Brief User’s Guide: Dynamic Systems Estimation (DSE)

Paul Gilbert

The user of this software has the right to use, reproduce and distribute it. The Bank of Canada makes no warranties with respect to the software or its fitness for any particular purpose. The software is distributed by the Bank of Canada solely on an “as is” basis. By using the software, the user agrees to accept the entire risk of using this software.

The software documented here is available on the Comprehensive R Archive Network (CRAN) <http://cran.r-project.org>. Please check for new versions.

This Guide is generated automatically using the R Sweave utilities (see F. Leisch, R News v2/3, Dec. 2002, p 28-31), so the examples should all work. The text and examples are included in the distributed package subdirectory inst/doc/dse-guide.Stex. Please check that file if there is any doubt about the example code. The output from some of the examples is shown but, to conserve paper, much of the output is not shown. It is intended that users should work through the examples and see the output themselves.

I regularly use the code with R on Linux and sometimes on Windows. There is an extensive set of tests which is run on all R test platforms for packages distributed on CRAN. Please report any errors you find. In the past, the code has also worked with Splus 3.3 on Solaris, but I no longer run this. There are known problems with Splus since version 5.

Caveat: This software is the by-product of ongoing research. It is not a commercial product. Limited effort is put into maintaining the documentation (but the R tools do automatically check that all functions and their arguments are documented in the help system, and all examples work). This guide may have references to functions which do not yet work and/or have not been distributed, and the documentation may not correspond to the current capabilities of the functions (but please report these problems if you find them). While the software does many standard time-series things, it is really intended for doing some non-standard things. The main difference between dse and most widely available software is that dse is designed for working with multivariate time series and for studying estimation techniques and forecasting models.

Constructive suggestions and comments are welcomed by the package maintainer.
1 Introduction to dse
2 Getting Started
3 General Outline of dse Objects and Methods
4 Defining a TSdata Structure
5 ARMA and State-Space TSmodels
6 VAR and VARX TSmodels
7 Model Estimation
8 Forecasting, Etc
9 Evaluation of Forecasting Models
10 Adding New TSmodels Classes
11 Adding New TSdata Classes
12 Mini-Reference

Related Packages (not in this guide)
setRNG, tframe, EvalEst, CDNmoney, tsfa, TSdbi
1 Introduction to \textit{dse}

\textit{dse} was originally designed with linear, time-invariant auto-regressive moving-average (ARMA) models and state-space (SS) models in mind. These remain the most well developed models and provide the basis for the examples in this guide.

In order to provide examples, implemented estimation techniques and methods for converting among various representations of time series models are used in this guide. (However, it is possible to use \textit{dse} structure and add other estimation techniques.) Many functions for the usual diagnostics which are preformed with time series data and models are included in the package. Additional information on specific functions is available through the help facility. For details of some of the underlying theory of ARMA and SS model equivalence and examples of some of the capabilities of the \textit{dse} packages see Gilbert (1993)\(^1\). For examples where \textit{dse} is used to evaluate estimation methods see Gilbert (1995)\(^2\).

Examples of the use of several functions are illustrated in the files in the demo subdirectories. (In \textit{R} see \texttt{demo(package=\textquote{\textit{dse}})})

2 Getting Started

These packages works with recent versions of the \textit{R} language (Ihaka and Gentleman, 1996)\(^3\) available at \url{http://cran.r-project.org}. \textit{Italics} will be used to indicate functions and objects, and () is frequently added to function names to help distinguish them as such. Anything entered after a \# is a comment in \textit{R}.

Most examples in this guide show only the user input, not the computer output.

If \textit{dse} is not installed on your system, please use the usual \textit{R} package installation procedures. Once \textit{R} is started the \textit{dse} packages must be made available.

\begin{verbatim}
> library("dse")
\end{verbatim}

The code from the vignette that generates this guide can be loaded into an editor with \texttt{edit(vignette(\textquote{\textit{Guide}}, package=\textquote{\textit{dse}}))}. This uses the default editor, which can be changed using \texttt{options(\)}. Several data sets are included with \textit{dse} and will be used in examples in this guide. The names of the data sets can be listed with

\begin{verbatim}
> data(package="dse")
\end{verbatim}

They are made available by

The *dse* package requires *tframe*. It and other required packages will be
loaded automatically. Some functions (in particular, *tfplot*) are part of the
tframe package.

Descriptions of functions and objects are available in the R help system once
the packages are installed.

3 General Outline of *dse* Objects and Methods

dse implements three main classes of objects: *TSdata*, *TSmodel*, and *TSes-
tModel*. These are respectively, representations of data, models, and models
with data and estimation information.

