Package ‘dppmix’

January 14, 2020

Type Package
Title Determinantal Point Process Mixture Models
Version 0.1.1
Date 2019-12-20
Author Yanxun Xu [aut], Peter Mueller [aut], Donatello Telesca [aut], David J. H. Shih [aut, cre]
Maintainer David J. H. Shih <djh.shih@gmail.com>
Description Multivariate Gaussian mixture model with a determinant point process prior to promote the discovery of parsimonious components from observed data. See Xu, Mueller, Telesca (2016) <doi:10.1111/biom.12482>.
URL https://bitbucket.org/djhshih/dppmix
BugReports https://bitbucket.org/djhshih/dppmix/issues
Imports stats, mvtnorm
License GPL (>= 3)
RoxygenNote 7.0.2
NeedsCompilation no
Repository CRAN
Date/Publication 2020-01-14 10:00:07 UTC

R topics documented:

 dgammmapois ... 2
dppmix_mvnorm .. 2
estimate ... 4
rbern ... 5
rbvec ... 5
rdirichlet ... 6
rmvnorm_clusters ... 6

Index ... 7
dppmix_mvnorm
Fit a determinantal point process multivariate normal mixture model.

Description
Discover clusters in multidimensional data using a multivariate normal mixture model with a determinantal point process prior.

Usage

dppmix_mvnorm(
 X,
 hparams = NULL,
 store = NULL,
 control = NULL,
 fixed = NULL,
 verbose = TRUE
)

dgammapois
Density function for Gamma-Poisson distribution.

Description
Data follow the Poisson distribution parameterized by a mean parameter that follows a gamma distribution.

Usage

dgammapois(x, a, b = 1, log = FALSE)

Arguments
- **x**: vector of x values
- **a**: shape parameter for gamma distribution on mean parameter
- **b**: rate parameter for gamma distribution on mean parameter
- **log**: whether to return the density in log scale

Value
density values
Arguments

\textbf{X} \quad \text{N x J data matrix of N observations and J features}

\textbf{hparams} \quad \text{a list of hyperparameter values: delta, a0, b0, theta, sigma_prop_mu}

\textbf{store} \quad \text{a vector of character strings specifying additional vars of interest; a value of NA indicates that samples of all parameters in the model will be stored}

\textbf{control} \quad \text{a list of control parameters: niter, burnin, thin}

\textbf{fixed} \quad \text{a list of fixed parameter values}

\textbf{verbose} \quad \text{whether to emit verbose message}

Details

A determinantal point process (DPP) prior is a repulsive prior. Compare to mixture models using independent priors, a DPP mixture model will often discover a parsimonious set of mixture components (clusters).

Model fitting is done by sampling parameters from the posterior distribution using a reversible jump Markov chain Monte Carlo sampling approach.

Given \(X = [x_i]\), where each \(x_i\) is a D-dimensional real vector, we seek the posterior distribution of the latent variable \(z = [z_i]\), where each \(z_i\) is an integer representing cluster membership.

\[
x_i \mid z_i \sim \text{Normal}(\mu_k, \Sigma_k)
\]

\[
z_i \sim \text{Categorical}(w)
\]

\[
w \sim \text{Dirichlet}([\delta...\delta])
\]

\[
\mu_k \sim \text{DPP}(C)
\]

where \(C\) is the covariance function that evaluates the distances among the data points:

\[
C(x_1, x_2) = \exp(-\sum_d \frac{(x_1 - x_2)^2}{\theta^2})
\]

We also define \(\Sigma_k = E_k \Lambda_k E_k^\top\), where \(E_k\) is an orthonormal matrix whose column represents eigenvectors. We further assume that \(E_k = E\) is fixed across all cluster components so that \(E\) can be estimated as the eigenvectors of the covariance matrix of the data matrix \(X\). Finally, we put a prior on the entries of the \(\Lambda_k\) diagonal matrix:

\[
\lambda_k^{-1} \sim \text{Gamma}(a_0, b_0)
\]

Hence, the hyperparameters of the model include: \(\text{delta}, a0, b0, \text{theta}\), as well as sampling hyperparameter \(\text{sigma_prop_mu}\), which controls the spread of the Gaussian proposal distribution for the random-walk Metropolis-Hastings update of the \(\mu\) parameter.

The parameters (and their dimensions) in the model include: \(K, z\) (N x 1), \(w\) (K x 1), \(\lambda\text{m}_\text{da}_\text{m}\) (K x J), \(\mu\) (K x J), \(\Sigma\) (J x J x K). If any parameter is fixed, then \(K\) must be fixed as well.
Value

a dppmix_mcmc object containing posterior samples of the parameters

References

Examples

```r
set.seed(1)
ns <- c(3, 3)
means <- list(c(-6, -3), c(0, 4))
d <- rmvnorm_clusters(ns, means)

mcmc <- dppmix_mvnorm(d$X, verbose=FALSE)
res <- estimate(mcmc)
table(d$cl, res$z)
```

estimate

Estimate parameter.

Description

Estimate parameter from fitted model.

Usage

```r
estimate(object, pars, ...)
```

Arguments

- `object`: fitted model
- `pars`: names of parameters to estimate
- `...`: other parameters to pass
rbern

Random generator for the Bernoulli distribution.

Description

Random generator for the Bernoulli distribution.

Usage

\[
\text{rbern}(n, \text{prob})
\]

Arguments

- \(n\): number of samples to generate
- \(\text{prob}\): event probability

Value

an integer vector of 0 (non-event) and 1 (event)

rbvec

Generate a random binary vector.

Description

Generate a random binary vector.

Usage

\[
\text{rbvec}(n, \text{prob}, \text{e.min} = 0)
\]

Arguments

- \(n\): size of binary vector
- \(\text{prob}\): event probability (not accounting for minimum event constraint)
- \(\text{e.min}\): minimum number of events

Value

an integer vector of 0 and 1
rdirichlet
Random generator for the Dirichlet distribution.

Description
Random generator for the Dirichlet distribution.

Usage
rdirichlet(n, alpha)

Arguments
- **n**: number of vectors to generate
- **alpha**: vector of parameters of the Dirichlet distribution

Value
a matrix in which each row vector is Dirichlet distributed

rmvnorm_clusters
Generate random multivariate clusters

Description
Generate random multivariate clusters

Usage
rmvnorm_clusters(ns, means)

Arguments
- **ns**: number of data points in each cluster
- **means**: centers of each cluster

Value
list containing matrix X and labels cl

Examples
ns <- c(5, 8, 7)
means <- list(c(-6, 1), c(-1, -1), c(0, 4))
d <- rmvnorm_clusters(ns, means)
Index

dgammapois, 2
dppmix_mvnorm, 2

estimate, 4

rbern, 5
rbvec, 5
rdirichlet, 6
rmvnorm_clusters, 6