Using the doRNG package

doRNG package – Version 1.8.6

Renaud Gaujoux

January 13, 2023

Contents

Introduction ... 1 5 Nested and conditional loops 10
 5.1 Nested loops 10
1 The %dorng% operator 3 5.2 Conditional loops 11
 1.1 How it works 3 5.3 Nested conditional loops 12
 1.2 Seeding computations 4
 1.3 Difference between set.seed
 and .options.RNG 6
2 Parallel environment independence 7 6 Performance overhead 13
 7 Known issues 14
3 Reproducible %dopar% loops 8 8 News and changes 14
4 Reproducible sets of loops 9 9 References 15

Introduction

Research reproducibility is an issue of concern, e.g. in bioinformatics [3, 9, 4]. Some analyses require multiple independent runs to be performed, or are amenable to a split-and-reduce scheme. For example, some optimisation algorithms are run multiple times from different random starting points, and the result that achieves the least approximation error is selected. The \emph{foreach} package\footnote{https://cran.r-project.org/package=foreach} [7] provides a very convenient way to perform parallel computations, with different parallel environments such as MPI or Redis, using a transparent loop-like syntax:
load and register parallel backend for multicore computations
library(doParallel)

Loading required package: foreach
Loading required package: iterators
Loading required package: parallel
cl <- makeCluster(2)
registerDoParallel(cl)

perform 5 tasks in parallel
x <- foreach(i=1:5) %dopar% { i + runif(1) }
unlist(x)

For each parallel environment a **backend** is implemented as a specialised `%dopar%` operator, which performs the setup and pre/post-processing specifically required by the environment (e.g. export of variable to each worker). The `foreach` function and the `%dopar%` operator handle the generic parameter dispatch when the task are split between worker processes, as well as the reduce step – when the results are returned to the master worker.

When stochastic computations are involved, special random number generators must be used to ensure that the separate computations are indeed statistically independent – unless otherwise wanted – and that the loop is reproducible. In particular, standard `%dopar%` loops are not reproducible:

with standard %dopar%: foreach loops are not reproducible
set.seed(123)
res <- foreach(i=1:5) %dopar% { runif(3) }
set.seed(123)
res2 <- foreach(i=1:5) %dopar% { runif(3) }
identical(res, res2)
[1] FALSE

A random number generator commonly used to achieve reproducibility is the combined multiple-recursive generator from L’Ecuyer [5]. This generator can generate independent random streams, from a 6-length numeric seed. The idea is then to generate a sequence of random stream of the same length as the number of iteration (i.e. tasks) and use a different stream when computing each one of them.

The **doRNG** package[^2] [2] provides convenient ways to implement reproducible parallel `foreach` loops, independently of the parallel backend used to perform the computation. We illustrate its use, showing how non-reproducible loops can be made reproducible, even when tasks are not scheduled in the same way in two separate set of runs, e.g. when the

[^2]: https://cran.r-project.org/package=doRNG
workers do not get to compute the same number of tasks or the number of workers is different. The package has been tested with the doParallel\(^3\) and doMPI\(^4\) packages [10, 1], but should work with other backends such as provided by the doRedis package\(^5\) [6].

1 The \texttt{%dorng%} operator

The doRNG package defines a new generic operator, \texttt{%dorng%}, to be used with foreach loops, instead of the standard \texttt{%dopar%}. Loops that use this operator are \textit{de facto} reproducible.

```{r}
# load the doRNG package
library(doRNG)

## Loading required package: rngtools
#
## using \texttt{%dorng%}: loops \_\_are\_ reproducible
set.seed(123)
res <- foreach(i=1:5) %dorng% { runif(3) }
set.seed(123)
res2 <- foreach(i=1:5) %dorng% { runif(3) }
identical(res, res2)
```

1.1 How it works

For a loop with \(N\) iterations, the \texttt{%dorng%} operator internally performs the following tasks:

1. generate a sequence of random seeds \((S_i)_{1 \leq i \leq N}\) for the \(R\) random number generator "L’Ecuyer-CMRG" [5], using the function \texttt{nextRNGStream} from the parallel package\(^6\) [8], which ensure the different RNG streams are statistically independent;

