Package ‘dyndimred’

March 8, 2020

Type Package
Title Dimensionality Reduction Methods in a Common Format
Version 1.0.3
Description Provides a common interface for applying dimensionality reduction methods, such as Principal Component Analysis (‘PCA’), Independent Component Analysis (‘ICA’), diffusion maps, Locally-Linear Embedding (‘LLE’), t-distributed Stochastic Neighbor Embedding (‘t-SNE’), and Uniform Manifold Approximation and Projection (‘UMAP’). Has built-in support for sparse matrices.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
Imports dynutils (>= 1.0.5), irlba, lmds
Suggests testthat, destiny, diffusionMap, fastICA, igraph, lle, MASS, Matrix, RANN, Rtsne, smacof, uwot
RoxygenNote 7.0.2
URL https://github.com/dynverse/dyndimred
BugReports https://github.com/dynverse/dyndimred/issues
NeedsCompilation no
Author Robrecht Cannoodt [aut] (<https://orcid.org/0000-0003-3641-729X>, rcannood), Wouter Saelens [aut, cre] (<https://orcid.org/0000-0002-7114-6248>, zouter)
Maintainer Wouter Saelens <wouter.saelens@gmail.com>
Repository CRAN
Date/Publication 2020-03-08 17:20:19 UTC
R topics documented:

- `dimred` .. 2
- `dimred_tsne` .. 4
- `dimred_umap` .. 5
- `dyndimred` ... 6

Index 7

dimred
Perform simple dimensionality reduction

Description

Perform simple dimensionality reduction

Usage

```
dimred(x, method, ndim, ...)

dimred_dm_destiny(
  x,
  ndim = 2,
  distance_method = c("euclidean", "spearman", "cosine")
)

dimred_dm_diffusionmap(
  x,
  ndim = 2,
  distance_method = c("pearson", "spearman", "cosine", "euclidean", "manhattan")
)

dimred_ica(x, ndim = 3)

dimred_knn_fr(
  x,
  lmds_components = 10,
  distance_method = c("pearson", "spearman", "cosine", "euclidean", "manhattan"),
  n_neighbors = 10
)

dimred_landmark_mds(
  x,
  ndim = 2,
  distance_method = c("pearson", "spearman", "cosine", "euclidean", "manhattan")
)

dimred_lle(x, ndim = 3)
```
dimred

\texttt{dimred_mds(}
\begin{verbatim}
x,
ndim = 2,
distance_method = c("pearson", "spearman", "cosine", "euclidean", "manhattan")
\end{verbatim}
\)
\texttt{dimred_mds_isomds(}
\begin{verbatim}
x,
ndim = 2,
distance_method = c("pearson", "spearman", "cosine", "euclidean", "manhattan")
\end{verbatim}
\)
\texttt{dimred_mds_sammon(}
\begin{verbatim}
x,
ndim = 2,
distance_method = c("pearson", "spearman", "cosine", "euclidean", "manhattan")
\end{verbatim}
\)
\texttt{dimred_mds_smacof(}
\begin{verbatim}
x,
ndim = 2,
distance_method = c("pearson", "spearman", "cosine", "euclidean", "manhattan")
\end{verbatim}
\)
\texttt{dimred_pca(x, ndim = 2)}
\texttt{list_dimred_methods()}

Arguments

\begin{itemize}
\item \texttt{x}
 Log transformed expression data, with rows as cells and columns as features
\item \texttt{method}
 The name of the dimensionality reduction method to use
\item \texttt{ndim}
 The number of dimensions
\item \texttt{...}
 Any arguments to be passed to the dimensionality reduction method
\item \texttt{distance_method}
 The name of the distance metric, see \texttt{dynutils::calculate_distance}
\item \texttt{lmds_components}
 The number of lmds components to use. If NULL, LMDS will not be performed first. If this is a matrix, it is assumed it is a dimred for \texttt{x}.
\item \texttt{n_neighbors}
 The size of local neighborhood (in terms of number of neighboring sample points).
\end{itemize}

