Package ‘drought’

October 24, 2020

Type Package
Title Statistical Modeling and Assessment of Drought
Version 1.0
Date 2020-10-10
Author Zengchao Hao
Maintainer Zengchao Hao <z.hao4univ@gmail.com>
Description Provide tools for drought monitoring based on univariate and multivariate drought indicators. Statistical drought prediction based on Ensemble Streamflow Prediction (ESP) and drought risk assessments are also provided. Please see Hao Zengchao et al. (2017) <doi:10.1016/j.envsoft.2017.02.008>.
Depends R (>= 3.5.0)
Imports stats, copula
Suggests MASS
License GPL-3
LazyData true
Repository CRAN
RoxygenNote 7.1.0
Encoding UTF-8
NeedsCompilation no
Date/Publication 2020-10-24 08:30:02 UTC

R topics documented:

- drought-package .. 2
- ACCU ... 3
- BiEmp ... 3
- ESPPred ... 4
- JDSI ... 4
- MDI ... 5
- SDI ... 6
- UMFreq ... 6
- UniEmp ... 7
Description

Provide tools for drought monitoring based on univariate and multivariate drought indicators. Statistical drought prediction based on Ensemble Streamflow Prediction (ESP) and drought risk assessments are also provided. Please see Hao Zengchao et al. (2017) <doi:10.1016/j.envsoft.2017.02.008>.

Details

Package: drought
Type: Package
Version: 1.0
Date: 2020-10-10
License: GPL-3

Author(s)

Zengchao Hao (Z.hao4univ@gmail.com)

References

Hao, Z., and V. P. Singh (2015), Drought characterization from a multivariate perspective: A review J. Hydrol., 527

Hao, Z. et al. (2014). Global integrated drought monitoring and prediction system. Scientific Data, 1 (and references therein)

Examples

```r
# X<-runif(120, min = 0, max = 100)
# Y0<-ACCU(X,ts=6) # Compute the 6 month accumulated series
# SPI<-SDI(X,ts=6) # Get the standardized drought index (or SPI)
# Y<-runif(120, min = 0, max = 100)
# fit<-JDSI(X,Y,ts=6) # Compute the 6 month multivariate drought index
# fit$JDSI # Get the empirical multivariate drought index
```
ACCU

Obtain the accumulation of monthly hydro-climatic variables

Description
Obtain the accumulation of monthly hydro-climatic variables

Usage
ACCU(X, ts = 6)

Arguments
X The vector of monthly hydro-climatic variables of n years. ts is the accumulated time scale.
ts The accumulated time scale

Examples
X=runif(120, min = 0, max = 100)
Y<-ACCU(X,ts=3) # Compute the 3 month accumulated series

BiEmp
Compute the bivariate empirical joint probability

Description
Compute the bivariate empirical joint probability

Usage
BiEmp(X, Y)

Arguments
X The vector of a monthly hydro-climatic variable of n years.
Y The vector of a monthly hydro-climatic variable of n years.

Value
The empirical joint probability time scale

Examples
X=runif(120, min = 0, max = 100)
Y=runif(120, min = 0, max = 100)
fit<-BiEmp(X,Y)
ESPPred

Description

Drought prediction with ESP method

Usage

\[\text{ESPPred}(X, Y, L = 1, m = 7, ts = 6) \]

Arguments

- \(X \) is the monthly variables.
- \(Y \) is the monthly variables.
- \(L \) is the lead time.
- \(m \) is the monthly variables.
- \(ts \) is the monthly variables.