TSdata is an object which contains a (multivariate) time series object called
output and optionally another called input. Methods for defining the general
version of this class of object are described in the next section and more details
are provided in the help for *TSdata*. Input and output correspond to what are
often labelled *x* and *y* in econometrics and time series discussions of ARMA mod-
els. These are sometimes called exogenous and endogenous variables, though
those terms are often not correct for these models. Statistically, output is the
variable which is modelled and input is the conditioning data. From a practical
and computational point of view, the model forecasts output data and input
data must always be supplied. In particular, to forecasts multiple periods into
the future requires supplying input data for the future so that the model can
calculate outputs. The terms input and output are commonly used in the en-
geineering literature, and often correspond to a control variable and the output
from a physical system. However, the causal interpretation in this context is not
always appropriate for other uses of time series models. In addition, even when
a causal direction is known or assumed, it is not always desirable to define the
exogenous variable as an input. If the model is to give forecasts into the future
then it may be better to define exogenous variables as outputs and let the model
forecast them, unless better forecasts of the exogenous variables are available
from other sources. One context in which an input variable is important is to
examine policy scenarios. In this context the policy variable is defined as the
input and forecasts are produced conditioned on different assumptions about
the policy.

TSmodel objects are models which are arranged to use *TSdata*. These objects
always have another specific class indicating the type of model. The ARMA and
SS constructor methods for ARMA *TSmodels* and state-space *TSmodels* are
described in a section below. Other specific classes of *TSmodels* can be defined
and many of the methods in *dse* will work with these new models, as long as
they use *TSdata* and have a few important methods implemented. More details
on defining other classes of models are given in another section of this guide.
Details on the representation of models are provided in the help for *TSmodel*
and the help for specific model constructors.
TSestModel objects are objects which contain TSdata, a TSmodel, and some statistical information generated by l(model, data). The l() method originally meant likelihood, but the method returns the one-step-ahead predictions and other information based on those predictions. Methods for studying one-step-ahead model forecasts extract the predictions from these objects. Other methods treat TSestModel objects as a simple way to group together a model and data. For example, methods for studying multi-step forecasts need to generate the forecasts, so they do not use the predictions in the TSestModel object. More detail about TSestModel objects is available in the help system.

The default method for TSdata() constructs a TSdata object, as will be described in the next section. The generic methods TSmodel() and TSdata() can also be used to extract the TSmodel or TSdata object from another object (such as a TSestModel).

The functions in dse can be used by starting with data and estimating a model, or by starting with a model and producing simulated data. The next section on TSdata starts with data, but it would be equally possible to start with models as described in the sections on ARMA and State-Space TSmodels.

4 Defining a TSdata Structure

This section describes how to construct a TSdata structure if you have other data you would like to use. Some installations may have an online database and it may be possible to connect directly to this data. See the TSdbi package regarding some possibilities for doing this.

For many people the situation will be that the data is in some ASCII file. This can be loaded into session variables with a number of standard R functions, the most useful of which are probably scan() and read.table(). Following is an example which reads data from an ASCII file called "eg1.dat" and puts it in the variable called eg1.DSE.data (which is also one of the available data sets). The file is in the dse package directory otherdata. The file has five columns of numbers and 364 rows. The first column just enumerates the rows and is discarded.

```r
> fileName <- system.file("otherdata", "eg1.dat", package="dse")
> eg1.DSE.data <- t(matrix(scan(fileName),5,364))[,2:5]
```

This matrix can be used to form a TSdata object by

```r
> eg1.DSE.data <- TSdata(input= eg1.DSE.data[,1,drop = F], output= eg1.DSE.data[, 2:4, drop = F])
```

The matrix and the resulting TSdata object do not have a good time scale associated with points. A better time scale can be added by

```r
> eg1.DSE.data <-tframed(eg1.DSE.data, list(start=c(1961,3), frequency=12))
```
There are several different possibilities for representing time in \(R \) objects.
The most common is the \(ts \) object, which is applied in the above default \(\text{tframed} \) method to both input and output. Either \(\text{tframed} \) or \(ts \) can also be used directly on the matrix before the \(TSdata \) object is formed. The methods from the \(tframe \) package are used extensively in the \(dse \) package because they extend to other time representations in addition to \(ts \), and provide a mechanism for extending methods to other objects like \(TSdata \) and \(TSmodels \).

