Package ‘dti’

Version 1.5.4
Date 2023-09-06
Title Analysis of Diffusion Weighted Imaging (DWI) Data
Author Karsten Tabelow [aut, cre],
 Joerg Polzehl [aut],
 Felix Anker [ctb]
Maintainer Karsten Tabelow <karsten.tabelow@wias-berlin.de>
Depends R (>= 3.5.0), awsMethods (>= 1.1-1)
SystemRequirements gsl
Imports methods, parallel, adimpro (>= 0.9), aws (>= 2.4.1), rgl,
 oro.nifti (>= 0.3.9), oro.dicom, gsl, quadprog
LazyData TRUE
Description Diffusion Weighted Imaging (DWI) is a Magnetic Resonance Imaging
 modality, that measures diffusion of water in tissues like the human
 brain. The package contains R-functions to process diffusion-weighted
 data. The functionality includes diffusion tensor imaging (DTI),
 diffusion kurtosis imaging (DKI), modeling for high angular resolution
 diffusion weighted imaging (HARDI) using Q-ball-reconstruction and
 tensor mixture models, several methods for structural adaptive
 smoothing including POAS and msPOAS, and a streamline fiber tracking
 for tensor and tensor mixture models.
 The package provides functionality to manipulate and visualize results
 in 2D and 3D.
License GPL (>= 2)
Copyright This package is Copyright (C) 2005-2020 Weierstrass
 Institute for Applied Analysis and Stochastics.
URL https://www.wias-berlin.de/research/ats/imaging/
Suggests covr
RoxygenNote 6.1.0
NeedsCompilation yes
Repository CRAN
Date/Publication 2023-09-06 15:30:09 UTC
R topics documented:

dti-package ... 2
AdjacencyMatrix ... 5
awssigmc .. 6
colqFA ... 8
combineDWIData .. 9
dkiTensor-methods .. 10
dti.options ... 11
dti.smooth-methods .. 12
dtiIndices-methods ... 14
dtiTensor-methods .. 15
dwi-class .. 17
dwi.smooth-methods .. 22
dwiMD-methods .. 24
dwiMixtensor-methods 25
dwiQball-methods ... 27
dwiRiceBias-methods ... 28
dwiSqrtODF-methods ... 29
extract-methods ... 30
getmask-methods ... 32
getSdofsfb-methods .. 33
medinria .. 34
optgrad .. 35
optgradients ... 35
plot-methods .. 35
polyeder .. 37
print-methods ... 38
readDWIData .. 39
sdpar-methods .. 41
setmask-methods ... 42
show-methods ... 43
show3d-methods ... 43
showFAColorScale .. 47
subsetg ... 47
summary-methods ... 48
tracking-methods ... 49

Index .. 52

dti-package Analysis of Diffusion Weighted Imaging (DWI) Data
Description

Diffusion Weighted Imaging (DWI) is a Magnetic Resonance Imaging modality, that measures diffusion of water in tissues like the human brain. The package contains R-functions to process diffusion-weighted data. The functionality includes diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), modeling for high angular resolution diffusion weighted imaging (HARDI) using Q-ball-reconstruction and tensor mixture models, several methods for structural adaptive smoothing including POAS and msPOAS, and a streamline fiber tracking for tensor and tensor mixture models. The package provides functionality to manipulate and visualize results in 2D and 3D.

Details

The DESCRIPTION file:

Package: dti
Version: 1.5.4
Date: 2023-09-06
Title: Analysis of Diffusion Weighted Imaging (DWI) Data
Authors@R: c(person("Karsten", "Tabelow", role = c("aut", "cre"), email = "karsten.tabelow@wias-berlin.de"), person("Joerg", "Polzehl", role = c("aut"), email = "joerg.polzehl@wias-berlin.de"), person("Felix", "Anker", role = c("ctb")))
Author: Karsten Tabelow [aut, cre], Joerg Polzehl [aut], Felix Anker [ctb]
Maintainer: Karsten Tabelow <karsten.tabelow@wias-berlin.de>
Depends: R (>= 3.5.0), awsMethods (>= 1.1-1)
SystemRequirements: gsl
Imports: methods, parallel, adimpro (>= 0.9), aws (>= 2.4.1), rgl, oro.nifti (>= 0.3.9), oro.dicom, gsl, quadprog
LazyData: TRUE
Description: Diffusion Weighted Imaging (DWI) is a Magnetic Resonance Imaging modality, that measures diffusion of water in tissues like the human brain. The package contains R-functions to process diffusion-weighted data. The functionality includes diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), modeling for high angular resolution diffusion weighted imaging (HARDI) using Q-ball-reconstruction and tensor mixture models, several methods for structural adaptive smoothing including POAS and msPOAS, and a streamline fiber tracking for tensor and tensor mixture models. The package provides functionality to manipulate and visualize results in 2D and 3D.
License: GPL (>= 2)
Copyright: This package is Copyright (C) 2005-2020 Weierstrass Institute for Applied Analysis and Stochastics.
URL: https://www.wias-berlin.de/research/ats/imaging/
Suggests: covr
RoxygenNote: 6.1.0

Index of help topics:

- AdjacencyMatrix: Create an adjacency matrix from fiber tracking results
- awssigmc: Estimate noise variance for multicoil MR systems
- colqFA: FA map color scheme
- combineDWIData: Combine two objects of class "dtiData"
- dkiTensor-methods: Diffusion Kurtosis Imaging (DKI)
- dti-package: Analysis of Diffusion Weighted Imaging (DWI) Data
- dti.options: Set and manipulate image orientations for plots.
- dti.smooth-methods: Methods for Function 'dti.smooth' in Package 'dti'
dtiIndices-methods Methods for Function 'dtiIndices' in Package 'dti'
dtiTensor-methods Methods for Function 'dtiTensor' in Package 'dti'
dwi-class Class "dwi"
dwi.smooth-methods Smooth DWI data
dwiMD Methods for Mean Diffusivity in Package 'dti'
dwiMixtensor-methods Methods for Function 'dwiMixtensor' in Package 'dti'
dwiQball-methods Methods for Function 'dwiQball' in Package 'dti'
dwiRiceBias-methods Correction for Rician Bias
dwiSqrtODF-methods Methods for positive definite EAP and ODF estimation in Package 'dti'
extract-methods Methods for Function 'extract' and ']' in Package 'dti'
getmask-methods Methods for Function 'getmask' in Package 'dti'
getsdofsb-methods Estimate the noise standard deviation
medinria Read/Write Diffusion Tensor Data from/to NIFTI File
optgrad Optimal gradient directions
optgradients Optimal gradient directions for number of gradients between 6 and 162
plot-methods Methods for Function 'plot' in Package 'dti'
polyeder Polyeders derived from the Icosahedron (icosahedron) by sequential triangulation of surface triangles
print-methods Methods for Function 'print' in Package 'dti'
readDWIData Read Diffusion Weighted Data
sdpar-methods Methods for Function 'sdpar' in Package 'dti'
setmask-methods Methods for Function 'setmask' in Package 'dti'
show-methods Methods for Function 'show' in Package 'dti'
show3d-methods Methods for Function 'show3d' in Package 'dti'
showFAColorScale Writes an image with the colqFA colorscale to disk.
subsetg Create an objects of class "dtiData" containing only a subset of gradient directions.
summary-methods Methods for Function 'summary' in Package 'dti'
tracking-methods Methods for Function 'tracking' in Package 'dti'

Author(s)

Karsten Tabelow [aut, cre], Joerg Polzehl [aut], Felix Anker [ctb]

Maintainer: Karsten Tabelow <karsten.tabelow@wias-berlin.de>
AdjacencyMatrix

References

See Also

fmri aws oro.nifti

Examples

```r
## Not run: demo(dti_art)
## Not run: demo(mixtens_art)
```
Arguments

- **fiberobj**: an object of class `'dwiFiber'`
- **atlas**: an object of class `'array` or `'nifti` containing region indices as intensities. The atlas needs to be registered to DWI (subject) space, with array dimension corresponding to `fiberobj@ddim`
- **labels**: optional labels for the regions. Will be used as dimnames of the resulting matrix.
- **method**: either "standardize" or "counts", determines if fiber counts or a standardized (default) matrix is returned.
- **diagelements**: logical, if FALSE the diagonal elements of the standardized matrix are set to zero (default).
- **symmetric**: logical, with `ni` the number of fibers originating if FALSE standardized values `counts(i,j)/ni`, if TRUE we get `counts(i,j)/sqrt(nj*nj)`.
- **verbose**: logical, if TRUE report pairwise fiber counts.

Value

A matrix with dimensions equal to the number of regions defined in the atlas and dimnames given by `labels` or by the region number. The matrix contains fiber counts or values standardized with the number of fibers `ni`, `nj` originating/ending from the pair of regions. Depending on `symmetric` standardization is with `1/sqrt(ni*nj)` or with `1/ni`.

Author(s)

Joerg Polzehl <polzehl@wias-berlin.de>

See Also

dwiFiber

awssigmc

Estimate noise variance for multicoil MR systems

Description

The distribution of image intensity values S_i divided by the noise standard deviation in K-space σ in dMRI experiments is assumed to follow a non-central chi-distribution with $2L$ degrees of freedom and noncentrality parameter η, where L refers to the number of receiver coils in the system and $\sigma\eta$ is the signal of interest. This is an idealization in the sense that each coil is assumed to have the same contribution at each location. For realistic modeling L should be a locally smooth function in voxel space that reflects the varying local influence of the receiver coils in the the reconstruction algorithm used.

The functions assume L to be known and estimate either a local (function `awslsigmc`) or global (function `awssigmc`) σ employing an assumption of local homogeneity for the noncentrality parameter η.

Usage

\begin{verbatim}
awssigmc(y, steps, mask = NULL, ncoils = 1, vext = c(1, 1), lambda = 20,
 h0 = 2, verbose = FALSE, sequence = FALSE, hadj = 1, q = 0.25,
 qni = .8, method=c("VAR","MAD"))
awslsigmc(y, steps, mask = NULL, ncoils = 1, vext = c(1, 1), lambda = 5, minni = 2,
 hsig = 5, sigma = NULL, family = c("NCchi"), verbose = FALSE,
 trace=FALSE, u=NULL)
afsigmc(y, level = NULL, mask = NULL, ncoils = 1, vext = c(1, 1),
 h = 2, verbose = FALSE, hadj = 1,
 method = c("modevn","modem1chi","bkm2chi","bkm1chi"))
aflsigmc(y, ncoils, level = NULL, mask = NULL, h=2, hadj=1, vext = c(1, 1))
\end{verbatim}

Arguments

- **y**: 3D array, usually obtained from an object of class `dwi` as `obj$si[,,,i]` for some `i`, i.e. one 3D image from an dMRI experiment.
- **steps**: number of steps in adaptive weights smoothing, used to reveal the underlying mean structure.
- **mask**: restrict computations to voxel in mask, if `is.null(mask)` all voxel are used. In function `afsigmc` mask should refer to background for `method %in% c("modem1chi","bkm2chi","bkm1chi")` and to voxel within the head for `method=="modevn"`.
- **ncoils**: number of coils, or equivalently number of effective degrees of freedom of non-central chi distribution divided by 2.
- **vext**: voxel extentions
- **lambda**: scale parameter in adaptive weights smoothing
- **h0**: initial bandwidth
- **verbose**: if `verbose==TRUE` density plots and quantiles of local estimates of `sigma` are provided.
- **trace**: if `trace==TRUE` intermediate results for each step are returned in component `tergs` for all voxel in mask.
- **sequence**: if `sequence==TRUE` a vector of estimates for the noise standard deviation `sigma` for the individual steps is returned instead of the final value only.
- **hadj**: adjustment factor for bandwidth (chosen by `bw.nrd`) in mode estimation
- **q**: quantile to be used for interquantile-differences.
- **qni**: quantile of distribution of actual sum of weights $N_i = \sum_j w_{ij}$ in adaptive smoothing. Only voxel `i` with $N_i > q_{qni}(N)$ are used for variance estimation. Should be larger than 0.5.
- **method**: in case of function `awssigmc` the method for variance estimation, either "VAR" (variance) or "MAD" (mean absolute deviation). In function `afsigmc` see last column in Table 2 in Aja-Fernandez (2009).
- **level**: threshold for background separation. Used if `!is.null(level)` to redefine mask
- **h**: bandwidth for local averaging
Minimum sum of weights for updating values of sigma.