2. modify the loop’s \(R\) expression so that the random number generator is set to "L’Ecuyer-CMRG" at the beginning of each iteration, and is seeded with consecutive seeds in \((S_n)\): iteration \(i\) is seeded with \(S_i\), \(1 \leq i \leq N\);

3. call the standard \texttt{%dopar%} operator, which in turn calls the relevant (i.e. registered) foreach parallel backend;

4. store the whole sequence of random seeds as an attribute in the result object:

\(^3\)https://cran.r-project.org/package=doParallel
\(^4\)https://cran.r-project.org/package=doMPI
\(^5\)https://cran.r-project.org/package=doRedis
\(^6\)https://cran.r-project.org/package=parallel
1.2 Seeding computations

Sequences of random streams for "L’Ecuyer-CMRG" are generated using a 6-length integer seed, e.g.,:

```r
nextRNGStream(c(407L, 1:6))
```

```
```

However, the `%dorng%` operator provides alternative – convenient – ways of seeding reproducible loops.

set.seed: as shown above, calling `set.seed` before the loop ensure reproducibility of the results, using a single integer as a seed. The actual 6-length seed is then generated with an internal call to `RNGkind("L’Ecuyer-CMRG").`

.options.RNG with single integer: the `%dorng%` operator support options that can be passed in the `foreach` statement, containing arguments for the internal call to `set.seed`:

```r
# use a single numeric as a seed
s <- foreach(i=1:5, .options.RNG=123) %dorng% { runif(3) }
s2 <- foreach(i=1:5, .options.RNG=123) %dorng% { runif(3) }
identical(s, s2)
```

```
## [1] TRUE
```

Note: calling `set.seed` before the loop is equivalent to passing the seed in `.options.RNG`. See Section 1.3 for more details.

The kind of Normal generator may also be passed in `.options.RNG`:
Pass the Normal RNG kind to use within the loop

results are identical if not using the Normal kind in the loop

```r
optsN <- list(123, normal.kind="Ahrens")
resN.U <- foreach(i=1:5, .options.RNG=optsN) %dorng% 
{ runif(3) }
identical(resN.U[1:5], res[1:5])
```

[1] TRUE

Results are different if the Normal kind is used and is not the same

```r
resN <- foreach(i=1:5, .options.RNG=123) %dorng% 
{ rnorm(3) }
resN1 <- foreach(i=1:5, .options.RNG=optsN) %dorng% 
{ rnorm(3) }
resN2 <- foreach(i=1:5, .options.RNG=optsN) %dorng% 
{ rnorm(3) }
identical(resN[1:5], resN1[1:5])
```

[1] FALSE

```r
identical(resN1[1:5], resN2[1:5])
```

[1] TRUE

.options.RNG with 6-length: the actual 6-length integer seed used for the first RNG stream may be passed via .options.RNG:

```r
# use a 6-length numeric
s <- foreach(i=1:5, .options.RNG=1:6) %dorng% 
{ runif(3) }
attr(s, 'rng')[1:3]
```

[[1]]
[1] 10407 1 2 3 4 5 6

[[2]]
[1] 10407 -447371532 542750874 -935969228 -269326340 701604884 -1748056907

[[3]]
[1] 10407 311773008 -1393648596 433058656 -545474683 2059732357 994549473

.options.RNG with 7-length: a 7-length integer seed may also be passed via .options.RNG, which is useful to seed a loop with the value of .Random.seed as used in some iteration of another loop:

```r
# use a 7-length numeric, used as first value for .Random.seed
seed <- attr(res, 'rng')[2]
s <- foreach(i=1:5, .options.RNG=seed) %dorng% 
{ runif(3) }
identical(s[1:4], res[2:5])
```

