Package ‘dynamAedes’

March 30, 2023

Version 2.1.2
Date 2023-03-23
Title A Unified Mechanistic Model for the Population Dynamics of Invasive Aedes Mosquitoes
Depends R (>= 4.0.0)
Imports doParallel, dplyr, drc, fields, foreach, geosphere, raster, slam, sp

BugReports https://github.com/mattmar/dynamAedes

Description Generalised model for population dynamics of invasive Aedes mosquitoes. Ratio-
nale and model structure are de-

VignetteBuilder knitr
Encoding UTF-8
Language en-GB
License GPL (>= 2)
RoxygenNote 7.2.3
Suggests terra, parallel, rmarkdown, knitr, eesim, ggplot2, gstat, spatstat, rgdal

Config/testthat/edition 3

URL https://mattmar.github.io/dynamAedes/

NeedsCompilation no
Author Matteo Marcantonio [aut, cre], Daniele Da Re [aut]
Maintainer Matteo Marcantonio <marcantoniomatteo@gmail.com>
Repository CRAN
Date/Publication 2023-03-30 14:10:05 UTC
R topics documented:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>adci</td>
<td>Summaries of mosquito abundance.</td>
</tr>
</tbody>
</table>

Description

Summaries of mosquito abundance at each life stage for each day.

Usage

```r
adci(
  input_sim = NA,
  stage = 1,
  n.clusters = 1,
  eval_date = 0,
  breaks = c(0.25, 0.5, 0.75)
)
```

Arguments

- `input_sim`: matrix. dynamAedes.m compressed output matrix.
- `stage`: positive integer. 0 (all), 1 (egg), 2 (juvenile), 3 (adult), 4 (diapausine egg).
- `n.clusters`: positive integer. Define the number of parallel processes.
- `eval_date`: positive integer. Define the day of successful introduction evaluation, referring to the column number of the temperature matrix used to inform the model.
- `breaks`: numeric vector. Quantile breaks, default the first, the second and the third quantile: c(0.25, 0.5, 0.75).

Value

Returns a table with the summary of mosquito abundance per life stage (or substage if compressed. output=FALSE in dynamAedes.m function) for each day.

Author(s)

Matteo Marcantonio <marcantoniomatteo@gmail.com>, Daniele Da Re <daniele.dare@uclouvain.be>
adci_sp

Summary of mosquito abundance (spatial)

Description

Summaries of mosquito abundance at each life stage for each day.

Usage

adci_sp(
 input_sim = NULL,
 coords = NULL,
 eval_date = NULL,
 stage = 1,
 breaks = c(0.25, 0.5, 0.75)
)

Arguments

input_sim matrix. dynamAedes.m compressed output matrix
coords matrix. A matrix reporting the spatial coordinates of the temperature observations.
eval_date positive integer. Define the day of successful introduction evaluation, referring to the column number of the temperature matrix used to inform the model.
stage positive integer. 0 (all), 1 (egg), 2 (juvenile), 3 (adult), 4 (diapausing egg).
breaks numeric vector. Quantile breaks, default the first, the second and the third quantile: c(0.25, 0.5, 0.75).

Value

Returns a raster with the summary of mosquito abundance at each life stage for each day.

Author(s)

Matteo Marcantonio <marcantoniomatteo@gmail.com>, Daniele Da Re <daniele.dare@uclouvain.be>
Estimate of mosquito dispersal

Description

Estimates of dispersal (in km^2) for the simulated mosquito population when scale = "lc".

Usage

```r
dici(input_sim = NULL, coords = NULL, eval_date = NULL, breaks = c(0.25, 0.5, 0.75), space = FALSE)
```

Arguments

- `input_sim`: matrix. `dynamAedes.m` compressed output matrix (compressed=TRUE).
- `coords`: matrix. A matrix reporting the spatial coordinates of the temperature observations.
- `eval_date`: numeric. Define the day of evaluation; it refers to the column number of the input temperature matrix.
- `breaks`: numeric vector. Quantile breaks, default interquartile range: c(0.25, 0.5, 0.75).
- `space`: See below for more details.

Value

- If `space=FALSE` then it returns a dataframe with quantiles of the distribution of dispersal distances;
- If `space=TRUE` (experimental) then it returns the invaded cells on the last day of model simulations for each of the iterations.

