first argument is all she/he needs. If a transformation into another space (where one can use the Euclidean metric) is preferred, the second returned argument is sufficient. Using A and B is equivalent in the following sense:
if \(y1 = A \cdot x1, y2 = A \cdot y2\) then \((x2 - x1)^T \cdot B \cdot (x2 - x1) = (y2 - y1)^T \cdot (y2 - y1)\)
Note

Note that any different sets of instances (chunklets), e.g. 1, 3, 7 and 4, 6, might belong to the same class and might belong to different classes.

Author(s)

Xiao Nan <http://www.road2stat.com>

References

See Also

See dca for exploiting negative constrains.

Examples

```r
## Not run:
set.seed(1234)
require(MASS) # generate synthetic Gaussian data
k = 100 # sample size of each class
n = 3 # specify how many class
N = k * n # total sample number
x1 = mvrnorm(k, mu = c(-10, 6), matrix(c(10, 4, 4, 10), ncol = 2))
x2 = mvrnorm(k, mu = c(0, 0), matrix(c(10, 4, 4, 10), ncol = 2))
x3 = mvrnorm(k, mu = c(10, -6), matrix(c(10, 4, 4, 10), ncol = 2))
x = as.data.frame(rbind(x1, x2, x3))
x$V3 = gl(n, k)
# The fully labeled data set with 3 classes
plot(x$V1, x$V2, bg = c("#E41A1C", "#377EB8", "#4DAF4A"[x$V3]),
pch = c(rep(22, k), rep(21, k), rep(25, k)))
Sys.sleep(3)
# Same data unlabeled; clearly the classes' structure is less evident
plot(x$V1, x$V2)
Sys.sleep(3)
chunk1 = sample(1:100, 5)
chunk2 = sample(setdiff(1:100, chunk1), 5)
chunk3 = sample(101:200, 5)
chunk4 = sample(setdiff(101:200, chunk3), 5)
chunk5 = sample(201:300, 5)
chks = x[chunk1, chunk2, chunk3, chunk4, chunk5],]
chunks = list(chunk1, chunk2, chunk3, chunk4, chunk5)
# The chunklets provided to the RCA algorithm
plot(chks$V1, chks$V2, col = rep(c("#E41A1C", "#377EB8", "#4DAF4A"), 5))
```

```
rca

"#4DAF4A", "#984EA3", "#FF7F00"), each = 5),
pch = rep(0:4, each = 5), ylim = c(-15, 15))
Sys.sleep(3)

# Whitening transformation applied to the chunklets
chkTransformed = as.matrix(chks[, 1:2]) %*% rca(x[, 1:2], chunks)$A

plot(chkTransformed[, 1], chkTransformed[, 2], col = rep(c("#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00"), each = 5),
pch = rep(0:4, each = 5), ylim = c(-15, 15))
Sys.sleep(3)

# The origin data after applying the RCA transformation
plot(rca(x[, 1:2], chunks)$newX[, 1], rca(x[, 1:2], chunks)$newX[, 2],
     bg = c("#E41A1C", "#377EB8", "#4DAF4A")[gl(n, k)],
pch = c(rep(22, k), rep(21, k), rep(25, k)))

# The RCA suggested transformation of the data, dimensionality reduced
rca(x[, 1:2], chunks)$A

# The RCA suggested Mahalanobis matrix
rca(x[, 1:2], chunks)$B

## End(Not run)
Index

* GDM
  GdmDiag, 4
  GdmFull, 6
* component
  dca, 2
* dca
  dca, 2
* discriminant
  dca, 2
* distance
  GdmDiag, 4
  GdmFull, 6
* global
  GdmDiag, 4
  GdmFull, 6
* learning
  GdmDiag, 4
  GdmFull, 6
* mahalanobis
  dca, 2
  GdmDiag, 4
  GdmFull, 6
  rca, 8
* metric
  GdmDiag, 4
  GdmFull, 6
* metric
  dca, 2
  GdmDiag, 4
  GdmFull, 6
  rca, 8
* rca
  rca, 8
* transformation
  dca, 2
  GdmDiag, 4
  GdmFull, 6
  rca, 8

dca, 2, 9