7 Note that the RNG kind is then always required to be the "L’Ecuyer-CMRG", i.e. the first element of the seed must have unit 7 (e.g. 407 or 107).
.options.RNG with complete sequence of seeds: the complete description of the sequence of seeds to be used may be passed via options.RNG, as a list or a matrix with the seeds in columns. This is useful to seed a loop exactly as desired, e.g. using an RNG other than "L’Ecuyer-CMRG", or using different RNG kinds in each iteration, which probably have different seed length, in order to compare their stochastic properties. It also allows to reproduce %dorng% loops without knowing their seeding details:

```r
# reproduce previous %dorng% loop
s <- foreach(i=1:5, .options.RNG=res) %dorng% { runif(3) }
identical(s, res)

## [1] TRUE

## use completely custom sequence of seeds (e.g. using RNG "Marsaglia-Multicarry")
# as a matrix
seedM <- rbind(rep(401, 5), mapply(rep, 1:5, 2))
seedM

## [1,] 401 401 401 401 401
## [2,] 1 2 3 4 5
## [3,] 1 2 3 4 5

sM <- foreach(i=1:5, .options.RNG=seedM) %dorng% { runif(3) }
# same seeds passed as a list
seedL <- lapply(seq(ncol(seedM)), function(i) seedM[,i])
sL <- foreach(i=1:5, .options.RNG=seedL) %dorng% { runif(3) }
identical(sL, sM)

## [1] TRUE
```

1.3 Difference between set.seed and .options.RNG

While it is equivalent to seed %dorng% loops with set.seed and .options.RNG, it is important to note that the result depends on the current RNG kind:

```r
# default RNG kind
RNGkind("default")
def <- foreach(i=1:5, .options.RNG=123) %dorng% { runif(3) }
```

8See Section 7 about a bug in versions ≥ 1.4 on this feature.
Marsaglia-Multicarry
RNGkind('Marsaglia')

Warning in RNGkind("Marsaglia"): RNGkind: Marsaglia-Multicarry has poor statistical properties

mars <- foreach(i=1:5, .options.RNG=123) %dorng% {
 runif(3)
}

identical(def, mars)

[1] FALSE

revert to default RNG kind
RNGkind('default')

This is a “normal” behaviour, which is a side-effect of the expected equivalence between `set.seed` and `.options.RNG`. This should not be a problem for reproducibility though, as R RNGs are stable across versions, and loops are most of the time used with the default RNG settings. In order to ensure seeding is independent from the current RNG, one has to pass a 7-length numeric seed to `.options.RNG`, which is then used directly as a value for `.Random.seed` (see below).

2 Parallel environment independence

An important feature of `%dorng%` loops is that their result is independent of the underlying parallel physical settings. Two separate runs seeded with the same value will always produce the same results. Whether they use the same number of worker processes, parallel backend or task scheduling does not influence the final result. This also applies to computations performed sequentially with the `doSEQ` backend. The following code illustrates this feature using 2 or 3 workers.

```r
# define a stochastic task to perform
task <- function() c(pid=Sys.getpid(), val=runif(1))

# using the previously registered cluster with 2 workers
set.seed(123)
res_2workers <- foreach(i=1:5, .combine=rbind) %dorng% {
  task()
}

# stop cluster
stopCluster(cl)

# Sequential computation
registerDoSEQ()
set.seed(123)
res_seq <- foreach(i=1:5, .combine=rbind) %dorng% {
  task()
}
```
Using 3 workers
NB: if re-running this vignette you should edit to force using 3 here
cl <- makeCluster(if(isManualVignette()) 3 else 2)
length(cl)
[1] 2

register new cluster
registerDoParallel(cl)
set.seed(123)
res_3workers <- foreach(i=1:5, .combine=rbind) %dorng% {
 task()
}
task schedule is different
pid <- rbind(res1=res_seq[,1], res_2workers[,1], res2=res_3workers[,1])
storage.mode(pid) <- 'integer'
pid

result.1 result.2 result.3 result.4 result.5
res1 2767062 2767062 2767062 2767062 2767062
2767094 2767095 2767094 2767095 2767094
res2 2767126 2767125 2767126 2767125 2767126

results are identical
identical(res_seq[,2], res_2workers[,2]) && identical(res_2workers[,2], res_3workers[,2])