Value

The prediction of univariate and multivariate drought index

Examples

\[
\text{X} = \text{runif}(120, \text{min} = 0, \text{max} = 100) \\
\text{Y} = \text{runif}(120, \text{min} = 0, \text{max} = 100) \\
\text{ESPPred}(X, Y, L = 1, m = 7, ts = 6)
\]

JDSI

Description

Compute the multivariate drought index with joint distribution

Usage

\[\text{JDSI}(X, Y, ts = 6, type = 1) \]

Arguments

- \(X \) is The vector of a monthly hydro-climatic variable of \(n \) years.
- \(Y \) is The vector of a monthly hydro-climatic variable of \(n \) years.
- \(ts \) is the accumulated time scale.
- \(type \) is the method used to compute the JDSI (1 is Joint distribution and 2 is the Kendall function).
Value

The multivariate drought index of different time scales from the marginal probability (or percentile)

Examples

```r
X=runif(120, min = 0, max = 100)
Y=runif(120, min = 0, max = 100)
fit<-JDSI(X,Y,ts=6)
z=matrix(t(fit$JDSI),ncol=1)
plot(z, type="l", col=1, lwd=2, lty=1, xlim=c(0,120),xlab="Time",ylab="JDSI")
```

Description

Based on the vector of a monthly hydro-climatic variable, the multivariate drought index is computed based on the marginal (or univariate) probability (or percentile) from the function SDI.

Usage

```r
MDI(X, Y, ts = 6)
```

Arguments

- **X** is The vector of a monthly hydro-climatic variable of n years.
- **Y** is The vector of a monthly hydro-climatic variable of n years.
- **ts** is the accumulated time scale.

Value

The multivariate drought index of different time scales from the marginal probability (or percentile)

Examples

```r
X=runif(120, min = 0, max = 100)
Y=runif(120, min = 0, max = 100)
fit<-MDI(X,Y,ts=6) # Compute the 6 month drought index
fit$ProbEmp2 # Get the empirival drought index
```
SDI

Compute the standardized drought index

Description
Based on the vector of monthly variables, the standardized drought index is computed. Note here the standardized precipitation index (SPI) is used as the example of the drought index in the univariate case. It also represents other drought indices computed in the similar way as SPI.

Usage
SDI(X, ts = 6, dist = "EmpGrin")

Arguments
- X: The vector of a monthly hydro-climatic variable of n years.
- ts: is the accumulated time scale.
- dist: is distribution function.

Details
Apart from the standardized drought index, the percentile (probability) is also provided.

Value
The univariate and multivariate drought index of different time scale from both the empirical and gamma distribution

Examples
X=runif(120, min = 0, max = 100)
fit<-SDI(X,ts=3) # Compute the 3 month drought index
fit$SDI # Get the empirical drought index
z=matrix(t(fit$SDI),ncol=1)
plot(z, type="l", col=1, lwd=2, lty=1, xlab="Time", ylab="SDI")

UMFreq

Univariate and multivariate return period (Gumbel copula)

Description
Univariate and multivariate return period (Gumbel copula)

Usage
UMFreq(X, Y, EL = 1)
UniEmp

Arguments

- **X** are the drought properties or indices
- **Y** are the drought properties or indices
- **EL** is the average recurrence time

Value

The univariate and multivariate return period

Examples

```r
X=runif(120, min = 0, max = 100)
Y=runif(120, min = 0, max = 100)
fit<-UMFreq(X,Y,1)
```

<table>
<thead>
<tr>
<th>UniEmp</th>
<th>Compute the univariate empirical joint probability (EMP)</th>
</tr>
</thead>
</table>

Description

Compute the univariate empirical joint probability (EMP)

Usage

```r
UniEmp(X, dist = "Gringorten")
```

Arguments

- **X** The vector of a monthly hydro-climatic variable of n years.
- **dist** is the function for the plotting position formula (Gringorten or Weibull).

Value

The univariate EMP

Examples

```r
X=runif(120, min = 0, max = 100)
fit<-UniEmp(X,dist = "Gringorten")
```
Index

ACCU, 3
BiEmp, 3
drought (drought-package), 2
drought-package, 2
ESPPred, 4
JDSI, 4
MDI, 5
SDI, 6
UMFreq, 6
UniEmp, 7