Package ‘dyads’

April 16, 2021

Type Package
Title Dyadic Network Analysis
Version 1.1.4
Date 2021-04-16
Author Bonne J.H. Zijlstra <B.J.H.Zijlstra@uva.nl>
Maintainer Bonne J.H. Zijlstra <B.J.H.Zijlstra@uva.nl>
Depends R (>= 3.0.0)
Imports stats, CholWishart, MASS, RcppZiggurat, Rfast, mvtnorm
Suggests plyr

License GPL (>= 2)

NeedsCompilation no

Repository CRAN

Date/Publication 2021-04-16 10:10:02 UTC

R topics documented:

 dyads-package .. 2
 b2ML ... 3
 j2 ... 6
 p2 ... 7

Index 10
Description

Package for Dyadic Network Analysis.

Details

Package: dyads
Type: Package
Title: Dyadic Network Analysis
Version: 1.1.4
Date: 2021-04-16
Author: Bonne J.H. Zijlstra <B.J.H.Zijlstra@uva.nl>
Maintainer: Bonne J.H. Zijlstra <B.J.H.Zijlstra@uva.nl>
Depends: R (>= 3.0.0)
Imports: stats, CholWishart, MASS, RcppZiggurat, Rfast, mvtnorm
Suggests: plyr
Description: Contains functions for the MCMC simulation of dyadic network models j2 (Zijlstra, 2017, <doi:10.1080/0022250X.2017.1387858>), the (multilevel) b2 model.
License: GPL (>= 2)

Index of help topics:

- b2ML
 MCMC estimates for the (multilevel) b2 model
- dyads-package
 dyads
- j2
 MCMC estimates for the j2 model
- p2
 MCMC estimates for the p2 model

Author(s)

Bonne J.H. Zijlstra Maintainer: Bonne J.H. Zijlstra <B.J.H.Zijlstra@uva.nl>

References

Examples

create a very small network with covariates for illustrative purposes
S <- c(1,0,1,0,1,0,1,0,1,0)
REC <- (S*-1)+1
D1 <- matrix(c(0,1,0,1,0,1,0,1,0,1,
 0,0,0,1,0,1,0,1,0,1,
 1,1,1,0,0,0,0,0,0,0,
 1,0,1,0,1,0,0,0,0,0,
 1,1,1,1,0,1,0,1,0,1,
 0,0,0,0,0,1,1,1,1,1,
 0,0,0,0,0,1,1,1,1,1,
 1,0,0,0,0,0,1,1,1,1,
 0,1,0,1,0,1,0,1,0,1,
 1,0,1,0,1,0,1,0,1,0), ncol=10)
D2 <- abs(matrix(rep(S,10), byrow = FALSE, ncol= 10) -
 matrix(rep(REC,10), byrow = TRUE, ncol= 10))
R <- D1*t(D1)
Y <- matrix(c(0,1,1,1,1,1,0,0,1,1,
 0,0,0,1,1,1,0,0,1,0,
 1,1,1,0,1,1,0,0,1,1,
 1,1,1,1,0,1,1,0,1,1,
 1,1,1,1,1,0,1,1,1,1,
 1,0,1,0,1,0,1,0,1,1,
 0,1,1,0,0,1,1,0,1,1,
 1,0,1,0,1,0,1,0,1,1,
 0,1,1,0,0,0,1,1,0,1,
 1,0,1,0,1,0,1,1,1,0,
 1,1,1,0,0,1,1,1,1,0), ncol=10)

estimate p2 model
p2(Y, sender = ~ S, receiver = ~ REC, density = ~ D1 + D2, reciprocity= ~ R,
 burnin = 100, sample = 400, adapt = 10)
Notice: burn-in, sample size and number of adaptive sequences are
much smaller than recommended to keep computation time low.
recommended code:

p2(Y, sender = ~ S, receiver = ~ REC, density = ~ D1 + D2, reciprocity= ~ R)

Description

Estimates the (multilevel) b2 model parameters, which is the bidirectional counterpart of the multilevel p2 model as described in Zijlstra, Van Duijn and Snijders (2006) <doi: 10.1027/1614-2241.2.1.42>.
Usage

b2ML(nets, actor = NULL, density = NULL, adapt = NULL, burnin = NULL, center = NULL, separate = NULL, densVar = NULL, seed = NULL)

Arguments

- **nets** List with n dichotomous symmetric dependent networks.
- **actor** Optional matrix with a stacked actor covariate, corresponding to the n networks. Multiple actor covariates can be added as a formula object, see example below.
- **density** Optional matrix with symmetric a stacked density covariate, with dimensions similar to the n dependent networks. Multiple density covariates can be added as a formula object, see example below.
- **adapt** Optional number of adaptive sequences (default is 100).
- **burnin** Optional specification of number of burn-in iterations (default is 5000).
- **center** Optional argument for centering predictors (default is TRUE).
- **separate** Optional argument for estimating separate coefficients for the n dependent networks (default is FALSE).
- **densVar** Optional argument for estimating density variance at the network level (default is TRUE).
- **seed** Optional specification of random seed (default is 1).