Author(s)

Matteo Marcantonio <marcantoniomatteo@gmail.com>, Daniele Da Re <daniele.dare@uclouvain.be>
dynamAedes.m

Life cycle simulation of *Aedes* mosquitoes

Description

Function to simulate population dynamics of *Aedes* mosquitoes

Usage

```r
dynamAedes.m(
  species = "aegypti",
  intro.eggs = 0,
  intro.deggs = 0,
  intro.adults = 0,
  intro.juveniles = 0,
  scale = "ws",
  intro.cells = NULL,
  jhwv = 2,
  temps.matrix = NULL,
  startd = 1,
  endd = NA,
  cells.coords = NULL,
  coords.proj4 = NA,
  lat = NA,
  long = NA,
  road.dist.matrix = NULL,
  avgpdisp = NA,
  iter = 1,
  n.clusters = 1,
  cluster.type = "PSOCK",
  sparse.output = FALSE,
  compressed.output = TRUE,
  suffix = NA,
  cellsize = 250,
  maxadisp = 600,
  dispbins = 10,
  verbose = FALSE,
  seeding = FALSE
)
```

Arguments

- `species` character. Select what species to model: "aegypti", "albopictus", "japonicus", "koreicus". Default species = "aegypti".
- `intro.eggs` positive integer. number of introduced eggs, default `intro.eggs = 0`.
- `intro.deggs` positive integer. number of introduced diapause eggs, default `intro.deggs = 100`.
intro.adults positive integer. number of introduced adults, default intro.adults = 0.

intro.juveniles positive integer. number of introduced juveniles, default intro.juveniles = 0.

scale character. Define the model spatial scale: punctual/weather station "ws", local "lc", or regional "rg". Active and passive dispersal is enabled only for scale = "lc". Default scale = "ws".

intro.cells positive integer. One or more cells (id) where to introduce the population at local ("lc") scale. If intro.cells=NULL, then a random cell is used for introduction; If intro.cells is a vector of cell ids then a cell is drawn at random from the vector (with repetition) for introduction in each model iteration.

jhwv positive integer. Juvenile-habitat water volume, define the volume (L) of water habitat presents in each spatial unit (parametrised with data retrieved from doi:10.1111/13652664.12620). Default lhwv = 1.

temps.matrix matrix. A matrix of daily (average) temperatures (in degrees Celsius degree x 1000) used to fit the life cycle rates. This matrix must be organised with the daily temperature observations as columns and the geographic position of the i-grid cell as rows. Importantly, the first column must match startd date.

startd Character date (ISO format "%Y-%m-%d"). Date of start of simulations.

endd Character date (ISO format "%Y-%m-%d"). Date of end of simulation. It can be NA; then it will be derived using the number of columns in temps.matrix.

cells.coords matrix. A matrix reporting the spatial coordinates of the temperature observations.

cords.proj4 string. Proj4 string of cell coordinates used for the calculation of photoperiod.

lat numeric. Latitude value of the area of interested used to derive the photoperiod (and thus the diapause eggs allocation function).

long numeric. Longitude value of the area of interested used to derive the photoperiod (and thus the diapause eggs allocation function)

road.dist.matrix matrix. when scale = "lc", defines the matrix containing the distances (in meters) between grid cells intersecting the road network for the mosquito passive dispersal process.

avgpdisp optional. when scale = "lc", define the average car trip distance for the mosquito passive dispersal process. The value can be set by the users (positive numeric), or the estimates made by Pasaoglu et al. 2012) for the following European countries: France "fra", Germany "deu", Italy "ita", Poland "pol", Spain "esp" and the United Kingdom "uk". The average passive dispersal distance must be smaller than the maximum distance in road.dist.matrix.

iter positive integer. Define the number of model iterations.

n.clusters positive integer. Defines the number of parallel processes.

cluster.type character. Defines the type of cluster, default "PSOCK".

sparse.output logical. The output matrix is optimised for sparse-matrix algebra (e.g. zeros are indexed).
compressed.output
logical. Default TRUE, if FALSE provide abundance for each model’s subcompartment; if FALSE abundances are summed per compartment.

suffix
character. Model output suffix for output RDS.

cellsze
(positive integer. When scale = "lc", defines the minimal distance for the active dispersal kernel and should match the spatial resolution of temps.matrix to avoid inconsistencies. Default cellsize = 250

maxadisp
positive integer. When scale = "lc", defines the maximum daily dispersal, default maxadisp = 600.

dispbins
positive integer. When scale = "lc", defines the resolution of the dispersal kernel, default dispbins = 10.

verbose
logical. if TRUE then an overview of population dynamics is printed in the console.

seeding
logical, default FALSE, if seeding=TRUE a fixed seed is applied for result reproducibility.