Bandwidth of the median filter.

Initial estimate for sigma

One of "Gauss" or "NCchi" (default) defining the probability distribution to use.

if verbose==TRUE an array of noncentrality parameters for comparisons. Internal use for tests only

Value

a list with components

either a scalar or a vector of estimated noise standard deviations.

the estimated mean structure

Author(s)

J\'org Polzehl <polzehl@wias-berlin.de>

References

colqFA

FA map color scheme

Description

Color map implementing the FA color scheme developed at Uniklinikum Muenster (M. Deppe)

Usage

colqFA

Format

A vector with 256 RGB color values.
combineDWIdata Combine two objects of class "dtiData"

Description

This function creates a dtiData-object from two compatible dtiData-objects. Compatible means that the spatial dimensions coincide, but gradients and b-values may be different.

Usage

combineDWIdata(x1, x2, s0strategy = "first")

Arguments

x1 Object of class "dtiData"
x2 Object of class "dtiData"
s0strategy Character, determines how the unweighted S0 images are handled. Six strategies are implemented. s0strategy="first" copies the S0 images from object x1, s0strategy="second" copies the S0 images from object x2, s0strategy="both" used the S0 images from both objects. s0strategy="rfirst" creates one average S0 image from object x1, s0strategy="rsecond" creates one average S0 image from object x2, s0strategy="rboth" creates one average S0 image from the S0 images in both objects.

Details

The function can be used to merge two objects of class "dtiData" under the condition that the information in slot ddim in both objects is identical. Also slots voxelextr, orientation and rotation should be indentical.

Value

An object of class "dtiData".

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de>
Jörg Polzehl <polzehl@wias-berlin.de>

See Also
dtiData, readDWIdata, dtiData, subset
Description

These methods estimate, in each voxel, the diffusion kurtosis tensor (and the diffusion tensor) and some scalar indices.

Usage

```r
## S4 method for signature 'dtiData'
dkiTensor(object, method=c("CLLS-QP", "CLLS-H", "ULLS", "QL", "NLR"),
          sigma=NULL, L=1, mask=NULL,
          mc.cores=setCores(, reptrt=FALSE), verbose=FALSE)
## S4 method for signature 'dkiTensor'
dkiIndices(object, mc.cores=setCores(, reptrt=FALSE),
           verbose=FALSE)
```

Arguments

- **object**: Object of class "dtiData"
- **method**: Method for tensor estimation. May be "CLLS-QP" for a quadratic program solution for the constrained optimization (requires package quadprog), "CLLS-H" for a heuristic approximation described in Tabesh et al. (2011), or "ULLS" for an unconstrained linear least squares estimation. "QL" and "NLR" correspond to the use of unconstrained quasi-likelihood and nonlinear regression, respectively.
- **sigma**: Scale parameter of intensity distribution (unprocessed). Used with method="QL" in the calculation of the expected intensity values.
- **L**: Effective number of coils, 2*L are the degrees of freedom of the intensity distribution (unprocessed). The default corresponds, e.g., to the case of a SENSE reconstruction. Used with method="QL" in the calculation of the expected intensity values.
- **mask**: Argument to specify a precomputed brain mask
- **mc.cores**: Number of cores to use. Defaults to number of threads specified for openMP, see documentation of package **awsMethods**. Not yet fully implemented for these methods.
- **verbose**:Verbose mode.

Value

An object of class "dkiTensor" or "dkiIndices".
dti.options

Methods
signature(object = "ANY") Returns a warning
signature(object = "dtiData") The method "dkiTensor" estimates the diffusion kurtosis model, i.e., the kurtosis tensor and the diffusion tensor.
signature(object = "dkiTensor") The method "dkiIndices" estimates some scalar indices from the kurtosis tensor. The method is still experimental, some quantities may be removed in future versions, other might be included.

Author(s)
Karsten Tabelow <tabelow@wias-berlin.de>

References
https://www.wias-berlin.de/projects/matheon_a3/

See Also
dtiData, readDWIData, dtiData, dkiTensor dkiIndices

dti.options Set and manipulate image orientations for plots.

Description
The function can be used to adjust to radiological conventions in image displays.

Usage
dti.options(...)

Arguments
... The following parameters can be used to determine the behaviour of the plot method for 3D image data in subsequent calls:
 • swapx - swap image x axis for display
 • swapy - swap image y axis for display
 • swapz - swap image z axis for display
all default to FALSE.

Value
returns specified display orientations.

Author(s)
Joerg Polzehl <polzehl@wias-berlin.de>

Description
The function provides structural adaptive smoothing for diffusion weighted image data within the context of a diffusion tensor (DTI) model. It implements smoothing of DWI data using a structural assumption of a local (anisotropic) homogeneous diffusion tensor model (in case a "dtiData"-object is provided). It also implements structural adaptive smoothing of a diffusion tensor using a Riemannian metric (in case a "dtiTensor"-object is given), although we strictly recommend to use the first variant due to methodological reasons.

Usage
```r
## S4 method for signature 'dtiData'
dti.smooth(object, hmax=5, hinit=NULL, lambda=20, tau=10, rho=1,
           graph=FALSE, slice=NULL, quant=.8, minfa=NULL, hsig=2.5,
           lseq=NULL, method="nonlinear", rician=TRUE,
           niter=5, result="Tensor")
```

Arguments
- **object**: Either an object of class "dtiData" or an object of class "dtiTensor"
- **hmax**: Maximal bandwidth
- **hinit**: Initial bandwidth (default 1)
- **lambda**: Critical parameter (default 20)
- **tau**: Critical parameter for orientation scores (default 10)
- **rho**: Regularization parameter for anisotropic vicinities (default 1)
- **graph**: "logical": Visualize intermediate results (default FALSE)
- **slice**: slice number, determines the slice used in visualization
- **quant**: determines minfa as corresponding quantile of FA if is.null(minfa)
- **minfa**: minimal anisotropy index (FA) to use in visualization
- **hsig**: bandwidth for presmoothing of variance estimates
- **lseq**: sequence of correction factors for lambda
- **method**: Method for tensor estimation. May be "linear", "nonlinear"
rician "logical": apply a correction for Rician bias. This is still experimental and depends on spatial independence of errors.

niter Maximum number of iterations for tensor estimates using the nonlinear model.

result Determines the created object. Alternatives are "Tensor" for create a dtiTensor-object and "dtiData" for a dtiData-object containing a smoothed data cube.

Value

An object of class dtiTensor.

Methods

object = "ANY" Returns a warning.

object = "dtiData" We highly recommend to use the method dti.smooth on DWI data directly, i.e. on an object of class "dtiData", due to methodological reasons, see Tabelow et al. (2008). It is usually not necessary to use any other argument than hmax, which defines the maximum bandwidth of the iteration.

If model="linear" estimates are obtained using a linearization of the tensor model. This was the estimate used in Tabelow et.al. (2008). model="nonlinear" uses a nonlinear regression model with reparametrization that ensures the tensor to be positive semidefinite, see Koay et.al. (2006). If varmethod="replicates" the error variance is estimated from replicated gradient directions if possible, otherwise (default) an estimate is obtained from the residual sum of squares. If volseq=TRUE the sum of location weights is fixed to 1.25^k within iteration k (does not depend on the actual tensor). Otherwise the ellipsoid of positive location weights is determined by a bandwidth $h_k = 1.25^{(k/3)}$.

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de>
J"org Polzehl <polzehl@wias-berlin.de>

References

https://www.wias-berlin.de/projects.matheon_a3/

See Also
dtiData, readDWIdata, dtiTensor-methods, dtiIndices-methods, medinria, dtiData, dtiTensor, dtiIndices
dtiIndices-methods

Methods for Function ‘dtiIndices’ in Package ‘dti’

Description

The method creates estimates of the fractional anisotropy (FA) and relative anisotropy (RA) indices, the main directions of anisotropy and several statistics used for visualization.

Usage

```r
## S4 method for signature 'dtiTensor'
dtiIndices(object, mc.cores = setCores(,reprt=FALSE))
```

Arguments

- `object` Object of class "dtiTensor"
- `mc.cores` Number of cores to use. Defaults to number of threads specified for openMP, see documentation of package `awsMethods`. Our experience suggests to use 4-6 cores if available.

Value

An object of class "dtiIndices".

Methods

- `obj = "ANY"` Returns a warning.
- `obj = "dtiTensor"` Estimate tensor indices like trace, fractional and geodesic anisotropy, main diffusion direction and shape parameters.

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de>
Jörg Polzehl <polzehl@wias-berlin.de>

References

https://www.wias-berlin.de/projects/matheon_a3/

See Also
medinria, dtiTensor-methods, dtiTensor, dtiIndices

Examples

```r
## Not run: demo(dti_art)
```

Description

The method estimates, in each voxel, the diffusion tensor from the DWI data contained in an object of class "dtiData".

Usage

```r
## S4 method for signature 'dtiData'
dtiTensor(object, method=c( "nonlinear", "linear", "quasi-likelihood"),
          sigma = NULL, L = 1, mask=NULL, mc.cores = setCores( , reprt = FALSE))
```

Arguments

- `object` Object of class "dtiData"
- `method` Method for tensor estimation. May be "linear", or "nonlinear". method="quasi-likelihood" solves the nonlinear regression problem with the expected value of the signal as regression function and weighting according to the signal variance.
- `sigma` (local) scale parameter of the signal’s distribution.
- `L` (local) effective degrees of freedom.
- `mask` argument to specify a precomputed brain mask
- `mc.cores` Number of cores to use. Defaults to number of threads specified for openMP, see documentation of package `awsMethods`. Our experience suggests to use 4-6 cores if available.

Value

An object of class "dtiTensor".
Methods

obj = "ANY" Returns a warning.

obj = "dtiData" Estimate diffusion tensor from data in each voxel with the different options for the regression type and model for variance estimation. If method="linear" estimates are obtained using a linearization of the tensor model. This was the estimate used in Tabelow et.al. (2008). method="nonlinear" uses a nonlinear regression model with reparametrization that ensures the tensor to be positive semidefinite, see Koay et.al. (2006). The implementation is based on R’s internal C code for the BFGS optimization. method="quasi-likelihood" solves the nonlinear regression problem with the expected value of the signal as regression function and weighting according to the signal variance. This requires additional parameters sigma and L characterizing the distribution of the signal. If varmethod="replicates" the error variance is estimated from replicated gradient directions if possible, otherwise an estimate is obtained from the residual sum of squares. If varmodel="global" a homogeneous variance is assumed and estimated as the median of the local variance estimates. sigma and 2*L are the scale parameter and degrees of freedom of the (local) signal distribution. L characterizes the effective number of coils. Both parameters are either scalars or arrays of the size of the images.

