Package ‘dual’

December 18, 2019

Type Package
Title Automatic Differentiation with Dual Numbers
Version 0.0.3
Date 2019-12-14
Maintainer Luca Sartore <drwolf85@gmail.com>

Description Automatic differentiation is achieved by using dual numbers without providing hand-coded gradient functions. The output value of a mathematical function is returned with the values of its exact first derivative (or gradient). For more details see Baydin, Pearlmutter, Radul, and Siskind (2018) <http://jmlr.org/papers/volume18/17-468/17-468.pdf>.

License GPL-3
Depends R (>= 3.2.0), base, stats, methods
Encoding UTF-8
RoxygenNote 7.0.1
NeedsCompilation no
Author Luca Sartore [aut, cre] (<https://orcid.org/0000-0002-0446-1328>)
Repository CRAN
Date/Publication 2019-12-18 15:50:02 UTC

R topics documented:

dual-package ... 2
Arithmetic .. 3
dual-class .. 4
Error ... 6
Hyperbolic .. 7
log ... 8
MathFun ... 9
Special .. 10
Trig ... 12

Index 14
Automatic Differentiation with Dual Numbers

Description

This package provides mathematical functions that are able to handle computations with dual numbers. Dual numbers are mainly used to implement automatic differentiation. The package is useful to calculate exact derivatives in R without providing hand-coded gradient functions. Kisil (2007) <arXiv:0707.4024>

Details

Package: dual
Type: Package
Version: 0.0.3
Date: 2019-12-14
License: GPL-3

For a complete list of exported functions, use library(help = "dual").

Author(s)

Luca Sartore <drwolf85@gmail.com>
Maintainer: Luca Sartore <drwolf85@gmail.com>

References

Examples

```r
library(dual)
x <- dual(f = 1.5, grad = c(1, 0, 0))
y <- dual(f = 0.5, grad = c(0, 1, 0))
z <- dual(f = 1.0, grad = c(0, 0, 1))
exp(z - x) * sin(x)^y / x

a <- dual(1.1, grad = c(1.2, 2.3, 3.4, 4.5, 5.6))
0.5 * a^2 - 0.1
```
Description

These unary and binary operators perform arithmetic on dual objects.

Usage

```r
## S4 method for signature 'dual,missing'
e1 + e2
## S4 method for signature 'dual,numeric'
e1 + e2
## S4 method for signature 'numeric,dual'
e1 + e2
## S4 method for signature 'dual,dual'
e1 + e2
## S4 method for signature 'dual,missing'
e1 - e2
## S4 method for signature 'dual,numeric'
e1 - e2
## S4 method for signature 'numeric,dual'
e1 - e2
## S4 method for signature 'dual,dual'
e1 - e2
## S4 method for signature 'dual,numeric'
e1 * e2
## S4 method for signature 'numeric,dual'
e1 * e2
## S4 method for signature 'dual,dual'
e1 * e2
## S4 method for signature 'dual,numeric'
e1 / e2
## S4 method for signature 'numeric,dual'
e1 / e2
```
S4 method for signature 'dual,dual'
e1 / e2

S4 method for signature 'dual,numeric'
e1 ^ e2

S4 method for signature 'numeric,dual'
e1 ^ e2

S4 method for signature 'dual,dual'
e1 ^ e2

Arguments

e1 dual object or numeric value.
e2 dual object or numeric value.

Value

The correspondent values of the arithmetic operation on e1 and e2 is returned.

Examples

```r
x <- dual(1.5, 1:0)
y <- dual(2.6, 0:1)
+x
-x
x - y
x * y
x / y
x ^ y
x + y
```

dual-class

Dual object class An S4 Class for dual numbers

Description

The method `initialize` sets the initial values of a new object of the class `dual`.
The function `dual` generates an object of class `dual` for the representation of dual numbers.
The function `is.dual` returns `TRUE` if `x` is of the class `dual`. It returns `FALSE` otherwise.
The method `show` shows the content of a dual object.
Usage

dual(f, grad)

S4 method for signature 'dual'
initialize(.Object, f = numeric(0), grad = numeric(0))

dual(f, grad)

is.dual(x)

S4 method for signature 'dual'
show(object)

Arguments

f
a single numeric value denoting the "Real" component of the dual number.

grad
a numeric vector representing the "Dual" components of the dual number.