[1] TRUE

3 Reproducible `%dopar%` loops

The doRNG package also provides a non-invasive way to convert `%dopar%` loops into reproducible loops, i.e. without changing their actual definition. It is useful to quickly ensure the reproducibility of existing code or functions whose definition is not accessible (e.g. from other packages). This is achieved by registering the doRNG backend:

set.seed(123)
res <- foreach(i=1:5) %dorng% { runif(3) }

registerDoRNG(123)
res_dopar <- foreach(i=1:5) %dopar% { runif(3) }
identical(res_dopar, res)

[1] TRUE

attr(res_dopar, 'rng')
4 Reproducible sets of loops

Sequences of multiple loops are reproducible, whether using the %dorng% operator or the registered doRNG backend:

```r
set.seed(456)
s1 <- foreach(i=1:5) %dorng% { runif(3) }
s2 <- foreach(i=1:5) %dorng% { runif(3) }
# the two loops do not use the same streams: different results
identical(s1, s2)  # [1] FALSE

# but the sequence of loops is reproducible as a whole
set.seed(456)
r1 <- foreach(i=1:5) %dorng% { runif(3) }
r2 <- foreach(i=1:5) %dorng% { runif(3) }
identical(r1, s1) && identical(r2, s2)  # [1] TRUE

# one can equivalently register the doRNG backend and use %dopar%
registerDoRNG(456)
r1 <- foreach(i=1:5) %dopar% { runif(3) }
r2 <- foreach(i=1:5) %dopar% { runif(3) }
identical(r1, s1) && identical(r2, s2)  # [1] TRUE
```
5 Nested and conditional loops

Nested and conditional foreach loops are currently not supported and generate an error:

```
# nested loop
try( foreach(i=1:10) %:% foreach(j=1:i) %dorng% { rnorm(1) } )
```

```
## Error: nested/conditional foreach loops are not supported yet.
## See the package's vignette for a work around.
```

```
# conditional loop
try( foreach(i=1:10) %:% when(i %% 2 == 0) %dorng% { rnorm(1) } )
```

```
## Error: nested/conditional foreach loops are not supported yet.
## See the package's vignette for a work around.
```

In this section, we propose a general work around for this kind of loops, that will eventually be incorporated in the `%dorng%` operator – when I find out how to mimic its behaviour from the operator itself.

5.1 Nested loops

The idea is to create a sequence of RNG seeds before the outer loop, and use each of them successively to set the RNG in the inner loop – which is exactly what `%dorng%` does for simple loops:

```
# doRNG must not be registered
registerDoParallel(cl)

# generate sequence of seeds of length the number of computations
n <- 10; p <- 5
rng <- RNGseq( n * p, 1234)

# run standard nested foreach loop
res <- foreach(i=1:n) %:% foreach(j=1:p, r=rng[(i-1)*p + 1:p]) %dopar% {
   # set RNG seed
   rngtools::setRNG(r)
   # do your own computation ...
   c(i, j, rnorm(1))
}

# Compare against the equivalent sequential computations
k <- 1
res2 <- foreach(i=1:n) %:% foreach(j=1:p) %do%
   # set seed
   rngtools::setRNG(rng[[k]])
   k <- k + 1
The following is a more complex example with unequal – but known \textit{a priori} – numbers of iterations performed in the inner loops:

```r
generate sequence of seeds of length the number of computations
n <- 10
rng <- RNGseq(n * (n+1) / 2, 1234)

run standard nested foreach loop
res <- foreach(i=1:n) %:% foreach(j=1:i, r=rng[(i-1)*i/2 + 1:i]) %dopar%{
 # set RNG seed
 rngtools::setRNG(r)
 # do your own computation ...
 c(i, j, rnorm(1))
}

Compare against the equivalent sequential computations
k <- 1
res2 <- foreach(i=1:n) %:% foreach(j=1:i) %do%{
 # set seed
 rngtools::setRNG(rng[[k]])
 k <- k + 1
 # do your own computation ...
 c(i, j, rnorm(1))
}

stopifnot(identical(res, res2))
```

### 5.2 Conditional loops

The work around used for nested loops applies to conditional loops that use the \texttt{when()} clause. It ensures that the RNG seed use for a given inner iteration does not depend on the filter, but only on its index in the unconditional-unfolded loop:

