Package ‘drda’
June 10, 2021

Type Package
Title Dose-Response Data Analysis
Version 1.0.0
Description Fit logistic functions to observed dose-response data and evaluate
<doi:10.1101/2021.06.07.447323>.
License MIT + file LICENSE
URL https://github.com/albertopessia/drda
BugReports https://github.com/albertopessia/drda/issues
Encoding UTF-8
Suggests covr, knitr, testthat
RoxygenNote 7.1.1
VignetteBuilder knitr
NeedsCompilation no
Author Alberto Pessia [aut, cre] (<https://orcid.org/0000-0001-8607-9191>),
Alina Malyutina [ctb] (<https://orcid.org/0000-0001-8220-5859>)
Maintainer Alberto Pessia <dev@albertopessia.com>
Repository CRAN
Date/Publication 2021-06-10 07:50:07 UTC

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>drda-package</td>
<td>2</td>
</tr>
<tr>
<td>drda</td>
<td>3</td>
</tr>
<tr>
<td>gompertz_fn</td>
<td>6</td>
</tr>
<tr>
<td>logistic2_fn</td>
<td>6</td>
</tr>
<tr>
<td>logistic4_fn</td>
<td>7</td>
</tr>
<tr>
<td>logistic5_fn</td>
<td>8</td>
</tr>
<tr>
<td>logistic6_fn</td>
<td>8</td>
</tr>
<tr>
<td>naac</td>
<td>9</td>
</tr>
<tr>
<td>naue</td>
<td>10</td>
</tr>
<tr>
<td>plot.drda</td>
<td>11</td>
</tr>
</tbody>
</table>
Description

drda is a package for fitting logistic curves and performing dose-response data analysis.

Available functions

Functions specific to drda:

- drda: main function for fitting observed data.
- logistic2_fn: 2-parameter logistic function.
- logistic4_fn: 4-parameter logistic function.
- logistic5_fn: 5-parameter logistic function.
- logistic6_fn: 6-parameter logistic function.
- gompertz_fn: Gompertz function.
- nauc: normalized area under the curve.
- naac: normalized area above the curve.

Functions expected for an object fit:

- anova: compare model fits.
- deviance: residual sum of squares of the model fit.
- logLik: value of the log-likelihood function associated to the model fit.
- plot: plotting function.
- predict: model predictions.
- print: basic model summaries.
- residuals: model residuals.
- sigma: residual standard deviation.
- summary: fit summaries.
- weights: model weights.

References

drda

Fit non-linear growth curves

Description

Use the Newton’s with a trust-region method to fit non-linear growth curves to observed data.

Usage

```r
drda(
  formula,
  data,
  subset,
  weights,
  na.action,
  mean_function = "logistic4",
  is_log = TRUE,
  lower_bound = NULL,
  upper_bound = NULL,
  start = NULL,
  max_iter = 10000
)
```

Arguments

- **formula**: an object of class `link[stats]{formula}` (or one that can be coerced to that class): a symbolic description of the model to be fitted. Currently supports only formulas of the type `y ~ x`.
- **data**: an optional data frame, list or environment (or object coercible by `as.data.frame` to a data frame) containing the variables in the model. If not found in `data`, the variables are taken from `environment(formula)`, typically the environment from which `drda` is called.
- **subset**: an optional vector specifying a subset of observations to be used in the fitting process.
- **weights**: an optional vector of weights to be used in the fitting process. If provided, weighted least squares is used with weights `weights` (that is, minimizing `sum(weights * residuals^2)`), otherwise ordinary least squares is used.
- **na.action**: a function which indicates what should happen when the data contain `NA`s. The default is set by the `na.action` setting of `options`, and is `na.fail` if that is unset. The ‘factory-fresh’ default is `na.omit`. Another possible value is `NULL`, no action. Value `na.exclude` can be useful.
- **mean_function**: the model to be fitted. See details for available models.
- **is_log**: a logical value indicating whether the predictor variable `x` is already log-transformed. Default to `TRUE`. Set to `FALSE` if `x` is on its natural scale, i.e. strictly positive.
lower_bound numeric vector with the minimum admissible values of the parameters. Use -Inf to specify an unbounded parameter.

upper_bound numeric vector with the maximum admissible values of the parameters. Use Inf to specify an unbounded parameter.

start starting values for the parameters.

max_iter maximum number of iterations in the optimization algorithm.