Names can be given to the series with

\[
> \ \text{seriesNamesInput(eg1.DSE.data)} <- \text{"R90"}
\]
\[
> \ \text{seriesNamesOutput(eg1.DSE.data)} <- \text{c("M1","GDPI2","CPI")}
\]

Setting the series names is not necessary but many functions can use the names if they are available. (This overlaps somewhat with dimnames, but is the preferred method in \(dse \) as it extends to data which is not a matrix.) The \(TSdata \) object with elements input and output is the structure which the functions in \(dse \) expect. More details on this structure are available in the help for \(TSdata \). The input and output elements can be defined in a number of different ways and new representations can be fairly easily added.

Once data is available a model can be estimated:

\[
> \ \text{model1} <- \text{estVARXls(eg1.DSE.data)}
\]
\[
> \ \text{model2} <- \text{estSSMittnik(eg1.DSE.data, n=4)}
\]
\[
> \ \# \ \text{or model2} <- \text{estSSMittnik(eg1.DSE.data)} \text{ prompts for state dimension}
\]

(Note: these models are not the same as those reported in Gilbert,1993. In that paper a variant of \(\text{estVARXar} \) was used.) The scales of the different series in \(eg1.DSE.data \) are very different, with the result that the covariance matrix of the residuals from the estimation is nearly singular. This is detected during the calculation of residual statistics. Statistics are then calculated using only the non-degenerate subspace and a warning message is printed. A better model might be obtained if the data were scaled differently.

Information about the estimated models can be displayed, for example:

\[
> \ \text{summary(model1)}
\]
\[
> \ \text{summary(model2)}
\]
\[
> \ \text{model1}
\]
\[
> \ \text{model2}
\]
\[
> \ \text{stability(model1)}
\]
\[
> \ \text{stability(model2)}
\]
\[
> \ \text{informationTests(model1, model2)}
\]

Typing the name of an object in \(R \) results in the object being printed.

The function \(\text{tfplot} \) produces separate graphs for each series.

\[
> \ \text{tfplot(model1)}
\]
Note that initial conditions have been set to zero, but the effect of this dies out quickly. (Also note that the graph size and text labels may be different depending on your \texttt{par} settings for graphical parameters – it is difficult to get this good for the automatically produced vignette, but generally it is possible to produce very good quality graphs in \texttt{R}.)

Other examples that display plots:

\begin{verbatim}
> tfplot(model2)
> tfplot(eg1.DSE.data)
> checkResiduals(model1)
> checkResiduals(model2)
\end{verbatim}

5 ARMA and State Space \texttt{TSmodels}

Specifying ARMA and SS models is described below, but first their definition is outlined. The linear time-invariant ARMA representation is

\begin{equation}
A(L)y_t = B(L)e_t + C(L)u_t
\end{equation}

where y_t is a p dimensional vector of observed output variables, u_t is an m dimensional vector of input variables, e_t is a p dimensional unobserved disturbance vector process and A, B and C are matrices of the appropriate dimension in the lag (back shift) operator L. VAR models can be thought of as a special
case of ARMA models with $B(L) = I$. ARIMA models are also a special case of ARMA models.

A linear time-invariant state space representation in innovations form is given by

$$\begin{align*}
z_t &= Fz_{t-1} + Gu_t + Ke_{t-1} \\
y_t &= Hz_t + e_t
\end{align*}$$

where z_t is the unobserved underlying n dimensional state vector, F is the state transition matrix, G, the input matrix, H, the output matrix, and K, the Kalman gain. The first equation is commonly referred to as the state transition equation and the second as the measurement equation.

dse also has some limited capabilities to work with the more general non-innovations form

$$\begin{align*}
z_t &= Fz_{t-1} + Gu_t + Qn_t \\
y_t &= Hz_t + Re_t
\end{align*}$$

where n_t is the system noise, Q, the system noise matrix, and R the output (measurement) noise matrix.

Note that the time convention implies that the input variable u_t can influence the state z_t and then the output variable y_t in the same time period. This convention is not always used in time-series models. It is important with economic data, especially at annual frequencies, that the input can influence the output in the same period. Another convention that is often used is to have the output in the measurement equation depend on the state in the previous time period. Then, to achieve the same objective, it is necessary to include the input u_t in the measurement equation as well. A different convention will also result in slightly different algebra converting between ARMA and state-space models.