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de>
J"org Polzehl <polzehl@wias-berlin.de>

References

https://www.wias-berlin.de/projects/matheon_a3/

See Also
dtiData, readDWIData, dtiIndices-methods, medinria, dtiData, dtiTensor dwiMixtensor

Examples

Not run: demo(dti_art)
Class "dwi"

Description

The family of "dwi" classes is used for Diffusion Weighted Imaging (DWI) data and, within the Diffusion Tensor Model (DTI), diffusion tenors and its indices.

Objects from the Class

"dwi" is only a superclass, no instances should be created. However, objects can be created by calls of the form new("dwi", ...). "dtiData", "dtiTensor", and "dtiIndices" can be created from their correspondingly named functions and methods.

Slots

.Data: Object of class "list", usually empty.

gradient: Object of class "matrix", matrix of dimension c(3,ngrad) containing gradient directions.

btb: Object of class "matrix", matrix of dimension c(6,ngrad) obtained from gradient directions.

bvalue: Object of class "numeric", of length ngrad containing b-values if available.

ngrad: Object of class "integer", number of gradients (including zero gradients).

s0ind: Object of class "integer", index of zero gradients within the sequence 1:ngrad.

replind: Object of class "integer", index (identifier) of unique gradient directions. Used to characterize replications in the gradient design by identical indices. length is ngrad.

ddim: Object of class "integer", dimension of subcube defined by xind, yind and zind.

ddim0: Object of class "integer", dimension of original image cubes. Vector of length 3.

xind, yind, zind: Objects of class "integer", index for subcube definition in x-, y- and z-direction.

voxelex: Object of class "numeric", voxel extensions in x-, y- and z-direction. Vector of length 3.

orientation: Object of class "integer", orientation of data according to AFNI convention. Vector of length 3.

rotation: Object of class "matrix", optional rotation matrix for gradient directions.

level: Object of class "numeric", minimal valid S0-level. No evaluation will be performed for voxels with S0-values less than level.

source: Object of class "character", name of the source image file or source directory.

call: Object of class "call", call that created the object.

For class "dtiData":

si: Object of class "array", Diffusion Weighted Data.
sdcoef: Object of class "numeric", Parameters of the model for error standard deviation as a function of the mean. First two entries refer to intercept and slope of a linear function, third and fourth value are the endpoints of the interval of linearity. Contains rep(0,4) if not set. If the function

For class "dtiTensor":

D: Object of class "array", estimated tensors, dimension c(6, ddim). Tensors are stored as upper diagonal matrices.

th0: Object of class "array", estimated intensities in S0 images, dimension ddim

sigma: Object of class "array", estimated error variances if method="linear", zero otherwise.

scorr: Object of class "numeric", estimated spatial correlations in coordinate directions

bw: Object of class "numeric", bandwidth for a Gaussian kernel that approximately creates the estimated spatial correlations. Needed for adjustments of critical values in the adaptive smoothing algorithm used in function dti.smooth

mask: Object of class "array", logical indicating the voxel where the tensor was estimated.

hmax: Object of class "numeric", maximal bandwidth in case of adaptive smoothing, 1 otherwise.

outlier: Object of class "numeric", index of voxel where physical constraints are not met, i.e. where the observed values in gradient images Si were larger than the corresponding S0 values. These are probably motion effects or registration errors. Values are replaced by the corresponding (mean) S0 values.

scale: Numerical value corresponding to the 95% quantile of the maximal eigenvalues of estimated tensors within the mask. Used for scaling in function show3d.dtiTensor

method: Object of class "character", either "linear" or "nonlinear" or "unknown". Indicates the regression model used for estimating the tensors.

For class "dtiIndices":

fa: Object of class "array", Fractional anisotropy values (FA)

ga: Object of class "array", Geodetic anisotropy values (GA)

md: Object of class "array", Mean diffusivity values (MD)

andir: Object of class "array", Main directions of anisotropy

bary: Object of class "array", Shape parameters

method: Object of class "character" either "linear" or "nonlinear" or "unknown". Indicates the regression model used for estimating the tensors.

For class "dkiTensor":

D: Object of class "array", estimated tensors, dimension c(6, ddim). Tensors are stored as upper diagonal matrices.

W: Object of class "array", estimated kurtosis tensors, dimension c(15, ddim).

th0: Object of class "array", estimated intensities in S0 images, dimension ddim

sigma: Object of class "array", estimated error variances if method="linear", zero otherwise.

scorr: Object of class "numeric", estimated spatial correlations in coordinate directions
bw: Object of class "numeric", bandwidth for a Gaussian kernel that approximately creates the estimated spatial correlations. Needed for adjustments of critical values in the adaptive smoothing algorithm used in function dti.smooth.

mask: Object of class "array", logical indicating the voxel where the tensor was estimated.

hmax: Object of class "numeric", maximal bandwidth in case of adaptive smoothing, 1 otherwise.

outlier: Object of class "numeric", index of voxel where physical constraints are not met, i.e. where the observed values in gradient images Si were larger than the corresponding S0 values. These are probably motion effects or registration errors. Values are replaced by the corresponding (mean) S0 values.

scale: Numerical value corresponding to the 95% quantile of the maximal eigenvalues of estimated tensors within the mask. Used for scaling in function show3d.dtiTensor.

method: Object of class "character", either "linear" or "nonlinear" or "unknown". Indicates the regression model used for estimating the tensors.

For class "dkiIndices":

fa: Object of class "array", Fractional anisotropy values (FA)

ga: Object of class "array", Geodetic anisotropy values (GA)

md: Object of class "array", Mean diffusivity values (MD)

andir: Object of class "array", Main directions of anisotropy

bary: Object of class "array", Shape parameters

k1: Object of class "array", Kurtosis along DT (Hui et al. 2008)

k2: Object of class "array", Kurtosis along DT (Hui et al. 2008)

k3: Object of class "array", Kurtosis along DT (Hui et al. 2008)

mk: Object of class "array", Mean kurtosis (Hui et al. 2008)

mk2: Object of class "array", Mean Kurtosis (Tabesh et al. (2011))

kaxial: Object of class "array", Axial kurtosis (Hui et al. 2008)

kradial: Object of class "array", Radial kurtosis (Hui et al. 2008)

fak: Object of class "array", Kurtosis anisotropy (Hui et al. 2008)

method: Object of class "character" either "linear" or "nonlinear" or "unknown". Indicates the regression model used for estimating the tensors.

For class "dwiQball":

order: Object of class "integer", maximal order of Spherical Harmonics to use, needs to be even.

forder: Object of class "integer", maximal order Gaussian-Laguerre functions in SPF basis (for EAP estimation)

zeta: Object of class "numeric", Scale parameter used in Gaussian-Laguerre functions (for EAP estimation)

lambda: Object of class "numeric", nonnegative regularization parameter.

sphcoef: Object of class "array", estimated coefficients for spherical harmonics, dimension c((order+1)*(order+2)/2,ddim).
sigma: Object of class "array", estimated error variances if method=="linear", zero otherwise.
scorr: Object of class "numeric", estimated spatial correlations in coordinate directions
bw: Object of class "numeric", bandwidth for a Gaussian kernel that approximately creates the estimated spatial correlations. Needed for adjustments of critical values in the adaptive smoothing algorithm used in function dti.smooth
mask: Object of class "array", logical indicating the voxel where the tensor was estimated.
hmax: Object of class "numeric", maximal bandwidth in case of adaptive smoothing, 1 otherwise.
outlier: Object of class "numeric", index of voxel where physical constraints are not met, i.e. where the observed values in gradient images Si were larger than the corresponding S0 values. These are probably motion effects or registration errors. Values are replaced by the corresponding (mean) S0 values.
scale: Numerical value corresponding to the 95% quantile of the maximal eigenvalues of estimated tensors within the mask. Used for scaling in function show3d.dwiQball
what: Object of class "character", "ODF", "wODF", "aODF" or "ADC". Indicates if the object contains coefficients of the orientation density function (ODF (Descoteaux 2007), wODF (Sapiro(2009) or aODF) or the apparent diffusion coefficient (ADC). Coefficients are computed with respect to spherical harmonics of the specified order.

For class "dwiFiber":

fibers: Object of class "matrix", Matrix of fibers. The first three columns contain the coordinates of the track points, the last three columns the direction vectors for each of these points.
startind: Object of class "integer", indices for the first dimension of fibers where coordinates for a new fiber start.
roix: Object of class "integer", coordinate range of region of interest in x-direction
roiy: Object of class "integer", coordinate range of region of interest in x-direction
roiz: Object of class "integer", coordinate range of region of interest in x-direction
method: Object of class "character", fiber tracking method.
minfa: Object of class "numeric", minimal fractional anisotropy index
maxangle: Object of class "numeric", maximal angle between fibres.

For class "dwiMixtensor":

model: Object of class "character", characterizes the type of the mixed tensor model. Currently the only implemented model is model="homogeneous_prolate".
ev: Object of class "array", estimated eigenvalues, dimension c(2, ddim)
mix: Object of class "array", estimated mixture coefficients, dimension c(nmix, ddim). nmix is the number of mixture components specified.
orient: Object of class "array", estimated tensor orientations, dimension c(2, nmix, ddim)
th0: Object of class "array", estimated intensities in S0 images, dimension ddim
sigma: Object of class "array", estimated error variances if method=="linear", zero otherwise.
scorr: Object of class "numeric", estimated spatial correlations in coordinate directions
bw: Object of class "numeric", bandwidth for a Gaussian kernel that approximately creates the estimated spatial correlations. Needed for adjustments of critical values in the adaptive smoothing algorithm used in function dti.smooth

mask: Object of class "array", logical indicating the voxel where the tensor was estimated.

hmax: Object of class "numeric", maximal bandwidth in case of adaptive smoothing, 1 otherwise.

outlier: Object of class "numeric", index of voxel where physical constraints are not met, i.e. where the observed values in gradient images S_i were larger than the corresponding S_0 values. These are probably motion effects or registration errors. Values are replaced by the corresponding (mean) S_0 values.

scale: Numerical value corresponding to the 95% quantile of the maximal eigenvalues of estimated tensors within the mask. Used for scaling in function show3d.dtiTensor

method: Object of class "character", either "mixtensor" or "Jian". Indicates the regression model used for estimating the tensors.

Methods

Methods only operate on subclasses "dtiData", "dtiTensor", "dtiIndices", "dwiQball" and "dwiFiber".

dti.smooth Create estimates of diffusion tensors in each voxel using structural adaptive spatial smoothing.

dtiTensor signature(object = "dtiData"): Create estimates of diffusion tensors in each voxel.

dtiIndices signature(object = "dtiTensor"): Create estimates of diffusion tensors indices in each voxel.

tracking signature(object = "dtiTensor") or signature(object = "dtiIndices"): Fiber tracking.

dtiQball signature(object = "dtiData"): Create estimates of ADC-parameters with respect to a spherical harmonics ortho-normal system.

show3d Method for Function ‘show3d’ in Package ‘dti’.

plot Method for Function ‘plot’ in Package ‘dti’.

print Method for Function ‘print’ in Package ‘dti’.

summary Method for Function ‘summary’ in Package ‘dti’.