Details

Available models:

Generalized logistic function:
The most general model in this package is the generalized logistic function selected by setting mean_function = "logistic6". It is defined in this package as the 6-parameter function

\[\alpha + (\beta - \alpha) / (\xi + \nu \exp(-\eta \cdot (x - \phi)))^{1 / \nu} \]

where \(\eta \neq 0 \), \(\nu > 0 \), and \(\xi > 0 \). Although \(\beta \) can be any real value, we use the convention \(\beta > \alpha \) to avoid identifiability problems: when \(\beta < \alpha \) it is always possible to adjust the other parameters to obtain the same exact curve. When \(\beta > \alpha \) and \(\eta > 0 \) the curve is monotonically increasing. If \(\beta > \alpha \) and \(\eta < 0 \) the curve is monotonically decreasing.

Parameter \(\alpha \) represents the lower horizontal asymptote of the curve. Parameter \(\beta \) is related to the upper horizontal asymptote of the curve. Parameter \(\eta \) represents the steepness (growth rate) of the curve. Parameter \(\phi \) is related to the value of the function at \(x = 0 \). Parameter \(\nu \) affects near which asymptote maximum growth occurs. Parameter \(\xi \) affects the value of the upper asymptote.

Note: the 6-parameter logistic function is non-identifiable from data and should not be used in real applications. It is available only for theoretical research convenience.

5-parameter logistic function:
The 5-parameter logistic function can be selected by choosing mean_function = "logistic5". The function is obtained by setting \(\xi = 1 \) in the generalized logistic function, that is

\[\alpha + (\beta - \alpha) / (1 + \nu \exp(-\eta \cdot (x - \phi)))^{1 / \nu} \]

Parameter \(\alpha \) represents the lower horizontal asymptote of the curve. Parameter \(\beta \) represents the upper horizontal asymptote of the curve. Parameter \(\eta \) represents the steepness (growth rate) of the curve. Parameter \(\phi \) is related to the value of the function at \(x = 0 \). Parameter \(\nu \) affects near which asymptote maximum growth occurs.

4-parameter logistic function:
The 4-parameter logistic function is the default model of drda. It can be explicitly selected by choosing mean_function = "logistic4". The function is obtained by setting \(\xi = 1 \) and \(\nu = 1 \) in the generalized logistic function, that is

\[\alpha + (\beta - \alpha) / (1 + \exp(-\eta \cdot (x - \phi))) \]

Parameter \(\alpha \) represents the lower horizontal asymptote of the curve. Parameter \(\beta \) represents the upper horizontal asymptote of the curve. Parameter \(\eta \) represents the steepness (growth rate) of the curve. Parameter \(\phi \) represents the \(x \) value at which the curve is equal to its mid-point, i.e. \(f(\phi; \alpha, \beta, \eta, \phi) = (\alpha + \beta) / 2 \).

2-parameter logistic function:
The 2-parameter logistic function can be selected by choosing mean_function = "logistic2". The function is obtained by setting \(\xi = 1 \), \(\nu = 1 \), \(\beta = 1 \), and \(\alpha = 0 \) in the generalized logistic function, that is

\[\alpha + (\beta - \alpha) / (1 + \exp(-\eta \cdot (x - \phi))) \]
1 / (1 + exp(-eta * (x - phi)))

Parameter \(\eta \) represents the steepness (growth rate) of the curve. Parameter \(\phi \) represents the \(x \) value at which the curve is equal to its mid-point, i.e. \(f(\phi; \eta, \phi) = 1 / 2 \).

Gompertz function:
The Gompertz function is the limit for \(\nu \to 0 \) of the 5-parameter logistic function. It can be selected by choosing mean_function = "gompertz". The function is defined in this package as

\[
\alpha + (\beta - \alpha) \times \exp(-\exp(-\eta \times (x - \phi)))
\]

where \(\eta \neq 0 \).

Parameter \(\alpha \) represents the lower horizontal asymptote of the curve. Parameter \(\beta \) represents the upper horizontal asymptote of the curve. Parameter \(\eta \) represents the steepness (growth rate) of the curve. Parameter \(\phi \) is related to the value of the function at \(x = 0 \).

Constrained optimization:
It is possible to search for the maximum likelihood estimates within pre-specified interval regions. Since the upper horizontal asymptote \(\beta \) must be greater than the lower horizontal asymptote \(\alpha \), intervals are adjusted to satisfy this constraint.

Note: Hypothesis testing is not available for constrained estimates because asymptotic approximations might not be valid.