Models are specified by setting up the arrays that define the model and grouping them into a TSmodel object. Here is an example ARMA model with two series, a second order AR polynomial, a first order MA polynomial and no exogenous variable:

```r
> AR <- array(c(1, .5, .3, 0, .2, 1, .5, .3),
              c(3,2,2))
> MA <- array(c(1, .2, 0, .1, 0, 1, .3), c(2,2,2))
> arma <- ARMA(A=AR, B=MA, C=NULL)
> rm(AR, MA) # these can be removed from the environment as
> #they are no longer needed
> arma

A(L) =
1+0.5L1+0.3L2  0+0.2L1+0.05L2
```
\[B(L) = \\
1+0.2L1 \quad 0 \\
0+0.1L1 \quad 1+0.3L1 \]

\[
\text{Distinct roots of } \det(A(L)) \text{ and moduli are:} \\
[1,] -0.9364072-1.3324883i \quad 1.6286140+0i \\
[2,] -0.9364072+1.3324883i \quad 1.6286140+0i \\
[3,] -0.6518281-2.0026588i \quad 2.1060679+0i \\
[4,] -0.6518281+2.0026588i \quad 2.1060679+0i \\
\text{The system is stable.} \\
\]

\[
\text{Inverse of distinct roots of } \det(A(L)) \text{ moduli} \\
[1,] -0.3530437+0.5023739i \quad 0.6140190+0i \\
[2,] -0.3530437-0.5023739i \quad 0.6140190+0i \\
[3,] -0.1469563+0.4515046i \quad 0.4748185+0i \\
[4,] -0.1469563-0.4515046i \quad 0.4748185+0i \\
\]

\[
\text{> data.arma.sim <- simulate(arma, start=c(1920,1), freq=1)} \\
\text{> arma <- l(arma, data.arma.sim)} \\
\text{> summary(arma)} \\
\text{neg. log likelihood = 279.3426 sample length = 100} \\
\text{RMSE 0.970736 0.9921572} \\
\text{ARMA:} \\
\text{inputs : out1 out2} \\
\text{outputs: out1 out2} \\
\text{input dimension = 0 output dimension = 2} \\
\text{order A = 2 order B = 1 order C = 11} \\
\text{actual parameters 4 non-zero constants} \\
\text{trend not estimated.} \\
\]

\[
\text{> tfplot(data.arma.sim)} \\
\text{> tfplot(arma)} \\
\]

Note that arrays are filled in the order of their dimensions, which may not be what you expect. The function \(l() \) evaluates the model with the simulated data. Functions generally use default values for some arguments. For example, the length of the simulation and the covariance of the noise can be specified. The above example uses the default values. If \(\text{start} \) and \(\text{freq} \), of some other way to determine the time frame is not provided, then it is not set, with the result that
plots may be for a matrix rather than a time series, that is, points instead of line graphs. See the help on `simulate` for more details. In the example above, `arma` is initially assigned an object of class `TSmodel`, but it is then re-assigned the value returned by `l()`, which is an object of class `TSestModel`. Also, many functions work with different classes of objects, and do different things depending on the class of the argument. The function `tfplot()` works with objects of class `TSdata` and `TSestModel` and also with time series matrices.

Here is an example of a state space model:

```r
> f <- array(c(.5, .3, .2, .4), c(2,2)) #Note: do not use capital
> #F (=FALSE) as a variable name
> h <- array(c(1, 0, 0, 1), c(2,2))
> k <- array(c(.5, .3, .2, .4), c(2,2))
> ss <- SS(F=f, H=h, K=k) #F is argument name not variable name
> print(ss)
> stability(ss)
> data.ss.sim <- simulate(ss, start=c(1920,1), freq=1)
> ss <- l(ss, data.ss.sim)
> summary(ss)
> tfplot(ss)
```

Data which has been generated with `simulate` is a `TSdata` object and can be used with estimation routines. This provides a convenient way to generate data for estimation algorithms, but remember that estimation will not necessarily get back to the model you start with, since there are equivalent representations (see Gilbert, 1993). However, a good estimate will get close to the likelihood and predictions of the original model.

Here is an example of changing between state space and ARMA representations using the models defined in the previous example:

```r
> ss.from.arma <- l(toSS(arma), data.arma.sim)
> arma.from.ss <- l(toARMA(ss), data.ss.sim)
> summary(ss.from.arma)
> summary(arma)
> summary(arma.from.ss)
> summary(ss)
> stability(arma)
> stability(ss.from.arma)
```

The function `roots()` is used by `stability()` and can be used by itself to return the roots but not evaluate their magnitude. When their arguments are `TSmodels` the functions `toSS()` and `toARMA()` return objects of class `TSmodel`

4By default the roots of an ARMA model are calculated by converting the model to state space form, for reasons explained in Gilbert (2000, "A note on the computation of time series model roots", *Applied Economics Letters*, 7, 423–424). By specifying `by.poly=T` the method can be changed to use an expansion of the polynomial determinant.
which are not assigned to a variable in the above example, but used in the evaluation of \(l() \). The models are returned as part of the \(TSEstModel \) returned by \(l() \).