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de>
Jörg Polzehl <polzehl@wias-berlin.de>

References

dwi.smooth-methods

See Also
dtiData, readDWIdata, sdpars-methods, getsdofsb-methods, dwiRiceBias-methods, dtiTensor-methods, dwimixtensor-methods, dti.smooth-methods, dti.smooth-methods, dtiIndices-methods, dwiQball-methods, tracking-methods, show3d-methods, plot-methods, print-methods, summary-methods, extract-methods

dwi.smooth-methods Smooth DWI data

Description
Adaptive smoothing of DWI data. Smoothing is performed both in space and on the sphere (e.g. between images obtained for different gradient directions) employing a natural geometrical distance (in SE(3)). Structural adaptation is used in space only. Method dwi.smooth refers to the original POAS approach for single shell data. Method dwi.smooth.ms implements an improved method that is applicable for both single and multi-shell data.

Usage
S4 method for signature 'dtiData'
dwi.smooth(object, kstar, lambda=20, kappa0=NULL, mask=NULL, ncoils=1,
 sigma=NULL, level=NULL, vred=4, verbose=FALSE, dist=1,
 model=c("Gapprox","Gapprox2","Chi","Chi2"))

S4 method for signature 'dtiData'
dwi.smooth.ms(object, kstar, lambda=12, kappa0=.5, ncoils=1,
 sigma=NULL, ws0=1, level=NULL, xind=NULL, yind=NULL, zind=NULL,
 usemaxni=TRUE, memrelease = TRUE)

Arguments

object
 Object of class "dtiData"
kstar
 Number of steps in structural adaptation
lambda
 Scale parameter in adaptation
kappa0
determines amount of smoothing on the sphere. Larger values correspond to stronger smoothing on the sphere. If kappa0=NULL a value is that corresponds to a variance reduction with factor vred on the sphere.
ncoils
 Number of coils in MR system
sigma
 Error standard deviation. Assumed to be known and homogeneous in the current implementation. A reasonable estimate may be defined as the modal value of standard deviations obtained using method getsdofsb.
level Threshold for image intensities when setting mask.
mask Binary 3D image defining a mask.
vred Used if kappa0=0 to specify the variance reduction on the sphere when sug-
 gesting a value of kappa0
xind index for x-coordinate
yind index for y-coordinate
zind index for z-coordinate
verbose If verbose=TRUE additional reports are given.
dist Distance in SE3. Reasonable values are 1 (default, see Becker et.al. 2012), 2 (a slight modification of 1: with k6^2 instead of abs(k6)) and 3 (using a 'naive' distance on the sphere).
model Determines which quantities are smoothed. Possible values are "Chi" for ob-
 served values (assumed to be distributed as noncentral Chi with 2*ncoils de-
 grees of freedom), "Chi2" for squares of observed values (assumed to be dis-
 tributed as noncentral Chi-squared with 2*ncoils degrees of freedom). "Gapprox" and "Gapprox2" use a Gaussian approximation for the noncentral Chi distribution to smooth observed and squared values, respectively.
ws0 Factor to downweight information from S0 images, defaults to 1/number of s0 images.
usemaxni If "usemaxni==TRUE" a strikter penalization is used.
memrelease If "memrelease==TRUE" try to release allocated memory whenever possible.

Value
An object of class "dtiData" with smoothed diffusion weighted images.

Methods
signature(object) = "ANY" Returns a warning.
signature(object) = "dtiData" Smoothing of DWI data

Author(s)
Karsten Tabelow <tabelow@wias-berlin.de>
J"rg Polzehl <polzehl@wias-berlin.de>

See Also
dtiData, dtiData.
Methods for Mean Diffusivity in Package ‘dti’

Description

Compute mean diffusivity (MD) from dtiData or dtiTensor objects

Usage

```r
## S4 method for signature 'dtiData'
dwiMD(object, eps=.05)
## S4 method for signature 'dtiTensor'
dwiMD(object)
```

Arguments

- `object`: Object of class "dtiData" or "dtiTensor"
- `eps`: tolerance in search for good gradient combinations.

Value

Array of mean diffusivities.

Methods

- `signature(object = "ANY")` Returns a warning
- `signature(object = "dtiData")` searches for three gradients that enable best MD evaluation. Returns MD.
- `signature(object = "dtiTensor")` calculates MD values from estimated diffusion tensors

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de>

See Also

dtiData, dtiTensor.
Description

The method estimates, in each voxel, a mixture of radial symmetric tensors from the DWI data contained in an object of class "dtiData".

Usage

```r
## S4 method for signature 'dtiData'

dwiMixtensor(object, maxcomp=3,
               model=c("MT","MTiso","MTisoFA","MTisoEV"), fa=NULL,
               lambda=NULL, mask=NULL, reltol=1e-10, maxit=5000, ngc=1000,
               nguess=100*maxcomp^2, msc=c("BIC","AIC","AICC","none"),
               mc.cores = setCores(reprt=FALSE))
```

```r
## S4 method for signature 'dwiMixtensor,dwiMixtensor'

dwiMtCombine(mtobj1, mtobj2, msc="BIC", where=NULL)
```

Arguments

- `object` Object of class "dtiData"
- `maxcomp` Maximal number of mixture components.
- `model` Specifies the mixture model used. "MT" corresponds to a mixture of prolate tensors, "MTiso" includes an isotropic compartment, "MTisoFA" additionally fixes FA to the value given in argument `fa` and "MTisoEV" uses eigenvalues specified by `fa` and `lambda`.
- `fa` Value for FA in case of `model="MTisoFA"` or `model="MTisoEV"`
- `lambda` Value for first eigenvalue in case of `model="MTisoEV"`
- `mask` Brain mask
- `reltol` Relative tolerance for R's optim() function.
- `maxit` Maximal number of iterations in R's optim() function.
- `ngc` provide information on number of voxel processed, elapsed time and estimated remaining time after `ngc` voxel.
- `nguess` number of guesses in search for initial estimates
- `msc` Criterion used to select the order of the mixture model, either BIC (Bayes Information Criterion) AIC (Akaike Information Criterion) or AICC ((Bias-)Corrected Akaike Information Criterion). None may be specified to only correct for underestimation of variances.
- `mtobj1` For method "dwiMtCombine" an "dwiMixtensor"-object.
- `where` Mask of voxel for which "dwiMtImprove" or "dwiMtCombine" should be performed.
For method "dwiMtCombine" an "dwiMixtensor"-object obtained from the same "dwiData" object. The maximum number of components in mtobj2 should preferably be less or equal to the maximum number of components in mtobj1.

mc.cores

Number of cores to use. Defaults to number of threads specified for openMP, see documentation of package awsMethods. Our experience suggests to use 4-6 cores if available.

Details

For model="MT" the function estimates, in each voxel, a mixture of radial symmetric (prolate) tensors from the DWI data contained in an object of class "dtiData". The number of mixture components is selected depending on the data, with a maximum number of components specified by maxcomp. Optimization is performed using R's internal BFGS code with mixture weights (volumes of compartments corresponding to a tensor component) computed using the Lawson-Hansson NNLS code. model="MT" is only available for single shell data. In case of model="MTiso" the model additionally contains an isotropic compartment. Optimization uses the internal L-BFGS-B code. model="MTisoFA" and model="MTisoEV" fix FA and eigenvalues of the prolate tensors, respectively, in the tensor mixture model with isotropic compartment.

The method "dwiMtCombine" enables to combine results obtained for the same dwi data set with different specifications, e.g. for maximum number of components mcomp and settings that influence initial estimates. The combined result contains in each voxel the best result from both reconstructions with respect to the specified model selection criterion msc.

Value

An object of class "dwiMixtensor".

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de>
Jörg Polzehl <polzehl@wias-berlin.de>

References

See Also

dtiData, readDWIData, medinria, dtiData, dwiMixtensor

Examples

```r
## Not run: demo(mixtens_art)
```
Description

The method estimates, in each voxel, the coefficients of an expansion of the apparent diffusion coefficient (ADC) with respect to a spherical harmonics orthonormal system from the DWI data contained in an object of class "dtiData".

Usage

```r
## S4 method for signature 'dtiData'
dwiQball(object, what="wODF", order=4, lambda=0, mask=NULL)
```

Arguments

- `object`: Object of class "dtiData"
- `what`: Determines quantity to estimate, coefficients of the orientation density function (ODF) (what="ODF", what="wODF", what="aODF") or the apparent diffusion coefficient (ADC) (what="ADC") with respect to spherical harmonics of the up to the specified order.
- `order`: even integer: maximum order of the spherical harmonics expansion
- `lambda`: nonnegative regularization parameter.
- `mask`: optional brain mask

Value

An object of class "dwiQball".

Methods

- `obj = "ANY"` Returns a warning.
- `obj = "dtiData"` Estimate, in each voxel, the coefficients of an expansion of the orientation density function (ODF) or the apparent diffusion coefficient (ADC) with respect to a spherical harmonics orthonormal system. Note that the maxima of the ADC have no direct interpretation as fibre orientations.

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de>
Jörg Polzehl <polzehl@wias-berlin.de>

References

dwiRiceBias-methods

See Also
dtiData, readDWIdata, dtiIndices-methods, median, dtiData, dtiTensor

Examples

Not run: demo(dti_art)

dwiRiceBias-methods Correction for Rician Bias

Description

Correction for Rician Bias assuming known variance parameter

Usage

S4 method for signature 'dtiData'
dwiRiceBias(object, sigma=NULL, ncoils=1)

Arguments

object Object of class "dtiData"
sigma Scale parameter that relates the distribution of the signal to a \(\chi^2 \) distribution
ncoils number of effective coils in parallel imaging, the related \(\chi \) distribution has \(2 \times \text{ncoils} \) degrees of freedom.

Value

An object of class "dtiData".

Methods

object = "ANY" Returns a warning.
object = "dtiData" Returns a dtiData object with bias-corrected image intensities.

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de>
J"org Polzehl <polzehl@wias-berlin.de>

See Also
dtiData, dtiTensor-methods, dwiMixtensor-methods, dtiData, dtiTensor, dwiMixtensor,
Methods for positive definite EAP and ODF estimation in Package dti

Description

Compute a positive definite estimate of the Ensemble Average Propagator (EAP) and Orientation Density Function (ODF) using the approach of Cjeng et. al (2012).

Usage

```r
## S4 method for signature 'dtiData'
dwiSqrtODF(object, what = "sqrtODF", order = 4, forder = 1, lambda = 0, D0 = 1.4e-3)
```

Arguments

- `object`: Object of class "dtiData"
- `what`: Character, currently only "sqrtODF" is possible
- `order`: Even integer, Order of spherical harmonics approximation.
- `forder`: Integer, Order of radial approximation.
- `lambda`: Non-negative, Regularization parameter.
- `D0`: Numeric vector, grid of diffusivity parameters, typically about 1e-3.

Methods

- `signature(object = "ANY")` Returns a warning.
- `signature(object = "dtiData")` Compute a positive definite estimate of the Ensemble Average Propagator (EAP) and Orientation Density Function (ODF) using the approach of Cjeng et. al (2012).

