Package ‘dydea’

March 25, 2019

Type Package

Title Detection of Chaotic and Regular Intervals in the Data

Version 0.1.0

Description Finds regular and chaotic intervals in the data using
the 0-1 test for chaos proposed by Gottwald and Melbourne (2004)
<DOI:10.1137/080718851>.

Depends R (>= 3.5.0)

License GPL-3

Encoding UTF-8

LazyData true

NeedsCompilation no

Imports Chaos01

RoxygenNote 6.1.1

Author Radek Halfar [aut, cre]

Maintainer Radek Halfar <radek.halfar@vsb.cz>

Repository CRAN

Date/Publication 2019-03-25 11:00:03 UTC

R topics documented:

 find_chaos .. 2
 find_motions ... 3
 find_regularity .. 4

Index 5
find_chaos

Find chaotic motions in the data.

Description

Find chaotic motions in the data.

Usage

```r
find_chaos(data, window_length, skip_window, skip_test01 = 1,
            test01_thresh = 0.05, find_thresh = 20)
```

Arguments

- `data`: Analyzed data.
- `window_length`: Length of the window for which the 0-1 test for chaos will be computed.
- `skip_window`: Length of the skip of the window moving in the data.
- `skip_test01`: Length of the skip to take data for calculation the 0-1 test for chaos in the window.
- `test01_thresh`: The threshold to decide about motion.
- `find_thresh`: Precision of found intervals.

Value

The list of optimized chaotic motion borders.

Examples

```r
# Calculate the logistic map.
cons <- 0.5
data.len <- 17000
chaos.start <- c(5536, 9768)
vec.x <- matrix(cons, data.len, 1)
vec.x[1] <- (2^0.5)/2
for (i in 2:data.len){
  vec.x[i] <- vec.x[i-1]*r*(1-vec.x[i-1])
  vec.x[i] <- 3.7*vec.x[i-1]*(1-vec.x[i-1])
}
vec.x[(chaos.start[1]-2000):chaos.start[1]] <- cons
tr1 <- seq(from = cons, to = vec.x[chaos.start[1]], length.out = 2001)
tr2 <- seq(from = vec.x[chaos.start[2]], to = cons, length.out = 2001)
vec.x[(chaos.start[1]-2000):chaos.start[1]] <- tr1

# Find chaotic intervals in vec.x and plot results.
chaotic_borders <- find_chaos(vec.x, "skip_window" = 1000,
                               "window_length" = 3000, "find_thresh" = 30)
```
find_motions

Find regular and chaotic motions in the data and plots the results.

Description
Find regular and chaotic motions in the data and plots the results.

Usage
find_motions(data, window_length, skip_window, skip_test01 = 1,
 test01_thresh = 0.05, find_thresh = 20)

Arguments
- data: Analyzed data.
- window_length: Length of the window for which the 0-1 test for chaos will be computed.
- skip_window: Length of the skip of the window moving in the data.
- skip_test01: Length of the skip to take data for calculation the 0-1 test for chaos in the window.
- test01_thresh: The threshold to decide about motion.
- find_thresh: Precision of found intervals.

Value
The list of optimized regular and chaotic motion borders.

Examples
Calculate the logistic map.
cons <- 0.5
data.len <- 17000
chaos.start <- c(5536, 9768)
vec.x <- matrix(cons, data.len, 1)

vec.x[1] <- (2^0.5)/2
for (i in 2:data.len){
 x_n+1 = r*x_n(1-x_n)
 vec.x[i] <- 3.7*vec.x[i-1]*(1-vec.x[i-1])
}
vec.x[1:(chaos.start[1]-1)] <- cons
tr1 <- seq(from = cons, to = vec.x[chaos.start[1]], length.out = 2001)
tr2 <- seq(from = vec.x[chaos.start[2]], to = cons, length.out = 2001)
vec.x[chaos.start[1]:2000] <- tr1
vec.x[chaos.start[2]:data.len] <- tr2

Find chaotic and regular intervals in vec.x and plot results.
find_motions(vec.x, "skip_window" = 1000, "window_length" = 3000, "find_thresh" = 300)
find_regularity

Find regular motions in the data.

Description
Find regular motions in the data.

Usage
find_regularity(data, window_length, skip_window, skip_test01 = 1,
 test01_thresh = 0.05, find_thresh = 20)

Arguments
- data: Analyzed data.
- window_length: Length of the window for which the 0-1 test for chaos will be computed.
- skip_window: Length of the skip of the window moving in the data.
- skip_test01: Length of the skip to take data for calculation the 0-1 test for chaos in the window.
- test01_thresh: The threshold to decide about motion.
- find_thresh: Precision of found intervals.

Value
The list of optimized regular and chaotic motion borders.

Examples
Calculate the logistic map.
cons <- 0.5
data.len <- 17000
chaos.start <- c(5536, 9768)
vec.x <- matrix(cons, data.len, 1)
vec.x[1] <- (2^0.5)/2
for (i in 2:data.len){
 # x_{n+1} = r * x_n (1 - x_n)
 vec.x[i] <- 3.7 * vec.x[i-1] * (1 - vec.x[i-1])
}
vec.x[1:(chaos.start[1]-1)] <- cons
tr1 <- seq(from = cons, to = vec.x[chaos.start[1]], length.out = 2001)
tr2 <- seq(from = vec.x[chaos.start[2]], to = cons, length.out = 2001)
vec.x[(chaos.start[1]-2000):chaos.start[1]] <- tr1

Find regular intervals in vec.x and plot results.
regular_borders <- find_regularity(vec.x, "skip_window" = 1000,
 "window_length" = 3000, "find_thresh" = 300)
Index

find_chaos, 2
find_motions, 3
find_regularity, 4