Value
Matrix or a list of matrices containing, for each iteration, the number of individuals in each life stage per day (and for each grid cell of the study area if scale="lc" or "rg"). If the argument compressed.output=FALSE (default TRUE), the model returns the daily number of individuals in each life stage sub-compartment.

Author(s)
Matteo Marcantonio <marcantoniomatteo@gmail.com>, Daniele Da Re <daniele.dare@uclouvain.be>

See Also
Beta regression functions were taken from the R package aomisc, which may be available at https://github.com/OnofriAndreaPG/aomisc.

Examples
```r
## Run dynamAedes at local scale for 5 days
# Make a toy temperature time series
w <- matrix(seq(20,25,length.out=5),ncol=5)*1000
# Run the model
dynamAedes.m(
  species="koreicus",
  scale="ws",
  intro.eggs=10,
  jhwv=2,
  temps.matrix=w,
  startd="2021-06-21",
  endd="2021-06-25",
  lat=42,
  long=8,
)```
icci

### Number of invaded cells

**Description**
Compute a summary of the number of invaded cells over model iterations.

**Usage**

```r
icci(input_sim = NA, eval_date = 0, breaks = c(0.25, 0.5, 0.75))
```

**Arguments**

- `input_sim` \(\text{matrix. dynamAedes.m compressed output matrix (compressed=TRUE).}\)
- `eval_date` \(\text{numeric. Define the day of evaluation; it refers to the column number of the input temperature matrix.}\)
- `breaks` \(\text{numeric vector. Quantile breaks, default interquartile range: c(0.25, 0.5, 0.75).}\)

**Value**
`icci` returns quantiles of the distribution of the invaded cell number for the specified. The output should be interpreted according to model spatial scale (i.e. scale='rg' or scale='lc' give different interpretation).

**Author(s)**
Matteo Marcantonio <marcantoniomatteo@gmail.com>, Daniele Da Re <daniele.dare@uclouvain.be>

---

psi

### Proportion of successful introductions

**Description**
Compute the proportion of "successful" introductions.

**Usage**

```r
psi(input_sim = NULL, eval_date = NULL)
```
psi_sp

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input_sim</td>
<td>matrix. dynamAedes.m compressed output matrix (compressed=TRUE).</td>
</tr>
<tr>
<td>eval_date</td>
<td>positive integer. Define the day(s) to calculate the proportion of successful introductions which should match the column number of the temperature matrix used to inform the model.</td>
</tr>
</tbody>
</table>

Value

psi returns the proportion of model iterations that resulted in a viable mosquito population (defined as: iterations with at least one individual alive in any life stage) at a given date.

Author(s)

Matteo Marcantonio <marcantoniomatteo@gmail.com>, Daniele Da Re <daniele.dare@uclouvain.be>

Description

Compute the proportion of successful introductions per each cell of the grid.

Usage

psi_sp(input_sim = NULL, coords = NULL, eval_date = NULL, n.clusters = 1)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input_sim</td>
<td>matrix. dynamAedes.m compressed output matrix (compressed=TRUE).</td>
</tr>
<tr>
<td>coords</td>
<td>matrix. A matrix reporting the spatial coordinates of temperature observations.</td>
</tr>
<tr>
<td>eval_date</td>
<td>positive integer. Define the day(s) to calculate the proportion of successful introductions which should match the column number of the temperature matrix used to inform the model.</td>
</tr>
<tr>
<td>n.clusters</td>
<td>positive integer. Define the number of parallel processes.</td>
</tr>
</tbody>
</table>

Value

psi_sp returns a raster with the proportion of model iterations that resulted in a viable mosquito population at a given date for a given life stage in each cell of the grid.

Author(s)

Matteo Marcantonio <marcantoniomatteo@gmail.com>, Daniele Da Re <daniele.dare@uclouvain.be>
Index

adci, 2
adci_sp, 3

dici, 4
dynamAedes.m, 5

icci, 8

psi, 8
psi_sp, 9