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de>
J"org Polzehl <polzehl@wias-berlin.de>

References

See Also

dtiData, readDWIdata, dtiData, dwiQball
The methods extract and/or compute specified statistics from object of class "dtiData", "dtiTensor", and "dtiIndices". This can be restricted to a subset of voxel.

Usage

S4 method for signature 'dtiData'
extract(x,
 what=c("data","gradient","btb","s0","sb","siq"),
 xind=TRUE, yind=TRUE, zind=TRUE)

S4 method for signature 'dtiTensor'
extract(x, what=c("tensor", "fa", "ga", "md", "evals",
 "andir", "s0", "mask", "bic", "aic", "outlier"),
 xind=TRUE, yind=TRUE, zind=TRUE, mc.cores=setCores(, reptr = FALSE))

S4 method for signature 'dwiMixtensor'
extract(x, what=c("w0","andir", "order", "ev", "mix", "s0",
 "mask", "fa", "eorder", "bic", "aic"), xind=TRUE, yind=TRUE, zind=TRUE)

S4 method for signature 'dtiIndices'
extract(x, what=c("fa", "andir", "ga", "md", "bary"),
 xind=TRUE, yind=TRUE, zind=TRUE)

S4 method for signature 'dwiQball'
extract(x, what=c("sphcoef", "s0", "mask", "bic", "aic",
 "outlier"), xind=TRUE, yind=TRUE, zind=TRUE)

S4 method for signature 'dtiData'
x[i, j, k, drop=FALSE]

S4 method for signature 'dtiTensor'
x[i, j, k, drop=FALSE]

S4 method for signature 'dtiIndices'
x[i, j, k, drop=FALSE]

S4 method for signature 'dkiTensor'
x[i, j, k, drop=FALSE]

S4 method for signature 'dkiIndices'
x[i, j, k, drop=FALSE]

S4 method for signature 'dwiQball'
x[i, j, k, drop=FALSE]

Arguments

x Object of class dti
i vector of x-coordinates, defaults to whole range.
j vector of y-coordinates, defaults to whole range.
k vector of z-coordinates, defaults to whole range.
extract-methods

xind vector of x-coordinates, defaults to whole range.
yind vector of y-coordinates, defaults to whole range.
zind vector of z-coordinates, defaults to whole range.
what Statistic to extract. See Methods Section for details.
drop unused.
m.cores Number of cores to use. Defaults to number of threads specified for openMP, see documentation of package awsMethods. Our experience suggests to use 4-6 cores if available.

Value

For function extract a list with components carrying the names of the options specified in argument what. For code"[" the cutted object.

Methods

The generic extract function "[" does what it is expected to do: it extracts parts of the object specified by i, j, and k.

Returns a warning for extract. Generic function for "[" returns an object of same class with data clipped to the indices specified in arguments i, j and k.

x = "ANY""dtiData" Extraction of squared gradient matrix "btb" or of S0 "s0", Sb "sb", Si/mean(SO) "siq" or all images "data" restricted to the cube defined by arguments i, j and k.

x = "dtiIndices" Returns an array containing the specified statistics, i.e. fractional anisotropy "fa", geodesic anisotropy "ga", mean diffusivity "md", main direction of anisotropy "andir" and/or shape parameters "bary", as specified in argument what. Information is extracted for voxel within the cube defined by xind, yind, and zind.

x = "dtiTensor" Returns a list with component names corresponding to what containing the specified statistics, i.e. fractional anisotropy "fa", geodesic anisotropy "ga", mean diffusivity "md", eigenvalues "evalues", main direction of anisotropy "andir", the tensor "tensor" the estimated S0 image "s0", the values of the model selection criteria BIC "bic" or AIC "aic" and/or the mask used to restrict computations "mask", as specified in argument what. Information is extracted for voxel within the cube defined by arguments xind, yind and zind.

x = "dwiMxtensor" Returns a list with component names corresponding to what containing the specified statistics. Possible values for what are "w0" (size of isotropic department), "order" (estimated number of mixture components), "eorder" effective order), "ev" (eigenvalues), "mix" (mixture weights), "andir" (main directions of diffusion), "fa" (FA index), "s0" (the estimated S0 image), the values of the model selection criteria BIC "bic" or AIC "aic" and mask (the mask used to restrict computations). Information is extracted for voxel within the cube defined by arguments xind, yind and zind.

x = "dwiQball" Returns an array containing the specified statistics, the estimated coefficients with respect to the selected spherical harmonics basis "sphcoef", the estimated S0 image "s0", the values of the model selection criteria BIC "bic" or AIC "aic" and/or the mask used to restrict computations "mask", as specified in argument what. Information is extracted for voxel within the cube defined by arguments xind, yind and zind.
getmask-methods

Methods for Function 'getmask' in Package 'dti'

Description
Create a mask containing voxel inside the head

Usage
S4 method for signature 'dtiData'
getmask(object, level = NULL, prop = 0.4, size = 3)

Arguments
- **object**: an object of class "dtiData"
- **level**: S0 intensity value to be used to discriminate between voxel inside and outside the brain. A good value of level may be determined using method sdpar in advance.
- **prop**: proportion of voxel in test area with s0 value larger than level needed to decide for a voxel inside the brain
- **size**: size of a cube defining a test area

Value
The function returns an object of class dtiData.

Methods
- **obj = "ANY"** Returns a warning
- **obj = "dtiData"** Create a mask containing voxel inside the head
- **obj = "array"** Create a mask containing voxel inside the head

Author(s)
Karsten Tabelow <tabelow@wias-berlin.de>
J"org Polzehl <polzehl@wias-berlin.de>

See Also
dtiData, dtiTensor, dtiIndices dwiMixtensor, dwiQball
Estimate the noise standard deviation.

Usage

```r
## S4 method for signature 'dtiData'
getsdofsb(object, qA0 = .1, qA1 = .98, nsb = NULL, level = NULL)
```

Arguments

- `object`: Object of class "dtiData"
- `qA0`: level for lower quantile of image intensities
- `qA1`: level for upper quantile of image intensities
- `nsb`: number of diffusion weighted image to use
- `level`: level for mask

Value

An object of class "dtiData" with results in slot `sdcoef` in components:

- 5: intercept parameter
- 6: slope parameter for linear model
- 7: lower bound (depending on `qA0`)
- 8: upper bound (depending on `qA1`)

Methods

- `signature(object) = "ANY"`: Returns a warning.
- `signature(object) = "dtiData"`: Returns a `dtiData` object with estimated standard deviation parameters in slot `sdcoef`.

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de>
Jörg Polzehl <polzehl@wias-berlin.de>

See Also

- `dtiData`
- `dwi.smooth-methods`
- `dtiData`
medinria

Read/Write Diffusion Tensor Data from/to NIFTI File

Description
Read/Write diffusion tensor data from/to NIFTI file. Interface functions to MedINRIA.

Usage

medinria2tensor(filename)
tensor2medinria(obj, filename, xind = NULL, yind = NULL, zind = NULL)

Arguments
filename file name for the tensor data.
obj object of class "dtiTensor"
xind index to define a subcube in x-direction. If is.null(xind) all voxel indices are used.
yind index to define a subcube in y-direction. If is.null(yind) all voxel indices are used.
zind index to define a subcube in z-direction. If is.null(zind) all voxel indices are used.

Value
For function medinria2tensor: object of class "dtiTensor".

Author(s)
Karsten Tabelow <tabelow@wias-berlin.de>
Jörg Polzehl <polzehl@wias-berlin.de>

References
https://www-sop.inria.fr/asclepios/software/MedINRIA/

See Also
dtiTensor, dtiTensor-methods dtiIndices-methods

Examples
Not run: demo(dti_art)
optgrad

Optimal gradient directions

Description

List containing gradient directions minimizing Coulomb forces on the sphere following a proposal by D. Jones (1999) for number of gradients between 6 and 162.

optgradients

Optimal gradient directions for number of gradients between 6 and 162

Description

Optimal gradient directions minimizing symmetrized Coulomb forces on the sphere following a proposal by Jones et al. (1999). These directions define an optimal design in DWI for given number of gradients.

Usage

optgrad

Format

A list with name optgrad and component ngrad-5 containing a matrix with ngrad gradients as columns.

plot-methods

Methods for Function 'plot' in Package 'dti'

Description

Visualization of objects of class "dtiData", "dtiIndices", "dtiTensor" and class "dwiMixtensor"

Usage

S4 method for signature 'dtiData'
plot(x, y, slice=1, gradient=NULL, view="axial", show=TRUE, density=FALSE, xind=NULL, yind=NULL, zind=NULL, mar=par("mar"), mgp=par("mgp"), ...)

S4 method for signature 'dtiTensor'
plot(x, y, slice=1, view="axial", quant=0, minfa=NULL, contrast.enh=1, what="fa", qrange=c(.01,.99), xind=NULL, yind=NULL, zind=NULL, mar=par("mar"), mgp=par("mgp"), ...)

S4 method for signature 'dwiMixtensor'
plot(x, y, slice=1, view="axial", what="fa", minfa=NULL,
 identify=FALSE, xind=NULL, yind=NULL, zind=NULL, mar=par("mar"), mgp=par("mgp"), ...)
S4 method for signature 'dtiIndices'
plot(x, y, slice=1, view= "axial", method=1, quant=0, minfa=NULL,
 show=TRUE, identify=FALSE, density=FALSE, contrast.enh=1, what="fa",
 xind=NULL, yind=NULL, zind=NULL, mar=par("mar"), mgp=par("mgp"), ...)
S4 method for signature 'dwiFiber'
plot(x, y, ...)
S4 method for signature 'dkiIndices'
plot(x, y, slice=1, what=c("md", "fa", "mk", "mk2",
 "k1", "k2", "k3", "kaxial", "kradial", "fak"), xind=NULL, yind=NULL,
 mar=par("mar"), mgp=par("mgp"), ...)

Arguments

x Object of class "dtiIndices", "dtiData" or "dtiTensor"
y Not used
slice Slice number
view Choose "sagittal", "coronal", or "axial" view here
gradient Index of data cube to plot. Defaults to the first S0 image.
method Method for color coding tensor indices.
quant If is.null(minfa) specify minfa as corresponding quantile of the fractal anisotropy (FA) index.
minfa Display only information for voxel with (G)FA>minfa
show Visualize information in a graphics device (for classes "dtiData" and "dtiIndices" only).
identify Enable identification of coordinates by mouse actions, logical with default FALSE. Uses function identify. (for classes "dtiIndices" and "dwiMixtensor" only)
density Show density of S0(Sb)-values (for class "dtiData") or densities of fractal anisotropy (FA) or geodesic anisotropy (GA) (for class "dtiIndices").
contrast.enh Enhance image contrast using min(1,x$anindex/contrast.enh instead of the anisotropy index itself. Effective values are within the interval (0,1).
what In case of class "dtiIndices" what="g" uses geodesic anisotropy (GA) in contrast to what="fa" for fractional anisotropy (FA). For class "dwiMixtensor" what="fa" for FA and what="order" for the number of mixture components may be chosen.
mar Graphical parameter for par.
mgp Graphical parameter for par.
qrange Cut image intensity to these quantiles to avoid that outliers determine the dynamic range of the image.
xind If provided restrict display to indices specified in xind for x-direction.
yind If provided restrict display to indices specified in yind for y-direction.
zind If provided restrict display to indices specified in zind for z-direction.
... currently not used
Methods

x = "ANY" Generic function: see plot.

x = "dwi" Returns a warning.

x = "dtiData" gradient can be used to specify a specific data cube associated with the index of a gradient direction. For objects of class "dtiData" images are produces that are scaled by the maximal observed image value. This guarantees that subsequently produced images are on a comparable grey scale. The resulting image of class "adimpro" from package adimpro is returned.

x = "dtiIndices" Color coded anisotropy maps are produced depending on the specification in method. method==1, method==2, method==4 and method==5 specify three different color schemes for directional FA-maps. method==6 uses colored FA maps based on scheme developed at Uni Muenster (M. Deppe, Germany). method==3 specifies visualization of dti-Indices using color coded shape parameters. If identify==FALSE the resulting image of class "adimpro" from package adimpro, otherwise a matrix with coordinates of identified voxel is returned.

x = "dtiTensor" The tensor itself, fractional anisotropy (FA), mean diffusivity (MD) and a color coded anisotropy map are provided. NULL is returned.

x = "dwiMixtensor" Depending of what images of FA (what="fa"), number of mixture components (what="order"), effective order (what="eorder") or maximum eigenvalues (what="ev") is returned.

x = "dwiFiber" Creates a density plot of fiber lengths. NULL is returned.

x = "dkiIndices" Preliminary function to plot a slice of diffusion kurtosis indices: Mean Kurtosis what="mk" or what="mk2", mean diffusivity what="md", fractional anisotropy what="fa".