For state space models there is often interest in the underlying state series. These can be extracted from an estimated model with the function \(state \).

\[> \text{tfplot(state(ss))} \]

For an innovations form model the state is defined as an expectation given past information, so the Kalman filter estimates the state exactly. For an non-innovations form model the filter and smoother give slightly different estimates. (These are often called one-sided and two-sided filters in the economics literature.) An innovations form model would usually be specified based on some additional information about the structure of the system, typically a physical understanding of the system in engineering, or some theory in economics. In the absence of this, an arbitrary technique is to use a Cholesky decomposition to convert an innovations form model to a non-innovations form model.

The filter values are automatically returned by \(l() \) but, because of the additional time and space requirements, the smoother values are not. The smoother is run separately by the function \(smoother() \).

\[> \text{ssc <- toSSChol(ss)} \]
\[> \text{ssc <- smoother(ssc)} \]
\[> \text{tfplot(state(ssc, filter=TRUE))} \]
\[> \text{tfplot(state(ssc, smoother=TRUE))} \]

These can be compared more easily with

\[> \text{tfplot(state(ssc, smoother=TRUE), state(ssc, filter=TRUE))} \]

The term \(state \) estimate is well established, but these should not be confused with model parameter estimates. The error in the model parameter estimates converges to zero as the length of the series increases to infinity (with good estimators and assuming estimation assumptions are satisfied). State estimation errors never converge to zero, and some authors prefer the term \(state \) prediction because of this. The state tracking error can also be extracted from an non-innovations form model.

6 VAR and VARX TSmodels

Vector auto-regressive models (VAR) and vector auto-regressive models with exogenous inputs (VARX) models are special cases of ARMA models covered in the last section. (If you did not notice, please go back and re-read the previous section.) For the moment, this section is only here because of the number of time I get asked if \text{dse} can do VARs. Sometime I might add more special case examples here.
7 Model Estimation

The example data eg1.DSE.data and egJofF.1dec93.data are available with dse and are used in examples in this section.

To estimate an AR model with the default number of lags:

```r
> model.eg1.ls <- estVARXls(trimNA(eg1.DSE.data))
```

In this example trimNA removes NA padding from the ends of the data, since the estimation method cannot handle missing values. This padding may not be present, depending on how the data was retrieved. This data is highly correlated and highly parameterized models result in a degenerate covariance matrix. When this happens a warning is produced in this and other examples.

It is also possible to select a subsample of the data:

```r
> subsample.data <- tfwindow(eg1.DSE.data, start=c(1972,1), end=c(1992,12), warn=FALSE)
```

This creates a new variable with data starting in January 1972 and ending in December 1992. The R function `window` also usually works, however the function `tfwindow` is typically used in dse and this guide because of some programming advantages. The argument `warn=FALSE` prevents some warning messages from being printed. For example, when the specified `start` or `end` date corresponds to the start or end date of the data, then the default `warn=TRUE` results in a warning that the sample has not been truncated.

Various functions can be applied to the estimation result

```r
> summary(model.eg1.ls)
> print(model.eg1.ls)
> tfplot(model.eg1.ls)
> checkResiduals(model.eg1.ls)
```

Other estimation techniques are available

```r
> model.eg1.ar <- estVARXar(trimNA(eg1.DSE.data))
> model.eg1.ss <- estSSfromVARX(trimNA(eg1.DSE.data))
> model.eg1.bft <- bft(trimNA(eg1.DSE.data))
> model.eg1.mle <- estMaxLik(estVARXls(trimNA(eg1.DSE.data), max.lag=1)) # see note below
```

`tfplot` can put multiple similar objects on a plot.

```r
> tfplot(model.eg1.ls, model.eg1.ar)
> tfplot(model.eg1.ls, model.eg1.ar, start=c(1990,1))
```

Most of the estimation techniques have several optional parameters which control the estimation. Consult the help for the individual functions. `estMaxLik` extracts data from a `TSestModel` and uses the model structure and initial
parameter values for the estimation. (Note: Maximum likelihood estimation can be very slow and may not converge in the default number of iterations. It also tends to overfit unless used with care, so that out-of-sample performance is not good. I do not generally recommend it, although it does offer possibilities for constraining the structure in specific ways (e.g., fixing some model matrix entries to zero or one). You might consider comparing mle to other estimation techniques using functions discussed in the following sections and in the package EvalEst.) In the above estMaxLik example a smaller (one lag) model is used. Be prepared for the estimation to take some time when models have a large number of parameters.

An important point to note is that the one-step-ahead predictions and related statistics returned by these estimation techniques are calculated by evaluating \(l(\text{model}, \text{data}) \) as the final step after the model has been estimated. This can give different results than might be expected using the estimation residuals, particularly with respect to initial condition effects. (For stable models initial condition effects should not be too important. If they are an important factor check the documentation for specific models regarding the specification of initial conditions.)