```r
un-conditional single loop
resAll <- foreach(i=1:n, .options.RNG=1234) %dorng%{
 # do your own computation ...
 c(i, rnorm(1))
}
```
# generate sequence of RNG
rng <- RNGseq(n, 1234)

# conditional loop: even iterations
resEven <- foreach(i=1:n, r=rng) %:% when(i %% 2 == 0) %dopar%
   {  
# set RNG seed
    rngtools::setRNG(r)

# do your own computation ...
    c(i, rnorm(1))
   }

# conditional loop: odd iterations
resOdd <- foreach(i=1:n, r=rng) %:% when(i %% 2 == 1) %dopar%
   {  
# set RNG seed
    rngtools::setRNG(r)

# do your own computation ...
    c(i, rnorm(1))
   }

# conditional loop: only first 2 and last 2
resFL <- foreach(i=1:n, r=rng) %:% when(i %in% c(1,2,n-1,n)) %dopar%
   {  
# set RNG seed
    rngtools::setRNG(r)

# do your own computation ...
    c(i, rnorm(1))
   }

# compare results
stopifnot( identical(resAll[seq(2,n,by=2)], resEven) )
stopifnot( identical(resAll[seq(1,n,by=2)], resOdd) )
stopifnot( identical(resAll[c(1,2,n-1,n)], resFL) )

5.3 Nested conditional loops

Conditional nested loops may use the same workaround, as shown in this intricate example:

# generate sequence of seeds of length the number of computations
n <- 10
rng <- RNGseq( n * (n+1) / 2, 1234)

# run standard nested foreach loop
res <- foreach(i=1:n) %:% when(i %% 2 == 0) %:% foreach(j=1:i, r=rng[(i-1)*i/2 + 1:i]) %dopar%
# set RNG seed
rngtools::setRNG(r)

# do your own computation ...
  c(i, j, rnorm(1))
}

# Compare against the equivalent sequential computations
k <- 1
resAll <- foreach(i=1:n) %:% foreach(j=1:i) %do%
  {  
    # set seed
    rngtools::setRNG(rng[[k]])
    k <- k + 1
    
    # do your own computation ...
    c(i, j, rnorm(1))
  }

stopifnot(identical(resAll[seq(2,n,by=2)], res))

6 Performance overhead

The extra setup performed by the %dorng% operator leads to a slight performance over- 
head, which might be significant for very quick computations, but should not be a problem 
for realistic computations. The benchmarks below show that a %dorng% loop may take up 
to two seconds more than the equivalent %dopar% loop, which is not significant in practice, 
where parallelised computations typically take several minutes.

# load rbenchmark
library(rbenchmark)

# comparison is done on sequential computations
registerDoSEQ()

rPar <- function(n, s=0)
  {foreach(i=1:n) %dopar% { Sys.sleep(s) } }

rRNG <- function(n, s=0)
  {foreach(i=1:n) %dorng% { Sys.sleep(s) } }

# run benchmark
cmp <- benchmark(rPar(10), rRNG(10), rPar(25), rRNG(25), rPar(50), rRNG(50), rPar(50, .01), rRNG(50, .01), rPar(10, .05), rRNG(10, .05), replications=5)

# order by increasing elapsed time
cmp[order(cmp$elapsed), ]

## test replications elapsed relative user.self sys.self user.child sys.child
## Known issues

- Nested and/or conditional foreach loops using the operator `%:%` are not currently not supported (see Section 5 for a work around).

- An error is thrown in `doRNG 1.2.6`, when the package `iterators` was not loaded, when used with `foreach` \( i = 1.4 \).

- There was a bug in versions prior to 1.4, which caused `set.seed` and `.options.RNG` not to be equivalent when the current RNG was "L’Ecuyer-CMRG". This behaviour can still be reproduced by setting:

  ```r
 doRNGversion('1.3')
  ```

  To revert to the latest default behaviour:

  ```r
 doRNGversion(NULL)
  ```

## News and changes

\begin{xframe}

\ttfamily\noindent\color{warningcolor}(\#\# Warning in file(con, "(r"{}): file("{}") only supports open = "{}w+"{} and open = "{}w+b"{}: using the former)}

\end{xframe}

**Cleanup**

```r
stopCluster(cl)
```
References