Examples

\texttt{library(Matrix)}
\texttt{x <- abs(Matrix::rsparsematrix(100, 100, .5))}
\texttt{dimred(x, "pca", ndim = 3)}
dimred(x, "ica", ndim = 3)

if (interactive()) {
 dimred_dm_destiny(x)
 dimred_dm_diffusionmap(x)
 dimred_ica(x)
 dimred_landmark_mds(x)
 dimred_lle(x)
 dimred_mds(x)
 dimred_mds_isomds(x)
 dimred_mds_sammon(x)
 dimred_mds_smacof(x)
 dimred_pca(x)
 dimred_tsne(x)
 dimred_umap(x)
}

dimred_tsne | tSNE

Description

tSNE

Usage

dimred_tsne(
 x,
 ndim = 2,
 perplexity = 30,
 theta = 0.5,
 initial_dims = 50,
 distance_method = c("pearson", "spearman", "cosine", "euclidean", "manhattan")
)

Arguments

- **x**
 - Log transformed expression data, with rows as cells and columns as features
- **ndim**
 - The number of dimensions
- **perplexity**
 - numeric; Perplexity parameter (should not be bigger than $3 \times$ perplexity < nrow(X) - 1, see details for interpretation)
- **theta**
 - numeric; Speed/accuracy trade-off (increase for less accuracy), set to 0.0 for exact TSNE (default: 0.5)
- **initial_dims**
 - integer; the number of dimensions that should be retained in the initial PCA step (default: 50)
- **distance_method**
 - The name of the distance metric, see dynutils::calculate_distance
dimred_umap

See Also
Rtsne::Rtsne()

Examples
library(Matrix)
dataset <- abs(Matrix::rsparsematrix(100, 100, .5))
dimred_tsne(dataset, ndim = 3)

dimred_umap

UMAP

Description
UMAP

Usage
dimred_umap(
 x,
 ndim = 2,
 distance_method = c("euclidean", "cosine", "manhattan"),
 pca_components = 50,
 n_neighbors = 15L,
 init = "spectral",
 n_threads = 1
)

Arguments

 x Log transformed expression data, with rows as cells and columns as features
 ndim The number of dimensions
 distance_method The name of the distance metric, see dynutils::calculate_distance
 pca_components The number of pca components to use for UMAP. If NULL, PCA will not be
 performed first
 n_neighbors The size of local neighborhood (in terms of number of neighboring sample
 points).
 init Type of initialization for the coordinates. Options are:
 • "spectral" Spectral embedding using the normalized Laplacian of the
 fuzzy 1-skeleton, with Gaussian noise added.
 • "normlaplacian". Spectral embedding using the normalized Laplacian of
 the fuzzy 1-skeleton, without noise.
 • "random". Coordinates assigned using a uniform random distribution between -10 and 10.
common dimensionality reduction methods

Provides a common interface for applying common dimensionality reduction methods, such as PCA, ICA, diffusion maps, LLE, t-SNE, and umap.

See Also
uwot::umap()

Examples

library(Matrix)
dataset <- abs(Matrix::rsparsematrix(100, 100, .5))
dimred_umap(dataset, ndim = 3)
Index

dimred, 2
dimred_dm_destiny (dimred), 2
dimred_dm_diffusionmap (dimred), 2
dimred_ica (dimred), 2
dimred_knn_fr (dimred), 2
dimred_landmark_mds (dimred), 2
dimred_lle (dimred), 2
dimred_mds (dimred), 2
dimred_mds_isomds (dimred), 2
dimred_mds_sammon (dimred), 2
dimred_mds_smacof (dimred), 2
dimred_pca (dimred), 2
dimred_tsne, 4
dimred_umap, 5
dyndimred, 6
dynutils::calculate_distance, 3–5
list_dimred_methods (dimred), 2
Rtsne::Rtsne(), 5
tempfile, 6
uwot::umap(), 6