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de>
J"org Polzehl <polzehl@wias-berlin.de>

See Also

dtiIndices, dtiData, dtiTensor, dwiMixtensor

Examples

Not run: demo(dti_art)

table

| polyeder | Polyeders derived from the Icosahedron (icosa0) by sequential triangulation of surface triangles |

Description

icoso0 - icosa4 provide a description of regular polyeders derived from the Icosahedron (icosa0) by sequential triangulation of surface triangles
Usage

icosa0

Format

a list with components

1. vertices - array of dimension \(c(3,nv) \) containing cartesian coordinate of the \(nv \) vertices.
2. indices - Indices of vertices that define surface triangles of the polyeder.
3. edges - Indices of vertices that define edges of the polyeder.
4. nv - number of vertices
5. ne - number of edges
6. ni - number of triangles

Description

The function provides information on data dimensions, data source and existing slot-names for objects of class "dti", "dtiData", "dtiTensor", "dtiIndices", "dkiIndices", "dkiTensor", "dwiMixtensor", "dwiQball" and "dwiFiber".

Usage

S4 method for signature 'dwi'

print(x)

Arguments

x Object of class "dtiIndices", "dtiData", "dtiTensor", "dkiIndices", "dkiTensor", "dwiFiber", "dwiMixtensor" or "dwiQball"

Methods

x = "ANY" Generic function: see print.

x = "dwi" The function provides information on data dimensions, data source and existing slot-names for objects of class "dwi".

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de>
J"rg Polzehl <polzehl@wias-berlin.de>

See Also

dtiIndices, dtiData, dtiTensor dwiMixtensor dwiQball dwiFiber
readDWIdata

Read Diffusion Weighted Data

Description

The functions create a "dtiData" object from Diffusion Weighted Data from medical imaging files in a list of directories or from an imagefile, where the diffusion weighted data is given as 2-byte integer.

Usage

```
dtiData(gradient, imagefile, ddim, bvalue = NULL, xind = NULL, yind = NULL, zind = NULL, level = 0, mins0value = 1, maxvalue = 32000, voxelex = c(1, 1, 1), orientation = c(0L, 2L, 5L), rotation = diag(3))
readDWIdata(gradient, dirlist, format = c("DICOM", "NIFTI", "ANALYZE", "AFNI"), nslice = NULL, order = NULL, bvalue = NULL, xind = NULL, yind = NULL, zind = NULL, level = 0, mins0value = 1, maxvalue = 32000, voxelex = NULL, orientation = c(0L, 2L, 5L), rotation = NULL, pattern = NULL, SPM2=TRUE, verbose = FALSE)
```

Arguments

- **gradient**: matrix of diffusion gradients (including zero gradients for S0 images)
- **imagefile**: name of data image file (binary 2Byte integers)
- **ddim**: dimension of image cube (3D)
- **dirlist**: list of directories containing the data files or name of a single data file (e.g. 4D NIFTI)
- **format**: string specifying the medical imaging format, one of "DICOM", "NIFTI", "ANALYZE", or "AFNI"
- **nslice**: number of slices (usually z-direction)
- **order**: vector, specifying a different order of the data files, i.e. other than alphabetic order in the directories given by dirlist. If not given, 1:n is used for n data files (no order change).
- **bvalue**: vector of b-values (default 0 for S0 and 1 for Si)
- **xind**: subindex for x-direction
- **yind**: subindex for y-direction
- **zind**: subindex for z-direction
- **level**: determine mins0value as quantile of positive S0-values
- **mins0value**: set voxel in S0-images with values less than level “inactive”
- **maxvalue**: set voxel with values larger than maxvalue inactive
- **voxelex**: voxel extensions in coordinate directions
- **orientation**: orientations of data as coded in AFNI
rotation
 optional rotation matrix for the coordinate system.

pattern
 pattern for file matching in the directories dirlist.

SPM2
 Enable some non-standard NIfTI files produced by SPM to be readable.

verbose
 some progress reports if TRUE

Details

The function dtiData creates an object of class "dtiData" from an image file, where the diffusion weighted data is given as 2-byte integer. This image file has to be prepared by the user. Use writeBin to write out first all S0 images and than all Si images. The gradient should be created according to this order. Run the demo in order to have an example, how to do this!

The function readDWIdata reads the data files given in the directories in dirlist in alphabetic order. The order can be changed using the order argument: If filelist is the vector of files in alphabetic order, they are read in the order filelist[order]. If order is not given order <- 1:n is used (no change!). The medical imaging format is given by format and can be one of "DICOM", "NIFTI", "ANALYZE", or "AFNI". The number of slices of the three dimensional data cube is given by nslice. The diffusion gradients are provided as matrix gradient.

xind, yind, and zind define a region of interest as indices. If not given 1:dim[i] is used. level determine mins0value as quantile of positive S0-values. mins0value sets voxel in S0-images with values less than level "inactive". maxvalue sets voxel with values larger than maxvalue inactive.

voxelext defines the voxel extension, overwrites the values found in the imaging files. orientation codes the data orientation in AFNI notation.

Value

An object of class "dtiData".

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de>
J"org Polzehl <polzehl@wias-berlin.de>

References

https://afni.nimh.nih.gov/pub/dist/src/README.attributes

See Also

dti.smooth, dtiTensor-methods, dtiData

Examples

Not run: demo(dti_art)
Description

This function estimates the parameters of a piecewise linear model for the dependence between error standard deviation and mean.

Usage

```r
## S4 method for signature 'dtiData'
sdpar(object, level=NULL, sdmethod="none", interactive=TRUE, threshfactor=1)
```

Arguments

- `object`: An object of class `dtiData`
- `level`: Suggested value for slot `level`. As a default the value in `object@level` is used. The value determines the lower endpoint of the linear section in the model for error standard deviation as a function of the mean.
- `sdmethod`: Method for estimating voxelwise standard deviations if replicates of zero weighted images are available, can be set to "sd" or "mad". "none" specifies that no variance model is fitted.
- `interactive`: If TRUE a density of values in zero weighted images is plotted together with the specification of the lower endpoint of the interval of linearity. A good choice of this point should correspond, if present, to the minimum between the first two modes of the density estimate. The value can be changed or accepted. If changed a new value for slot `lambda` is set.
- `threshfactor`: Factor for threshold-value selected if function is run in interactive mode. May be used to correct results if automatic threshold selection fails.

Value

The function returns an object of class `dtiData`.

Methods

- `obj = "ANY"` Returns a warning
- `obj = "dtiData"` Estimate parameters of a model for the dependence between error standard deviation and mean.

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de>
Jörg Polzehl <polzehl@wias-berlin.de>
See Also
dtiData, readDWIdata, dti.smooth, dtiTensor.

Examples

Not run: demo(dti_art)

dtiData, readDWIdata, dti.smooth, dtiTensor.

setmask-methods

Methods for Function 'setmask' in Package 'dti'

Description

Read mask definition from NIfTI file and include it in dtiData object

Usage

S4 method for signature 'dtiData'
setmask(object, maskfile)

Arguments

object an object of class "dtiData"

maskfile NIfTI file containing mask definition. Dimension need to be compatible, i.e. either equal object@ddim0 or object@ddim

Value

The function returns an object of class dtiData.

Methods

obj = "ANY" Returns a warning

obj = "dtiData" Set mask definition in dtiObject using information provided as NIfTI file as e.g. provided by fsl_bet.

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de>
J"org Polzehl <polzehl@wias-berlin.de>

See Also
dtiData, readDWIdata.
Methods for Function `show` in Package `dti`

Description

The function provides information on data dimensions, data source and existing slot-names for objects of class "dti", "dtiData", "dtiTensor", "dwiMixtensor", "dtiIndices", "dwiQball" or "dwiFiber".

Usage

```r
## S4 method for signature 'dti'
show(object)
```

Arguments

- `object`: Object of class `dtiIndices`, `dtiData`, `dtiTensor`, `dkiTensor`, `dkiIndices`, `dwiMixtensor`, `dwiQball` or `dwiFiber`.

Methods

- `x = "ANY"`: Generic function.
- `x = "dti"`: The function provides information on data dimensions, data source and existing slot-names for objects of class "dti" and classes that extent "dti".

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de>
Jörg Polzehl <polzehl@wias-berlin.de>

See Also

dtiIndices, dtiData, dtiTensor, dwiMixtensor, dwiQball, dwiFiber

Methods for Function `show3d` in Package `dti`

Description

The function provides 3D visualization of "dtiData", "dtiTensor", "dwiQball" and "dtiIndices" objects using the "rgl"-package. Functionality of the rgl-package allows to rotate and zoom the displayed object.
Usage

S4 method for signature 'dtiData'
show3d(obj, xind=NULL, yind=NULL, zind=NULL, quant=.8,
 scale=.4,
 bgcolor="black", add=FALSE, maxobjects=729, what=c("adc","data"),
 minalpha=1, nn=1, normalize=FALSE, box=FALSE, title=FALSE, ...)

S4 method for signature 'dtiTensor'
show3d(obj, xind=NULL, yind=NULL, zind=NULL, method=1,
 minfa=.3, mask=NULL, fibers=FALSE,
 maxangle = 30, level=0, quant=.8, scale=.4, bgcolor="black", add=FALSE,
 subdivide=2, maxobjects=729, what=c("tensor","adc","odf"), odfs=1,
 minalpha=.25, normalize=NULL, box=FALSE, title=FALSE,...)

S4 method for signature 'dkiTensor'
show3d(obj, xind=NULL, yind=NULL, zind=NULL, method=1,
 minfa=.3, mask=NULL, level=0, quant=.8, scale=.4, bgcolor="black",
 add=FALSE, subdivide=2, maxobjects=729, what=c("KT","DT"),
 minalpha=.25, normalize=NULL, box=FALSE, title=FALSE,...)