Also remember when estimating a model that, if you want to predict future values of a variable, it will need to be an output in the \(\text{TSdata} \) object.

For the next example a four variable subset of the data in \(\text{egJofF.1dec93.data} \) will be used. This subset is extracted by

```r
> eg4.DSE.data<- egJofF.1dec93.data
> outputData(eg4.DSE.data) <- outputData(eg4.DSE.data,
series=c(1,2,6,7))
```

which selects the 1st, 2nd, 6th, and 7th series of the output data. The following uses the currently preferred automatic estimation procedure:

```r
> model.eg4.bb <- estBlackBox(trimNA(eg4.DSE.data), max.lag=3)
```

An optional argument \(\text{verbose}=F \) will make the function print much less detail about the steps of the procedure. The optional argument, \(\text{max.lag}=3 \), specifies the maximum lag which should be considered. The default \(\text{max.lag}=12 \) may take a very long time for models with several variables. \(\text{estBlackBox} \) currently uses \(\text{estBlackBox4} \), also known as \(\text{bft}(\ldots, \text{standardize}=T) \) which is called the brute force technique in Gilbert (1995).

The traditional model information criteria tests can be performed to compare models:

```r
> informationTests(model.eg1.ar, model.eg1.ss)
```

An arbitrary number of models can be supplied. The generated table lists several information criteria. For state space models the calculations are done with both the number of parameters (the number of unfixed entries in the model arrays) and the theoretical parameter space dimension. See Gilbert (1993, 1995) for a more extensive discussion of this subject.
Note that converting among representations produces input-output equivalent models, so that predictions, prediction errors, and any statistics calculated from these, will be the same for the models. However, different estimation techniques produce different models with different predictions. So, \(\text{estVARXls}(\text{data})\) and \(\text{toSS}(\text{estVARXls}(\text{data}))\) will produce equivalent models and \(\text{estSSMittnik}(\text{data})\) and \(\text{toARMA}(\text{estSSMittnik}(\text{data}))\) will produce equivalent models, but the first two will not be equivalent to the second two.

8 Forecasting, Etc.

The \(\text{TSestModel}\) object returned by estimation is a \(\text{TSmodel}\) with \(\text{TSdata}\) and some estimation information. To use different data, the new data needs to be in a variable which is a \(\text{TSdata}\) object. For example, suppose a model is estimated by

\[eg4.DSE.model <- \text{estVARXls}(eg4.DSE.data) \]

and suppose new data becomes available. Data might come directly from a database (see the \(\text{TSdbi}\) package for an example). For the following demonstration purposes \(\text{new.data}\) is generated with

\[\begin{align*}
\text{new.data} &\leftarrow \text{TSdata}(
\text{input}=\text{ts(rbind(inputData(eg4.DSE.data), matrix(0.1,10,1)),}
\text{start} = \text{start(eg4.DSE.data)},
\text{frequency} = \text{frequency(eg4.DSE.data)}),
\text{output} = \text{ts(rbind(outputData(eg4.DSE.data), matrix(0.3,5,4)),}
\text{start} = \text{start(eg4.DSE.data)},
\text{frequency} = \text{frequency(eg4.DSE.data)})\)
\end{align*}\]

This simply appends ten observations of 0.1 onto the input and five observations of 0.3 onto the outputs. The function \(\text{ts}\) assigns time series attributes which are taken from \(\text{eg4.DSE.data}\). The model can be evaluated with the new data by

\[z \leftarrow \text{l(TSmodel}(eg4.DSE.model), \text{trimNA}(\text{new.data})) \]

Recall that \(\text{TSmodel()}\) extracts the \(\text{TSmodel}\) from the \(\text{TSestModel}\). \(\text{trimNA}\) on a \(\text{TSdata}\) object removes NAs from the ends and truncates both input and output to the same sub-sample. \(\text{l()}\) does not easily give forecasts beyond the period where all data is available. (Optional arguments can be used to achieve this, but the function \(\text{forecast}\) is more convenient.)

Forecasts are conditioned on input so it must be supplied for periods for which forecasts are to be calculated. (That is, input is not forecast by the model.) When more data is available for input than for output, as in \(\text{new.data}\) generated above, then \(\text{forecast()}\) will use input data and produce a forecast of output.
\[z <- \text{forecast}(\text{TSmodel(eg4.DSE.model)}, \text{new.data}) \]

The input data can also be specified as a separate argument. For example, the same result will be achieved with

\[z <- \text{forecast}(\text{TSmodel(eg4.DSE.model)}, \text{trimNA(new.data)}, \text{conditioning.inputs = inputData(new.data)}) \]

The \textit{conditioning.inputs} override input in the \textit{TSdata} supplied in the second argument to the function.