.Object
an object of class dual to be initialized

x
an object of class dual.

object
an object of class dual to be shown

Value

an object of the class dual.

a logical value indicating if the object is of the class dual or not.

Slots

f a single numeric value denoting the "Real" component of the dual number

grad a numeric vector representing the "Dual" components of the dual number

Examples

x <- dual(3, 0:1)
library(dual)
x <- new("dual", f = 1, grad = 1)
is.dual(3)
is.dual(x)
Special Functions of Mathematics

Description

Special mathematical functions related to the error function.
The function \(\text{erfc}(x) \) is a variant of the cumulative normal (or Gaussian) distribution function.
The functions \(\text{erfinv}(x) \) and \(\text{erfcinv}(x) \) respectively implement the inverse functions of \(\text{erf}(x) \) and \(\text{erfc}(x) \).

Usage

\begin{verbatim}
erf(x)
S4 method for signature 'dual'
erf(x)

erfinv(x)
S4 method for signature 'dual'
erfinv(x)

erfc(x)
S4 method for signature 'dual'
erfc(x)

erfcinv(x)
S4 method for signature 'dual'
erfcinv(x)
\end{verbatim}

Arguments

x
dual object.

Value

A dual object containing the transformed values according to the chosen function.

Examples

\begin{verbatim}
x <- dual(0.5, 1)
erf(x)
erfc(x)
erfinv(x)
erfcinv(x)
\end{verbatim}
Hyperbolic Functions

Description
These functions provide the obvious hyperbolic functions. They respectively compute the hyperbolic cosine, sine, tangent, and their inverses, arc-cosine, arc-sine, arc-tangent.

Usage

```r
## S4 method for signature 'dual'
cosh(x)
```

```r
## S4 method for signature 'dual'
sinh(x)
```

```r
## S4 method for signature 'dual'
tanh(x)
```

```r
## S4 method for signature 'dual'
acosh(x)
```

```r
## S4 method for signature 'dual'
asinh(x)
```

```r
## S4 method for signature 'dual'
atanh(x)
```

Arguments

- `x`: a dual object

Value

A dual object containing the transformed values according to the chosen function.

Examples

```r
x <- dual(0.5, 1)
cosh(x)
sinh(x)
tanh(x)
acosh(1 + x)
asinh(x)
atanh(x)
```
Description

Logarithms and Exponentials

Usage

S4 method for signature 'dual'
log(x)

S4 method for signature 'dual,numeric'
logb(x, base = exp(1))

S4 method for signature 'numeric,dual'
logb(x, base = exp(1))

S4 method for signature 'dual,dual'
logb(x, base = exp(1))

S4 method for signature 'dual'
log10(x)

S4 method for signature 'dual'
log2(x)

S4 method for signature 'dual'
log1p(x)

S4 method for signature 'dual'
exp(x)

S4 method for signature 'dual'
expm1(x)

Arguments

- **x**: a dual object or numeric value.
- **base**: a dual object or a positive number. Defaults to e^{exp(1)}.

Value

A dual object containing the transformed values according to the chosen function.
Examples

```r
x <- dual(sqrt(pi), 1:0)
y <- dual(pi * .75, 0:1)
log(x)
logb(x, base = 1.1)
logb(3.1, base = x)

logb(x, y)
log10(x)
log2(x)

log1p(x)

exp(2*x)
expm1(2*x)
```

MathFun

Miscellaneous Mathematical Functions

Description

The function `abs(x)` computes the absolute value of `x`, while `sqrt(x)` computes the square root of `x`.

Usage

```r
## S4 method for signature 'dual'
sqrt(x)

## S4 method for signature 'dual'
abs(x)
```

Arguments

- `x` a dual object or numeric value.

Value

A dual object containing the transformed values according to the chosen function.

Examples

```r
x <- dual(4.3, 1:0)
y <- dual(7.6, 0:1)
abs(-2.2 * x + 0.321 * y)
sqrt(y - x)
```
Description

Special mathematical functions related to the beta and gamma.