Value
An object of class drda and model_fit, where model is the chosen mean function. It is a list containing the following components:

- **converged** boolean value assessing if the optimization algorithm converged or not.
- **iterations** total number of iterations performed by the optimization algorithm.
- **constrained** boolean value set to TRUE if optimization was constrained.
- **estimated** boolean vector indicating which parameters were estimated from the data.
- **coefficients** maximum likelihood estimates of the model parameters.
- **rss** minimum value (found) of the residual sum of squares.
- **df.residuals** residual degrees of freedom.
- **fitted.values** fitted mean values.
- **residuals** residuals, that is response minus fitted values.
- **weights** (only for weighted fits) the specified weights.
- **mean_function** model that was used for fitting.
- **n** effective sample size.
- **sigma** corrected maximum likelihood estimate of the standard deviation.
- **loglik** maximum value (found) of the log-likelihood function.
- **fisher.info** observed Fisher information matrix evaluated at the maximum likelihood estimator.
- **vcov** approximate variance-covariance matrix of the model parameters.
- **call** the matched call.
- **terms** the terms object used.
- **model** the model frame used.
- **na.action** (where relevant) information returned by model.frame on the special handling of NAs.
- **is_log** boolean value. It is TRUE if the predictor variable was given on the log scale.
gompertz_fn
Gompertz function

Description
Evaluate at a particular set of parameters the Gompertz function.

Usage
gompertz_fn(x, theta)

Arguments
x numeric vector at which the Gompertz function is to be evaluated.
theta numeric vector with the four parameters in the form c(alpha,beta,eta,phi).

Details
The Gompertz function \(f(x; \theta) \) is defined here as
\[
\alpha + (\beta - \alpha) \exp(-\exp(-\eta \times (x - \phi)))
\]
where \(\theta = c(\alpha, \beta, \eta, \phi) \), \(\alpha \) is the lower horizontal asymptote, \(\beta > \alpha \) is the upper horizontal asymptote, \(\eta \) is the steepness of the curve or growth rate, and \(\phi \) related to the function value at \(x = 0 \).

Value
Numeric vector of the same length of \(x \) with the values of the Gompertz function.

logistic2_fn
2-parameter logistic function

Description
Evaluate at a particular set of parameters the 2-parameter logistic function.

Usage
logistic2_fn(x, theta)

Arguments
x numeric vector at which the logistic function is to be evaluated.
theta numeric vector with the parameters in the form c(eta,phi).
logistic4_fn

Details

The 2-parameter logistic function \(f(x; \theta) \) is defined here as

\[
\frac{1}{1 + \exp(-\eta (x - \phi))}
\]

where \(\theta = c(\eta, \phi) \), \(\eta \) is the steepness of the curve or growth rate (also known as the Hill coefficient), and \(\phi \) is the value of \(x \) at which the curve is equal to its mid-point, i.e. \(1/2 \).

Value

Numeric vector of the same length of \(x \) with the values of the logistic function.

logistic4_fn
4-parameter logistic function

Description

Evaluate at a particular set of parameters the 4-parameter logistic function.

Usage

\[
\text{logistic4_fn}(x, \theta)
\]

Arguments

- \(x \) numeric vector at which the logistic function is to be evaluated.
- \(\theta \) numeric vector with the four parameters in the form \(c(\alpha, \beta, \eta, \phi) \).

Details

The 4-parameter logistic function \(f(x; \theta) \) is defined here as

\[
\alpha + \frac{(\beta - \alpha)}{1 + \exp(-\eta (x - \phi))}
\]

where \(\theta = c(\alpha, \beta, \eta, \phi) \), \(\alpha \) is the lower horizontal asymptote, \(\beta > \alpha \) is the upper horizontal asymptote, \(\eta \) is the steepness of the curve or growth rate (also known as the Hill coefficient), and \(\phi \) is the value of \(x \) at which the curve is equal to its mid-point.

Value

Numeric vector of the same length of \(x \) with the values of the logistic function.
5-parameter logistic function

Description
Evaluate at a particular set of parameters the 5-parameter logistic function.

Usage
logistic5_fn(x, theta)

Arguments
x numeric vector at which the logistic function is to be evaluated.
theta numeric vector with the five parameters in the form c(alpha, beta, eta, phi, nu).

Details
The 5-parameter logistic function f(x; theta) is defined here as
alpha + (beta -alpha) / (1 + nu * exp(-eta * (x -phi)))^(1 / nu)
where theta = c(alpha, beta, eta, phi, nu), beta > alpha, and nu > 0.

Value
Numeric vector of the same length of x with the values of the logistic function.

6-parameter logistic function

Description
Evaluate at a particular set of parameters the 6-parameter logistic function.

Usage
logistic6_fn(x, theta)

Arguments
x numeric vector at which the logistic function is to be evaluated.
theta numeric vector with the six parameters in the form c(alpha, beta, eta, phi, nu, xi).
Details

The 6-parameter logistic function \(f(x; \theta) \) is defined here as
\[
\alpha + \frac{(\beta - \alpha)}{(\xi + \nu \exp(-\eta (x - \phi)))^{1/\nu}}
\]
where \(\theta = c(\alpha, \beta, \eta, \phi, \nu, \xi) \), \(\beta > \alpha \), \(\xi > 0 \), and \(\nu > 0 \).