S4 method for signature 'dtiIndices'
show3d(obj, index=c("fa","ga"), xind=NULL, yind=NULL,
 zind=NULL, method=1,
 minfa=0, bgcolor="black", add=FALSE, lwd=1, box=FALSE,
 title=FALSE, ...)

S4 method for signature 'dwiMixTensor'
show3d(obj, xind=NULL, yind=NULL, zind=NULL, minfa=.3,
 minorder 1, mine=1, fibers=FALSE, maxangle=30, level=0,
 quant=.8, scale=.4, bgcolor="black", add=FALSE,
 subdivide=3, maxobjects=729, what=c("odf","axis","both"), odfs=1,
 minalpha=1, lwd=3, box=FALSE, title=FALSE, ...)

S4 method for signature 'dwiQball'
show3d(obj, xind=NULL, yind=NULL, zind=NULL, level=0,
 quant=.8, scale=0.4, odfs=1, bgcolor="black", add=FALSE,
 subdivide=3, maxobjects=729, mimalpha=1, box=FALSE,
 title=FALSE, ...)

S4 method for signature 'dwiFiber'
show3d(obj, add=FALSE, bgcolor="black", box=FALSE,
 title=FALSE, lwd=1, delta=0, ...)
If true information is added to the current device, otherwise a new device is opened.

Maximal size of data cube (in voxel) to display

Minimum value for transparency.

Number of nearest neighbors used for interpolation onto a regular polyeder.

If TRUE normalize values (project to interval (0,1) within each voxel). For tensor objects normalize=NULL specifies a default depending on the content of argument what (normalize <- switch(what,"tensor"=FALSE,"adc"=TRUE)).

Logical, add a bounding box.

Either a character string specifying a title or a logical. If title==TRUE a default title characterizing the type of plot is generated.

method=1 and method==2 specify two different color schemes for directional FA-maps.

Minimal FA value for dtiTensor objects and for dwiMixtensor objects.

additional mask for dtiTensor objects.

Minimal order for dwiMixtensor objects.

Minimal effective order for dwiMixtensor objects.

If TRUE show fibers starting in voxel with fa>=minfa, order>=minorder and eorder>=mineo, the last two effective for dwiMixtensor objects only.

argument for fibertracking

Radius of sphere used as support for ODF visualisation

Level of subdivisions for meshing, level 0:4 correspond to use of c(12,42,162,642,2562) vertices per tensor, respectively.

For dtiTensor-objects either "tensor" for visualization using ellipsoids, "adc" for Apparent Diffusion Coefficients or "odf" for the Orientation Density Function. For dwiMixtensor-objects possible specifications are "odf", "axis" and "both", with the latter superposing the estimated main directions on the estimated ODF. For "axis"(and "both") the length of the axis corresponds to the mixture weights. For dtiData-objects choices are either "data" or "adc".

Determines visualisation of the Orientation density function (ODF). For odfs=3 the ODF values are rescaled such that the volume of the displayes objects is constant. odfs=1 uses the values of the ODF as radii in the corrsponding vertex direction of the specified polyhedron. This can lead to extremely large volumes in case of one mixture component with high excentricity. values of odfs inbetween 1 and 3 are possible and allow to balance between volume based visualization and emphazising highly structured ODF's.

Linewidth for visualization of dtiIndices objects.

Eiter "FA" for fractional anisotropy index or "GA" for geodesic anisotropy index.

if delta>0 Join line segments in fiber objects as long as acos of directions is smaller than delta. Reduces the size of 3D object at the cost of resolution.

Additional parameters passed to function rgl.par from the rgl-package.
Value

The function returns the number of the current rgl-device.

Methods

$obj = "ANY"$ Returns a warning

$obj = "dtiData"$ Empirical ADC’s are visualized at the voxel centers. Color is determined by gradient directions, ADC values are reflected by both radial extend and transparency. The value of maxobjects limits the size of datacube and may be increased on hardware with suitable graphics capabilities.

$obj = "dtiIndices"$ Objects are visualized as a collection of line segments with location given by the voxel center, orientation and color determined by the main direction of anisotropy and length corresponding to either fractional or geodesic anisotropy as specified in index. Displayed objects are restricted to voxel with an fractional (geodesic) anisotropy larger than level.

$obj = "dtiTensor"$ Ellipsoids/ADC’s are visualized at the voxel centers. Orientation and size correspond to the tensor values, color is determined by the main direction of anisotropy using the colorscheme specified with method. The fractional anisotropy value is coded as transparency. The value of maxobjects limits the size of datacube and may be increased on hardware with suitable graphics capabilities.

$obj = "dkiTensor"$ Preliminary show3d method for diffusion kurtosis tensors.

$obj = "dwiQball"$ Estimated ODF/ADC’s are visualized at the voxel centers. Color is determined by directions, ODF/ADC values are reflected by both radial extend and transparency. The value of maxobjects limits the size of datacube and may be increased on hardware with suitable graphics capabilities.

$obj = "dwiFiber"$ Display and combine fibres generated by function tracking. Displays can be closed using function rgl.close

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de>
J"org Polzehl <polzehl@wias-berlin.de>

See Also

dtiIndices-methods, dti.smooth, dtiTensor, dtiIndices

Examples

Not run: demo(dti_art)
showFAColorScale

Wants an image with the colqFA colorscale to disk.

Description

Wants an image (type PNG) with the colqFA colorscale to disk.

Usage

showFAColorScale(filename = "FAcolorscale.png")

Arguments

filename Name of file to write.

See Also

See Also colqFA

subsetg

Create an objects of class "dtiData" containing only a subset of gradient directions.

Description

This function creates an object of class "dtiData" that contains only a subset, defined by an index vector, of the S0 and diffusion weighted images. This function may e.g. be used to separate information measured on different shells.

Usage

subsetg(x, ind)

Arguments

x Object of class "dtiData"

ind Indexvector containing values between 1 and x@ngrad.

Value

An object of class "dtiData".

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de>
Jörn Polzehl <polzehl@wias-berlin.de>
Methods for Function `summary' in Package `dti'

Description

The method provides summary information for objects of class "dti".

Usage

```r
## S4 method for signature 'dwi'
summary(object, ...)
```

Arguments

- `object` Object of class "dti", "dtiData", "dtiTensor", "dwiMixtensor", "dtiIndices", "dkiIndices", "dkiTensor", "dwiQball", or "dwiFiber".
- `...` Additional arguments in ... are passed to function `quantile`, e.g. argument `probs` may be specified here.

Methods

- `object = "ANY"` Generic function: see `summary`.
- `object = "dwi"` The function provides summary information for objects of class "dwi", "dtiData", "dtiTensor", "dwiMixtensor", "dtiIndices", "dkiIndices", "dkiTensor", "dwiQball" and "dwiFiber".

Author(s)

- Karsten Tabelow <tabelow@wias-berlin.de>
- Jörg Polzehl <polzehl@wias-berlin.de>

See Also

- `dtiIndices`, `dtiData`, `dtiTensor`, `dwiMixtensor`, `dwiQball`, `dwiFiber`
Description

The function provides fiber tracking of "dtiTensor", "dtiIndices", and "dwiMixtensor" objects and methods for fiber manipulations.

Usage

```r
# S4 method for signature 'dtiTensor'
tracking(obj, roix=NULL, roiy=NULL, roiz=NULL, mask=NULL,
         method="LINEPROP", minfa=0.3, maxangle=30, subsample = 1)
# S4 method for signature 'dtiIndices'
tracking(obj, roix=NULL, roiy=NULL, roiz=NULL, mask=NULL,
         method="LINEPROP", minfa=0.3, maxangle=30, subsample = 1)
# S4 method for signature 'dwiMixtensor'
tracking(obj, roix=NULL, roiy=NULL, roiz=NULL, mask=NULL,
         method="LINEPROP", minfa=0.3, maxangle=30, subsample = 1, mincompartsize = 0)
# S4 method for signature 'dwiFiber'
selectFibers(obj, roix=NULL, roiy=NULL, roiz=NULL, mask=NULL,
              minlength=1)
# S4 method for signature 'dwiFiber'
reduceFibers(obj, maxdist=1, ends=TRUE)
# S4 method for signature 'dwiFiber,dwiFiber'
combineFibers(obj, obj2)
# S4 method for signature 'dwiFiber,dwiFiber'
touchingFibers(obj, obj2, maxdist=1, combine=FALSE)
```

Arguments

- `obj` An object of class "dtiTensor", "dtiIndices", or "dwiMixtensor" for tracking() and "dwiFiber" for selectFiber(), combineFibers().
- `obj2` An object of class "dwiFiber" for combineFibers().
- `roix` Indices defining the ROI in x direction. Currently min/max is used to define ROIx
- `roiy` Indices defining the ROI in y direction. Currently min/max is used to define ROIy
- `roiz` Indices defining the ROI in z direction. Currently min/max is used to define ROIz
- `mask` Mask defining seed points for tracking
- `method` Method for fibre tracking. "LINEPROP" is simple line propagation algorithm which is the default.
minfa Minimal FA to follow the tracks. default 0.3

maxangle Maximal angle between fiber in adjacent voxels. default 30 degree.

subsample Subsampling order of the data to get more dense fibre tracks. Note, that objects become very(!) large.

minlength Minimal length of fibers to be selected.

maxdist Maximal supremum distance between fibers in mm

ends Logical: Use only endpoints of shorter fibers for distance (TRUE) or compute distances using full fiber-length (FALSE). Default (TRUE) removes more fibers and is significantly faster.

mincompartsize Minimal size of a compartment in dwiMixtensor that will be used in fiber tracking.

combine If combine=TRUE fibers selected from obj are combined with the fibers from obj2.

Value

The function returns an object of class `dwiFiber`.

Methods

- **obj ="dtiTensor"** Fiber tracking is performed on the estimated vector field of principal diffusion direction using the method `method`. Currently only line propagation is implemented. The resulting tracks can be visualized using function `show3d`.

- **obj ="dtiIndices"** Fiber tracking is performed on the estimated vector field of principal diffusion direction using the method `method`. Currently only line propagation is implemented. The resulting tracks can be visualized using function `show3d`.

- **obj ="dwiMixtensor"** Fiber tracking is performed on the estimated vector fields of diffusion direction in the mixed tensor model using the method `method`. Currently only line propagation is implemented. The resulting tracks can be visualized using function `show3d`.

- **obj ="dwiFiber"** `selectFibers` produces a `dwiFiber`-object containing all fibers that cross the region of interest and exceed a minimum length. `reduceFibers` eliminates all fibers that are within a maximum supremum distance of `maxdist` mm of a longer fiber. `reduceFibers` allows to reduce the size of a `dwiFiber`-object considerably but is slow!

- **signature(obj1 = "dwiFiber", obj2 = "dwiFiber")** `combineFibers` produces a `dwiFiber`-object containing all fibers that are in one of the supplied objects. `touchingFibers` takes all fibers from `obj` that have a minimum distance to a fiber in `obj2` of less than `maxdist`. If `combine=TRUE` these fibers are combined with the fibers from `obj2`.