Usage

S4 method for signature 'dual,dual'
beta(a, b)

S4 method for signature 'dual,numeric'
beta(a, b)

S4 method for signature 'numeric,dual'
beta(a, b)

S4 method for signature 'dual,dual'
lbeta(a, b)

S4 method for signature 'dual,numeric'
lbeta(a, b)

S4 method for signature 'numeric,dual'
lbeta(a, b)

S4 method for signature 'dual'
gamma(x)

S4 method for signature 'dual'
lgamma(x)

S4 method for signature 'dual'
psigamma(x, deriv = 0L)

S4 method for signature 'dual'
ddigamma(x)

S4 method for signature 'dual'
trigamma(x)

S4 method for signature 'dual,dual'
choose(n, k)

S4 method for signature 'numeric,dual'
choose(n, k)
S4 method for signature 'dual,numeric'
choose(n, k)

S4 method for signature 'dual,dual'
lchoose(n, k)

S4 method for signature 'numeric,dual'
lchoose(n, k)

S4 method for signature 'dual,numeric'
lchoose(n, k)

S4 method for signature 'dual'
factorial(x)

S4 method for signature 'dual'
lfactorial(x)

Arguments

- `a` - non-negative numeric value or dual object with non-negative real part.
- `b` - non-negative numeric value or dual object with non-negative real part.
- `x` - dual object or numeric value.
- `deriv` - integer value.
- `n` - dual object or numeric value.
- `k` - dual object or numeric value.

Value

A dual object containing the transformed values according to the chosen function.

Examples

```r
x <- dual(0.5, 1)
a <- dual(1.2, 1:0)
b <- dual(2.1, 0:1)

beta(a, b)
beta(1, b)
beta(a, 1)
lbeta(a, b)
lbeta(1, b)
lbeta(a, 1)

gamma(x)
lgamma(x)
psigamma(x, deriv = 0)
digamma(x)
```
Trig

Description

These functions give the obvious trigonometric functions. They respectively compute the cosine, sine, tangent, arc-cosine, arc-sine, arc-tangent, and the two-argument arc-tangent.

cospi(x), sinpi(x), and tanpi(x), compute $\cos(\pi x)$, $\sin(\pi x)$, and $\tan(\pi x)$.

Usage

```r
## S4 method for signature 'dual'
cos(x)
```

```r
## S4 method for signature 'dual'
sin(x)
```

```r
## S4 method for signature 'dual'
tan(x)
```

```r
## S4 method for signature 'dual'
acos(x)
```

```r
## S4 method for signature 'dual'
asin(x)
```

```r
## S4 method for signature 'dual'
atan(x)
```
S4 method for signature 'dual,numeric'
atan2(y, x)

S4 method for signature 'numeric,dual'
atan2(y, x)

S4 method for signature 'dual,dual'
atan2(y, x)

S4 method for signature 'dual'
cospi(x)

S4 method for signature 'dual'
sinpi(x)

S4 method for signature 'dual'
tanpi(x)

Arguments

- **x**: dual object or numeric value.
- **y**: dual object or numeric value.

Value

A dual object containing the transformed values according to the chosen function.

Examples

```r
x <- dual(1, 1:0)
y <- dual(1, 0:1)

cos(x)
sin(x)
tan(x)
acos(x - 0.5)
asin(x - 0.5)
atan(x - 0.5)
atan2(x, y)
atan2(2.4, y)
atan2(x, 1.2)
cospi(1.2 * x)
sinpi(3.4 * x)
tanpi(5.6 * x)
```
Index