To see plots of the forecasts use

\[\text{tfplot}(z, \text{start=c(1990,6)}) \]
Sometimes a forecast for input data comes from another source, perhaps another model. Rather than construct the `conditioning.inputs` as described above, another way to combine this forecast with the historical input data is to use the argument `conditioning.inputs.forecasts`:

```r
> z <- forecast(eg4.DSE.model, conditioning.inputs.forecasts = matrix(0.5, 6, 1))
```

This would use the input data from `eg4.DSE.model` and append 6 periods of 0.5 to it.

Some generic functions which work with the structure returned by `forecast`:

```r
> summary(z)
> print(z)
> tfplot(z)
> tfplot(z, start=c(1990,1))
```

If you actually want the numbers from the forecast they can be extracted with

```r
> forecasts(z)[[1]]
```

The `[[1]]` indicates the first forecast (in this example there is only one, but the same structures are used for other purposes discussed below. To see a subset of the data use `tfwindow`:

```r
> tfwindow(forecasts(z)[[1]], start=c(1994,1), warn=FALSE)
```

This prints values starting in the first period of 1994.

The horizon for the forecast is determined by the available input data (`conditioning.inputs` or `conditioning.inputs.forecasts`). If neither of these are supplied then the argument `horizon`, which has a default value of 36, is used to replicate the last period of data to the indicated horizon. For models with no input variables the argument `horizon` controls the length of the forecast.

9 Evaluating Forecasting Models

How well does the model do at forecasting? The first thing to check is that model forecasts actually track the data more or less. The generic function `tfplot()` works with results from the following functions. Recall that the function `l()` applies a `TSmodel` to `TSdata` and returns a `TSestModel` which includes one-step ahead forecasts. It can be used with any `TSmodel` and `TSdata` of corresponding dimension. So

```r
> z <- l(TSmodel(eg4.DSE.model), new.data)
```

applies the previously estimated model to the new data, and

```r
> tfplot(z)
```
would plot the one-step ahead forecasts. The function `forecast` discussed in the previous section calculates multi-step ahead forecasts from the end of the data. For evaluating forecasting models it is more useful to calculate forecasts within the sample of available data. This is for two reasons. First, the forecast can be compared against the actual outcome. Second, if the model has an input then the forecast is conditioned on it. If data is available then the actual input data can be used. (But beware that this is not a true test of the model’s ability to forecast if the whole sample has been used to estimate the model.) There are two methods to calculate multi-step ahead forecasts within the data sample. `featherForecasts` produces multiple period ahead forecasts beginning at specified periods. The name comes from the fact that the graph sometimes looks like a feather (although it will not if the forecasts are good).

```r
> z <- featherForecasts(TSmodel(eg4.DSE.model), new.data)
> tfplot(z)
```

In the following example the forecasts begin at periods 20, 50, 60, 70 and 80 and forecast for 150 periods.

```r
> z <- featherForecasts(TSmodel(eg4.DSE.model), new.data,
> from.periods = c(20, 50, 60, 70, 80), horizon=150)
```

The plot looks like this:

```r
> tfplot(z)
```
The second method, `horizonForecasts`, produces forecasts from every period for specified horizons.

```r
> z <- horizonForecasts(TSmodel(eg4.DSE.model), new.data, 
  horizons = c(1,3,6))
```

produces forecasts 1, 3 and 6 steps ahead. The plot looks like this:

```r
> tfplot(z)
```
The result is aligned so that the forecast for a particular period is plotted against the actual outcome for that period. Thus, in the last example, the plot will show the data for each period along with the forecast produced from 1, 3, and 6 periods prior. This plot is particularly useful for illustrating when models do well and when they do not. A common experience with economic data is that models do well during periods of expansion and contraction, but miss the turning points. The forecast covariance, to be discussed next, averages over all periods. It is quite possible that a model can indicate turning points well but not do so well on average, and thus be overlooked if only forecast covariance is considered. It is always useful to keep in mind the intended use of the model.

The numbers which generate the above plot can be extracted from the result
of horizonForecasts with forecasts(). This gives an array with the first dimension corresponding to the horizons and the time frame aligned to correspond to the data. So forecasts(z)[2,30,] from the above example will be the prediction made for the 30th period from 3 periods previous (the second element indicated in horizons is 3) and forecasts(z)[3,30,] will be the prediction made for the 30th period from 6 periods previous (horizons[3] is 6). Remember that these forecasts are conditioned on the supplied input data, which means that the output variables here are forecast 1, 3 and 6 periods ahead, but true, not forecasted, input data is used.