Value

Returns a fitted model of class b2ML, to be opened with the function summary().

Author(s)

Bonne J.H. Zijlstra <b.j.h.zijlstra@uva.nl>

References

Examples

```r
# create two very small networks with covariates for illustrative purposes
Y1 <- matrix(c( 0,1,1,1,1,1,1,1,1,0,
               1,0,1,1,1,1,1,1,1,1,
               1,1,0,1,1,0,1,1,0,1,
               1,0,0,0,1,0,0,0,0,0,
               1,1,1,1,0,1,1,0,1,1,
               1,1,1,0,1,0,1,0,1,1,
               1,1,1,0,1,1,0,1,1,1,
               1,1,1,0,1,0,1,0,1,1,
               1,1,1,0,0,1,0,0,1,1,
               1,1,1,0,0,1,0,0,1,1,
               1,1,1,1,1,1,1,1,1,1),
              nrow = 10, byrow = TRUE)
```
Y2 <- matrix(c(0,0,1,0,0,1,1,0,1,0, 1,0,0,0,0,1,1,0,1,0, 0,0,1,0,0,0,1,1,0,0, 1,0,0,0,0,1,1,0,1,0, 1,0,1,0,0,1,1,0,0,0, 0,0,0,1,1,0,1,1,0,0, 1,1,1,1,1,0,1,0,0,0, 0,0,0,0,0,0,0,1,0,0), ncol=10)
Y <- list(Y1, Y2)
Aa1 <- c(1,0,1,0,1,1,0,1,0,1)
Aa2 <- c(1,0,0,1,0,0,1,1,0,1)
Aa <- list(Aa1, Aa2)
Aat <- do.call(plyr::rbind.fill.matrix, Aa)
Ab1 <- c(0,0,0,0,0,0,0,0,0,0)
Ab2 <- c(1,1,1,1,1,1,1,1,1,1)
Ab <- list(Ab1, Ab2)
Abt <- do.call(plyr::rbind.fill.matrix, Ab)
Da1 <- abs(matrix(rep(Aa1,10), byrow = FALSE, ncol= 10) - matrix(rep(Aa1,10), byrow = TRUE, ncol= 10))
Da2 <- abs(matrix(rep(Aa2,10), byrow = FALSE, ncol= 10) - matrix(rep(Aa2,10), byrow = TRUE, ncol= 10))
Da <- list(Da1, Da2)
Dat <- do.call(plyr::rbind.fill.matrix, Da)

estimate b2 model for two networks
M1 <- b2ML(Y,actor= ~ Aat + Abt, density = ~ Dat, adapt = 10, burnin = 100, densVar = FALSE)
summary(M1)
Notice: burn-in, and number of adaptive sequences are
much smaller than recommended to keep computation time low.
recommended code:
M1 <- b2ML(Y,actor= ~ Aat + Abt, density = ~ Dat, densVar = FALSE)
summary(M1)

estimate b2 model for a single network
M2 <- b2ML(list(Y[[1]]),actor= ~ Aat[1:10,], density = ~ Dat[1:10,], adapt = 10, burnin = 100, densVar = FALSE)
summary(M2)
Notice: burn-in, and number of adaptive sequences are
much smaller than recommended to keep computation time low.
recommended code:
M2 <- b2ML(list(Y[[1]]),actor= ~ Aat[1:10,], density = ~ Dat[1:10,], densVar = FALSE)
summary(M2)
Description

Usage

```r
j2(net, sender = NULL, receiver = NULL, density = NULL, reciprocity = NULL,
    burnin = NULL, sample = NULL, adapt = NULL, center = NULL, seed = NULL)
```

Arguments

- **net**: Directed dichotomous n*n network (digraph).
- **sender**: Optional sender covariates of length n.
- **receiver**: Optional receiver covariates of length n.
- **density**: Optional density covariates of dimensions n*n.
- **reciprocity**: Optional symmetric reciprocity covariates of dimensions n*n.
- **burnin**: Optional specification of number of burn-in iterations (default is 10000).
- **sample**: Optional specification of number of MCMC samples (default is 40000).
- **adapt**: Optional number of adaptive sequences (default is 100).
- **center**: Optional boolean argument for centering predictors (default is TRUE).
- **seed**: Optional specification of random seed (default is 1).

Value

Returns a matrix with MCMC means, standard deviations, quantiles and effective sample sizes for j2 parameters.