* Topic autodiff
dual-package, 2

* Topic differentiation
dual-package, 2

* Topic dual
dual-package, 2

* Topic numeric
dual-package, 2

*(Arithmetic), 3
*, dual, dual-method (Arithmetic), 3
*, numeric, dual-method (Arithmetic), 3
+(Arithmetic), 3
+, dual, dual-method (Arithmetic), 3
+, dual, missing-method (Arithmetic), 3
+, numeric, dual-method (Arithmetic), 3
-, dual, dual-method (Arithmetic), 3
-, dual, missing-method (Arithmetic), 3
-, numeric, dual-method (Arithmetic), 3
// (Arithmetic), 3
/, dual, method (Arithmetic), 3
/, dual, numeric-method (Arithmetic), 3
^ (Arithmetic), 3
^, dual, dual-method (Arithmetic), 3
^, dual, numeric-method (Arithmetic), 3
^, numeric, dual-method (Arithmetic), 3
abs, dual-method (MathFun), 9
acos, dual-method (Trig), 12
acosh, dual-method (Hyperbolic), 7
arccos, dual-method (Trig), 12
arccosh, dual-method (Hyperbolic), 7
arccos, dual-method (Trig), 12
arccosh, dual-method (Hyperbolic), 7
arccsin, dual-method (Trig), 12
arcsin, dual-method (Trig), 12
arctan, dual-method (Trig), 12
arctan, dual-method (Trig), 12
arctan, dual-method (Hyperbolic), 7
atan, dual-method (Trig), 12
atan, dual-method (Trig), 12
atan, dual-method (Trig), 12
atan, dual-method (Trig), 12
atan, numeric, dual-method (Trig), 12
atanh, dual-method (Hyperbolic), 7
atanh, dual-method (Hyperbolic), 7
beta, dual, dual-method (Special), 10
beta, dual, numeric-method (Special), 10
beta, numeric, dual-method (Special), 10
choose, dual, dual-method (Special), 10
choose, dual, numeric-method (Special), 10
choose, numeric, dual-method (Special), 10
cos, dual-method (Trig), 12
cosh, dual-method (Hyperbolic), 7
cosh, dual-method (Hyperbolic), 7
cospi, dual-method (Trig), 12
digamma, dual-method (Special), 10
digamma, dual-method (Special), 10
digamma, dual-method (Special), 10
dual (dual-class), 4
dual-class, 4
dual-package, 2
erf, dual-method (Error), 6
erf, dual-method (Error), 6
erf, dual-method (Error), 6
erf, dual-method (Error), 6
erfc, dual-method (Error), 6
erfc, dual-method (Error), 6
erfcinv, dual-method (Error), 6
erfcinv, dual-method (Error), 6
erfcinv, dual-method (Error), 6
erfinv, dual-method (Error), 6
erfinv, dual-method (Error), 6
erfinv, dual-method (Error), 6
exp, dual-method (log), 8
exp, dual-method (log), 8
expm1 (log), 8
expm1, dual-method (log), 8

factorial, dual-method (Special), 10
factorial, dual-method (Special), 10
gamma, dual-method (Special), 10
gamma, dual-method (Special), 10

Hyperbolic, 7
initialize, dual-method (dual-class), 4
is.dual (dual-class), 4
is.dual, ANY, dual-method (dual-class), 4

lbeta, dual, dual-method (Special), 10
lbeta, dual, numeric-method (Special), 10
lbeta, numeric, dual-method (Special), 10
lchoose, dual, dual-method (Special), 10
lchoose, dual, numeric-method (Special), 10
lchoose, numeric, dual-method (Special), 10
lfactorial, dual-method (Special), 10
lfactorial, dual-method (Special), 10
lgamma, dual-method (Special), 10
lgamma, dual-method (Special), 10
log, 8
log, dual-method (log), 8
log10 (log), 8
log10, dual-method (log), 8
log1p (log), 8
log1p, dual-method (log), 8
log2 (log), 8
log2, dual-method (log), 8
logb (log), 8
logb, dual-method (log), 8
logb, numeric, dual-method (log), 8
logb, numeric, dual-method (log), 8

MathFun, 9
psigamma, dual, NULL-method (Special), 10
psigamma, dual-method (Special), 10

show, dual-method (dual-class), 4
sin, dual-method (Trig), 12
sinh, dual-method (Hyperbolic), 7
sinpi, dual-method (Trig), 12
Special, 10
sqrt, dual-method (MathFun), 9
tan, dual-method (Trig), 12
tanh, dual-method (Hyperbolic), 7
tanpi, dual-method (Trig), 12
Trig, 12
trigamma, dual-method (Special), 10
trigamma, dual-method (Special), 10