If the forecasts look reasonable then examine the forecast errors more systematically. The following calculates the forecast covariances at different horizons.

```r
> fc <- forecastCov(TSmodel(eg4.DSE.model), data = eg4.DSE.data)
> tfplot(fc)
> tfplot(forecastCov(TSmodel(eg4.DSE.model), data = eg4.DSE.data,
                      horizons = 1:4))
```

The last example calculates for horizons from 1 to 4 rather than the default 1 to 12. To see how the model forecasts relative to a zero forecast and a trend forecast:

```r
> fc <- forecastCov(TSmodel(eg4.DSE.model), data = eg4.DSE.data,
                      zero = T, trend = T)
> tfplot(fc)
```

This is a very useful check (and often very humbling).

You can also do out-of-sample forecast covariance analysis. This is discussed in the EvalEst package vignette.

There is not yet implemented in dse any measure of forecast errors which can be compared across models - inevitably the covariance of the error is smaller for less variable series and is also affected by scaling of the series. This may just mean that the series is easier to predict or has a different scale, not that the forecast equation is more brilliant. MAPE may be implemented sometime.

10 Adding New TSmodel Classes

dse uses object oriented methods for studying new estimation techniques and other kinds of time series models. Methods were implemented for studying Troll (Intex Solutions, Inc.) models and some neural net architectures have also been explored. These different model objects and estimation methods were implemented for research purposes. Users are encouraged to consider specific representations used in this guide as examples in the context of dse’s broader objectives.

Models used in the package are of class TSmodel with secondary classes to indicate specific types of models. The distributed package supports subclass ARMA and SS. The main methods which will be necessary for a new class of
models "xxx" are print.xxx, is.xxx, l.xxx, simulate.xxx, seriesNamesInput.xxx, seriesNamesOutput.xxx, checkConsistentDimensions.xxx, and MonteCarloSimulations.xxx. Also, the method to.xxx is useful for converting models from existing classes to this new class where possible. Models should inherit from TSmodel.

11 Adding New TSdata Classes

Data used by functions in this package are objects of class TSdata. The default methods assume that this is a list with an element output and optionally an element input, each of which is a (multivariate) time series object. New classes of time series can be defined and the dse package should work as long as the methods describe in the tframe package are implemented for the new time series class. This usually will not require any changes to TSdata methods (or anything else in the dse package).
12 Appendix I: Mini-Reference

Following is a short list of some of the functions. The online help contains more details on all functions, while the guides for each package contain more complete descriptions.

OBJECTS

- **ARMA** - define an ARMA TSmodel
- **SS** - define a state-space TSmodel
- **TSdata** - an input/output time series data structure
- **TSestModel** - a TSmodel estimated with TSdata

MODEL INFORMATION

- **print** - display model arrays
- **summary** - summary information about a model
- **tfplot** - plot data or model predictions.

MODEL PROPERTIES

- **McMillan.degree** - calculate the McMillan degree of a model
- **roots** - calculate the roots of a model
- **stability** - check stability of model

MODEL CONVERSION

- **to_SS** - convert to an equivalent state space innovations representation
- **to_ARMA** - convert to an ARMA representation

SIMULATION, ONE-STEP PREDICTIONS & RELATED STATISTICS

- **simulate** - Simulate a model to generate artificial data.
- **l** - evaluate a TSmodel with TSdata and return a TSestModel object
- **smoother** - calculate smoothed state for a state space model.
- **check.residuals** - distribution, autocorrelation and partial autocorrelation of residuals
- **information_tests** - print model selection criteria
MODEL ESTIMATION & REDUCTION

- `est.VARX.ls` - estimate VAR model with exogenous variable using OLS
- `est.VARX.ar` - estimate VAR model with exogenous variable using autocorrelations
- `est.SS.from.VARX` - estimate a VARX model and convert to state space
- `est.SS.Mittnik` - estimate state space model using Mittnik’s markov parameter technique
- `estMaxLik` - Maximum likelihood estimation of models.
- `est.black.box` - estimate and find the best reduced model
- `bft` - estimate and find the best reduced model by techniques in Gilbert (1995), also referred to as est.black.box4
- `reduction.Mittnik` - nested-balanced state space model reduction by svd of Hankel generated from a model

FORECAST AND FORECAST EVALUATION

- `forecast` - generate a forecast from given model and data.
- `featherForecasts` - forecast from specified periods
- `horizonsForecasts` - forecast specified periods ahead
- `forecastCov` - calculate covariance of multi-period ahead forecasts