Value

Numeric vector of the same length of \(x \) with the values of the logistic function.

Description

Evaluate the normalized area above the curve (NAAC).

Usage

\[
\text{naac(object, xlim = c(-10, 10), ylim = c(0, 1))}
\]

Arguments

- **object**: fit object as returned by \(\text{drda} \).
- **xlim**: numeric vector of length 2 with the lower and upper bound of the integration interval. Default is \(\text{c(-10, 10)} \).
- **ylim**: numeric vector of length 2 with the lower and upper bound of the allowed function values. Default is \(\text{c(0,1)} \).

Details

The area under the curve (AUC) is simply the integral of the chosen model \(y(x; \theta) \) with respect to \(x \).

In real applications the response variable is usually contained within a known interval. For example, if our response represents relative viability against a control compound, the curve is then expected to be between 0 and 1.

To make the AUC value comparable between different compounds and/or studies, this function sets a hard constraint on both the \(x \) variable and the function \(y \). The intervals can always be changed if needed.

The function \(f(x; \theta) \) that is integrated here is defined as
\[
\begin{align*}
& f(x; \theta) = yl[1], \text{if } y(x; \theta) < yl[1] \\
& f(x; \theta) = y(x; \theta), \text{if } yl[1] \leq y(x; \theta) \leq yl[2] \\
& f(x; \theta) = yl[2], \text{if } y(x; \theta) > yl[2]
\end{align*}
\]

Finally, the AUC is normalized by its maximum possible value, that is the area of the rectangle with width \(\text{xlim}[2] - \text{xlim}[1] \) and height \(\text{ylim}[2] - \text{ylim}[1] \).

The normalized area above the curve is simply \(\text{NAAC} = 1 - \text{NAUC} \).
Value

Numeric value representing the normalized area above the curve.

<table>
<thead>
<tr>
<th>nauc</th>
<th>Area under the curve</th>
</tr>
</thead>
</table>

Description

Evaluate the normalized area under the curve (NAUC).

Usage

```r
nauc(object, xlim = c(-10, 10), ylim = c(0, 1))
```

Arguments

- `object`: fit object as returned by `drda`.
- `xlim`: numeric vector of length 2 with the lower and upper bound of the integration interval. Default is `c(-10, 10)`.
- `ylim`: numeric vector of length 2 with the lower and upper bound of the allowed function values. Default is `c(0, 1)`.

Details

The area under the curve (AUC) is simply the integral of the chosen model \(y(x; \theta)\) with respect to \(x\).

In real applications the response variable is usually contained within a known interval. For example, if our response represents relative viability against a control compound, the curve is then expected to be between 0 and 1.

To make the AUC value comparable between different compounds and/or studies, this function sets a hard constraint on both the \(x\) variable and the function \(y\). The intervals can always be changed if needed.

The function \(f(x; \theta)\) that is integrated here is defined as

\[
\begin{align*}
 f(x; \theta) &= ylim[1], \text{ if } y(x; \theta) < ylim[1] \\
 f(x; \theta) &= y(x; \theta), \text{ if } ylim[1] \leq y(x; \theta) \leq ylim[2] \\
 f(x; \theta) &= ylim[2], \text{ if } y(x; \theta) > ylim[2]
\end{align*}
\]

Finally, the AUC is normalized by its maximum possible value, that is the area of the rectangle with width \(xlim[2] - xlim[1]\) and height \(ylim[2] - ylim[1]\).

Value

Numeric value representing the normalized area under the curve.
plot.drda

Model fit plotting

Description

Plot maximum likelihood curves fitted with drda.

Usage

S3 method for class 'drda'
plot(x, ...)

Arguments

x drda object as returned by the \link{drda} function.
... other drda objects or parameters to be passed to the plotting functions. See 'Details'.

Details

This function provides a scatter plot of the observed data, overlaid with the maximum likelihood curve fit. If multiple fit objects are given, they will all be placed in the same plot.

Accepted plotting arguments are:

- **base** character string with the base used to print the values on the x axis. Accepted values are e for the natural logarithm (the default), 10 for base 10, and 2 for base 2.
- **col** curve color(s). By default, up to 9 color-blind friendly colors are provided.
- **xlab, ylab** axis labels.
- **xlim, ylim** the range of x and y values with sensible defaults.
- **level** level of confidence intervals. Set to zero or a negative value to disable confidence intervals.
- **legend** custom labels for the legend model names.

Value

No return value.
Index

as.data.frame, 3

drda, 3, 9, 10
drda-package, 2

gompertz_fn, 6

logistic2_fn, 6
logistic4_fn, 7
logistic5_fn, 8
logistic6_fn, 8

model.frame, 5

na.fail, 3
naac, 9
nauc, 10

options, 3

plot.drda, 11

terms, 5