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de>, Joerg Polzehl <polzehl@wias-berlin.de>

References

See Also

dtiTensor, dtiIndices, dwiFiber, show3d, summary, print
Index

* **IO**
 - medinria, 34
 - readDWIdata, 39

* **array**
 - AdjacencyMatrix, 5

* **classes**
 - dwi-class, 17

* **cluster**
 - AdjacencyMatrix, 5

* **datasets**
 - colqFA, 8
 - optgrad, 35
 - optgradients, 35
 - polyeder, 37

* **hplot**
 - plot-methods, 35
 - show3d-methods, 43

* **iplot**
 - show3d-methods, 43

* **manip**
 - combineDWIdata, 9
 - dtiIndices-methods, 14
 - dtiTensor-methods, 15
 - dwiMixtensor-methods, 25
 - dwiQball-methods, 27
 - dwiRiceBias-methods, 28
 - extract-methods, 30
 - getsdofsb-methods, 33
 - showFAColorScale, 47
 - subsetg, 47

* **methods**
 - dtiIndices-methods, 14
 - dtiTensor-methods, 15
 - dwiMixtensor-methods, 25
 - dwiQball-methods, 27
 - dwiRiceBias-methods, 28
 - dwiSqrtODF-methods, 29
 - extract-methods, 30
 - getmask-methods, 32
 - getsdofsb-methods, 33
 - plot-methods, 35
 - print-methods, 38
 - sdpar-methods, 41
 - setmask-methods, 42
 - show-methods, 43
 - show3d-methods, 43
 - summary-methods, 48
 - tracking-methods, 49

* **misc**
 - dti.options, 11

* **models**
 - dtiIndices-methods, 14
 - dtiTensor-methods, 15
 - dwiMixtensor-methods, 25
 - dwiQball-methods, 27
 - dwiSqrtODF-methods, 29

* **model**
 - dtiTensor-methods, 10
 - dwiMD-methods, 24

* **package**
 - dti-package, 2

* **smooth**
 - awssigmc, 6
 - dti.smooth-methods, 12
 - dwi.smooth-methods, 22

* **utilities**
 - print-methods, 38
 - show-methods, 43
 - summary-methods, 48
 - [,ANY-method (extract-methods), 30
 - [,dtiIndices-method (extract-methods), 30
 - [,dtiTensor-method (extract-methods), 30
 - [,dtiData-method (extract-methods), 30
 - [,dtiIndices-method (extract-methods), 30

52
INDEX

30
dtiTensor-method (extract-methods), 30
dwiMixtensor-method (extract-methods), 30
dwiMixtensor-method (extract-methods), 30
dwiQball-method (extract-methods), 30

AdjacencyMatrix, 5
aflsigmc (awssigmc), 6
aflsigmc (awssigmc), 6
awslsigmc (awssigmc), 6
awssigmc, 6

colqFA, 8, 47
combineDWIdat, 9, 48
combineFibers (tracking-methods), 49
combineFibers, dwifiber, dwifiber-method (tracking-methods), 49
combineFibers-methods (tracking-methods), 49

dkiIndices, 11
dkiIndices (dkiTensor-methods), 10
dkiIndices, ANY-method (dkiTensor-methods), 10
dkiIndices, dkiTensor-method (dkiTensor-methods), 10
dkiIndices-class (dwi-class), 17
dkiIndices-methods (dkiTensor-methods), 10
dkiTensor, 11
dkiTensor (dkiTensor-methods), 10
dkiTensor, ANY-method (dkiTensor-methods), 10
dkiTensor, dtiData-method (dkiTensor-methods), 10
dkiTensor-class (dwi-class), 17
dkiTensor-methods, 10
dti (dti-package), 2
dti-package, 2
dti.options, 11
dti.smooth, 32, 42, 46
dti.smooth (dti.smooth-methods), 12
dti.smooth, ANY-method (dti.smooth-methods), 12
dti.smooth, dtiData-method (dti.smooth-methods), 12
dti.smooth, dtiTensor-method (dti.smooth-methods), 12
dti.smooth-methods, 12
dtiData, 9, 14, 16, 22–24, 26, 28, 32, 33, 37, 38, 40, 42, 43, 48
dtiData (readDWIdata), 39
dtiData-class (dwi-class), 17
dtiIndices, 12

dtiIndices (dtiIndices-methods), 14
dtiIndices, ANY-method (dtiIndices-methods), 14
dtiIndices, dtiTensor-method (dtiIndices-methods), 14
dtiIndices-class (dwi-class), 17
dtiIndices-methods, 14
dtiTensor, 16

dtiTensor (dtiTensor-methods), 15
dtiTensor, ANY-method (dtiTensor-methods), 15
dtiTensor, dtiData-method (dtiTensor-methods), 15
dtiTensor-class (dwi-class), 17
dtiTensor-methods, 15
dwi-class, 17
dwi.smooth (dwi.smooth-methods), 22
dwi.smooth, ANY-method (dwi.smooth-methods), 22

dwi.smooth, dtiData-method (dwi.smooth-methods), 22
dwi.smooth-methods, 22
dwi.smooth.ms (dwi.smooth-methods), 22
dwi.smooth.ms, ANY-method (dwi.smooth-methods), 22

dwi.smooth.ms, dtiData-method (dwi.smooth-methods), 22
dwi.smooth-methods, 22
dwifiber, 6, 32, 43, 48, 50, 51
dwifiber-class (dwi-class), 17
dwIMD (dwIMD-methods), 24
dwIMD, ANY-method (dwIMD-methods), 24
dwIMD, dtiData-method (dwIMD-methods), 24
dwIMD, dtiTensor-method (dwIMD-methods), 24

dwIMD-methods, 24
dwimixtensor, 16, 26, 28, 32, 37, 38, 43, 48
dwimixtensor (dwimixtensor-methods), 25
dwimixtensor, ANY-method (dwimixtensor-methods), 25
dwimixtensor, dtiData-method (dwimixtensor-methods), 25
dwiMixtensor-class (dwi-class), 17
dwiMixtensor-methods, 25
dwiMtCombine (dwiMixtensor-methods), 25
dwiMtCombine, ANY-method
dwiMixtensor-methods, 25
dwiMtCombine, dwiMixtensor, dwiMixtensor-method
dwiMixtensor-methods, 25
dwiMtCombine-methods
dwiQball, 29, 32, 38, 43, 48
dwiQball (dwiQball-methods), 27
dwiQball, ANY-method (dwiQball-methods), 27
dwiQball, dtiData-method
dwiQball-class (dwi-class), 17
dwiQball-methods, 27
dwiRiceBias (dwiRiceBias-methods), 28
dwiRiceBias, ANY-method
dwiRiceBias-methods, 28
dwiRiceBias, dtiData-method
dwiRiceBias-methods, 28
dwiSqrtODF (dwiSqrtODF-methods), 29
dwiSqrtODF, ANY-method
dwiSqrtODF-methods, 29
eextract (extract-methods), 30
extract, ANY-method (extract-methods), 30
extract, dtiData-method
extract-methods, 30
extract, dtiIndices-method
extract-methods, 30
extract, dtiTensor-method
extract-methods, 30
extract, dwiMixtensor-method
extract-methods, 30
extract, dwiQball-method
extract-methods, 30
extract-methods, 30
getmask (getmask-methods), 32
getmask, ANY-method (getmask-methods), 32
getmask, array-method (getmask-methods), 32
getmask, dtiData-method
getmask-methods, 32
getmask-methods, 32
getsdofs (getsdofs-methods), 33
getsdofs, ANY-method
getsdofs-methods, 33
getsdofs, dtiData-method
getsdofs-methods, 33
getsdofs-methods, 33
icosa0 (polyeder), 37
icosa1 (polyeder), 37
icosa2 (polyeder), 37
icosa3 (polyeder), 37
icosa4 (polyeder), 37
MedINRIA (medinria), 34
medinria, 13, 15, 16, 26, 28, 34
medinria2tensor (medinria), 34
optgrad, 35
optgradients, 35
plot, 37
plot, ANY-method (plot-methods), 35
plot, dtiIndices-method (plot-methods), 35
plot, dtiIndices-method (plot-methods), 35
plot, dtiTensor-method (plot-methods), 35
plot, dwi-method (plot-methods), 35
plot, dwiFiber-method (plot-methods), 35
plot, dwiMixtensor-method
plot-methods, 35
polyeder, 37
print, 38, 51
print, ANY-method (print-methods), 38
print, dtiIndices-method
print-methods, 38
print, dtiTensor-method (print-methods), 38
print, dtiData-method (print-methods), 38
print, dtiIndices-method
print-methods, 38
print, dwi-method (print-methods), 38
print, dwIFiber-method (print-methods), 38
print, dwIMixtensor-method (print-methods), 38
print, dwIQball-method (print-methods), 38
print-methods, 38
readDWIdata, 9, 11, 13, 16, 22, 26, 28, 29, 32, 39, 42
reduceFibers (tracking-methods), 49
reduceFibers, dwIFiber-method (tracking-methods), 49
sdpar, 32
sdpar, ANY-method (sdpar-methods), 41
sdpar, dtiData-method (sdpar-methods), 41
sdpar-methods, 41
selectFibers (tracking-methods), 49
selectFibers, dwIFiber-method (tracking-methods), 49
selectFibers-methods (tracking-methods), 49
setmask (setmask-methods), 42
setmask, ANY-method (setmask-methods), 42
setmask, dtiData-method (setmask-methods), 42
setmask-methods, 42
show, ANY-method (show-methods), 43
show, dtiIndices-method (show-methods), 43
show, dtiTensor-method (show-methods), 43
show, dtiData-method (show-methods), 43
show, dtiIndices-method (show-methods), 43
show, dtiTensor-method (show-methods), 43
show, dtiData-method (show-methods), 43
show, dtiIndices-method (show-methods), 43
show, dtiTensor-method (show-methods), 43
show, dwIFiber-method (show-methods), 43
show, dwIMixtensor-method (show-methods), 43
show-methods, 43
show3d, 50, 51
show3d, ANY-method (show3d-methods), 43
show3d, dtiIndices-method (show3d-methods), 43
show3d, dtiTensor-method (show3d-methods), 43
show3d, dwIFiber-method (show3d-methods), 43
show3d, dwIMixtensor-method (show3d-methods), 43
show3d, dwIQball-method (show3d-methods), 43
show3d-methods, 43
showFAColorScale, 47
subsetg, 9, 47
summary, 48, 51
summary, ANY-method (summary-methods), 48
summary, dtiIndices-method (summary-methods), 48
summary, dtiTensor-method (summary-methods), 48
summary, dtiData-method (summary-methods), 48
summary, dtiIndices-method (summary-methods), 48
summary, dtiTensor-method (summary-methods), 48
summary, dtiData-method (summary-methods), 48
summary, dtiIndices-method (summary-methods), 48
summary, dtiTensor-method (summary-methods), 48
summary, dtiData-method (summary-methods), 48
summary, dtiIndices-method (summary-methods), 48
summary, dtiTensor-method (summary-methods), 48
summary, dwIFiber-method (summary-methods), 48
summary, dwIMixtensor-method (summary-methods), 48
summary, dwIQball-method (summary-methods), 48
summary-methods, 48
tensor2medinria (medinria), 34
touchingFibers (tracking-methods), 49
touchingFibers, dwIFiber, dwIFiber-method (tracking-methods), 49
touchingFibers-methods (tracking-methods), 49
tracking (tracking-methods), 49
tracking, ANY-method (tracking-methods), 49
tracking, dtiIndices-method (tracking-methods), 49
tracking, dtiTensor-method (tracking-methods), 49
tracking, dwIMixtensor-method (tracking-methods), 49
tracking, dwIQball-method (tracking-methods), 49
tracking-methods, 49
writeBin, 40