Author(s)

Bonne J.H. Zijlstra <b.j.h.zijlstra@uva.nl>

References

Examples

create a very small network with covariates for illustrative purposes
S <- c(1,0,1,0,1,0,0,1,0,1)
REC <- c(0,0,1,1,0,0,1,1,0,0)
D1 <- matrix(c(0,1,0,1,0,1,0,1,0,0,
 0,0,1,0,1,0,1,0,1,0,
 1,1,0,1,0,1,0,0,0,1,
 0,1,0,0,1,0,1,0,1,1,
 0,0,0,0,0,1,0,0,1,1,
 0,0,0,0,0,1,0,1,0,1,
 1,0,0,0,1,1,0,1,1,1,
 0,1,0,1,0,1,0,1,0,0,
 0,1,1,1,1,0,0,0,0,0), ncol=10)
D2 <- abs(matrix(rep(S,10), byrow = FALSE, ncol= 10) -
 matrix(rep(REC,10), byrow = TRUE, ncol= 10))
R <- D1*t(D1)
Y <- matrix(c(0,0,1,1,1,1,0,0,1,1,
 0,0,0,1,1,1,0,0,1,0,
 1,1,0,1,1,1,0,0,1,1,
 0,1,0,1,1,1,0,1,1,1,
 1,1,1,0,1,1,0,1,1,0,
 0,1,1,1,0,1,0,1,1,1,
 1,0,1,0,1,0,1,1,1,1,
 0,1,1,0,1,1,0,1,1,1,
 1,1,1,0,0,1,1,1,1,0), ncol=10)

estimate j2 model
j2(Y,sender= ~ S, receiver = ~ REC, density = ~ D1 + D2, reciprocity= ~ R,
 burnin = 100, sample = 400, adapt = 10)
notice: burn-in, sample size and number of adaptive sequences are
much smaller than recommended to keep computation time low.
recommended code:
j2(Y,sender= ~ S, receiver = ~ REC, density = ~ D1 + D2, reciprocity= ~ R)

Description

Estimates p2 model parameters with the adaptive random walk algorithm as described in Zijlstra,

Usage

p2(net, sender = NULL, receiver = NULL, density = NULL, reciprocity = NULL,
 burnin = NULL, sample = NULL, adapt = NULL, seed = NULL)
Arguments

- **net**: Directed dichotomous n*n network (digraph).
- **sender**: Optional sender covariates of length n.
- **receiver**: Optional receiver covariates of length n.
- **density**: Optional density covariates of dimensions n*n.
- **reciprocity**: Optional symmetric reciprocity covariates of dimensions n*n.
- **burnin**: Optional specification of number of burn-in iterations (default is 10000).
- **sample**: Optional specification of number of MCMC samples (default is 40000).
- **adapt**: Optional number of adaptive sequences (default is 100).
- **seed**: Optional specification of random seed (default is 1).

Value

Returns a matrix with MCMC means, standard deviations, quantiles and estimated effective sample sizes for p2 parameters.

Author(s)

Bonne J.H. Zijlstra <b.j.h.zijlstra@uva.nl>

References

Examples

```r
# create a very small network with covariates for illustrative purposes
S <- c(1,0,1,0,1,0,1,1,0,1)
REC <- (S*-1)+1
D1 <- matrix(c(0,1,0,1,0,1,0,1,0,1,
               0,0,1,0,1,0,1,0,1,0,
               1,1,0,1,0,0,0,0,1,1,
               1,1,0,1,0,0,0,0,1,1,
               1,0,1,0,1,1,0,1,0,1,
               0,0,0,0,0,1,1,1,1,1,
               0,0,0,0,0,1,0,1,0,1,
               1,0,0,0,0,1,1,0,1,1,
               0,1,0,1,1,0,1,0,1,0,
               1,0,1,1,1,0,0,0,0,0), ncol=10)
D2 <- abs(matrix(rep(S,10), byrow = FALSE, ncol= 10) -
          matrix(rep(REC,10), byrow = TRUE, ncol= 10))
R <- D1*t(D1)
Y <- matrix(c(0,1,1,1,1,0,0,1,1,
              0,0,1,1,1,0,0,1,0,
              1,1,0,1,1,0,0,1,1), ncol=10)
```
```r
1,1,1,0,1,0,1,1,0,
1,1,1,1,0,1,0,1,1,
0,1,1,1,0,1,1,1,0,
1,0,1,0,1,0,1,0,1,
0,1,1,1,0,1,0,1,1,
1,0,1,0,1,0,1,1,0,
1,1,1,0,0,1,1,1,0), ncol=10)

# estimate p2 model
p2(Y,sender= ~ S, receiver = ~ REC, density = ~ D1 + D2, reciprocity= ~ R,
  burnin = 100, sample = 400, adapt = 10)
# Notice: burn-in, sample size and number of adaptive sequences are
# much smaller than recommended to keep computation time low.
# recommended code:

p2(Y,sender= ~ S, receiver = ~ REC, density = ~ D1+ D2, reciprocity= ~ R)
```
Index

* **b2 model**
 b2ML, 3
 dyads-package, 2

* **j2 model**
 dyads-package, 2
 j2, 6

* **p2 model**
 dyads-package, 2
 p2, 7

b2ML, 3

dyads (dyads-package), 2
dyads-package, 2

j2, 6

p2, 7