Package ‘dynplot’

December 7, 2021

Type Package
Title Visualising Single-Cell Trajectories
Version 1.1.2
Description Visualise a single-cell trajectory as a graph or dendrogram, as a dimensionality reduction or heatmap of the expression data, or a comparison between two trajectories as a pairwise scatterplot or dimensionality reduction projection. Saelens and Cannoodt et al. (2019) <doi:10.1038/s41587-019-0071-9>.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
URL https://github.com/dynverse/dynplot
BugReports https://github.com/dynverse/dynplot/issues
Depends R (>= 3.0.0)
Imports assertthat, dplyr, dynutils (>= 1.0.2), dynfeature (>= 1.0.0), dyndimred (>= 1.0.0), dynwrap (>= 1.0.0), GA, ggforce, ggplot2 (>= 3.0), ggraph (>= 2.0), ggrepel, igraph, MASS, methods, patchwork, purrr, reshape2, tibble, tidygraph, vipor
Suggests covr, hexbin, knitr, RColorBrewer, rje, rmarkdown, testthat (>= 3.0.0), uwot
VignetteBuilder knitr
Collate 'milestone_palette.R' 'add_milestone_coloring.R'
'add_cell_coloring.R' 'add_density_coloring.R' 'data.R'
'dummy_proofing.R' 'expect_ggplot.R' 'is_colour_vector.R'
'linearise_cells.R' 'mix_colors.R' 'optimize_order.R'
'package.R' 'plot_dendro.R' 'project_waypoints.R'
'plot_dimred.R' 'plot_edge_flips.R' 'plot_graph.R'
'plot_heatmap.R' 'plot_linearised_comparison.R' 'plot_onedim.R'
'plot_strip.R' 'plot_topology.R' 'theme_clean.R'
NeedsCompilation no
Add colouring to a set of cells.

The cells can be coloured by a grouping (clustering), according to a feature (gene expression), closest milestone, or pseudotime from the root of the trajectory.
add.Cell_Coloring

Usage

add_cell_coloring(
 cell_positions,
 color_cells = c("auto", "none", "grouping", "feature", "milestone", "pseudotime"),
 trajectory,
 grouping = NULL,
 groups = NULL,
 feature_oi = NULL,
 expression_source = "expression",
 pseudotime = NULL,
 color_milestones = c("auto", "given", "cubeHelix", "Set3", "rainbow"),
 milestones = NULL,
 milestone_percentages = NULL
)

Arguments

cell_positions The positions of the cells, represented by a tibble. Must contain column cell_id (character) and may contain columns from, to, pseudotime, depending on the value of color_cells.

color_cells How to color the cells.
 • "auto": Try to figure out how to color cells depending on whether one of the grouping, feature_io, milestones or pseudotime parameters are defined.
 • "none": Cells are not coloured.
 • "grouping": Cells are coloured according to a grouping (e.g. clustering). Either the grouping parameter or trajectory$grouping must be a named character vector.
 • "feature": Cells are coloured according to the values of a given feature (e.g. gene expression). Either the expression_source parameter or get_expression(trajectory) must be a matrix. Parameter feature_oi must also be defined.
 • "milestone" (recommended): Cells are coloured according their position in the trajectory. The positioning of the cells are determined by parameter milestone_percentages or else by trajectory$milestone_percentages. The colours of the milestones can be determined automatically or can be specified by passing a tibble containing character columns milestone_id and color (See add_milestone_coloring() for help in constructing this object).
 • "pseudotime": Cells are coloured according to the pseudotime value from the root.

trajectory A dynwrap trajectory.

grouping A grouping of the cells (e.g. clustering) as a named character vector.

groups A tibble containing character columns group_id and color. If NULL, this object is inferred from the grouping itself.

feature_oi The name of a feature to use for colouring the cells.
expression_source
Source of the feature expression, defaults to get_expression(trajectory).
pseudotime
The pseudotime from the root of the trajectory to the cells as a named numeric vector.
color_milestones
Which palette to use for colouring the milestones
- auto: Determine colours automatically. If color is already specified in milestones tibble, this will be used. Otherwise, the colour scheme is determined by milestone_palette_list$auto.
- given: The milestones object already contains a column color.
- cubeHelix: Use the rje::cubeHelix() palette.
- Set3: Use the RColorBrewer::brewer.pal(name = "Set3") palette.
- rainbow: Use the grDevices::rainbow() palette.
milestones
Tibble containing the column milestone_id (character). If color_milestones is set to "given", this tibble should also contain a column color (character), containing colour hex codes (e.g. "#123456").
milestone_percentages
The milestone percentages.

Value
A named list with following objects:
- cell_positions: The trajectory$progressions object with a color column added.
- color_scale: A ggplot colour scale to add to the downstream ggplot.
- fill_scale: A ggplot fill scale to add to the downstream ggplot.
- color_cells: The input color_cells value, except "auto" will have been replaced depending on which other parameters were passed.

add_density_coloring
Color cells using a background density

Description
Color cells using a background density

Usage
add_density_coloring(
cell_positions,
color_density = c("none", "grouping", "feature"),
trajectory,
grouping = NULL,
groups = NULL,
feature_oi = NULL,
expression_source = "expression",
padding = 0.1,
nbins = 1000,
bw = 0.2,
density_cutoff = 0.3,
density_cutoff_label = density_cutoff/10
)

Arguments

cell_positions The positions of the cells in 2D. Must be a tibble with character column cell_id and numeric columns comp_1 and comp_2.

color_density How to color density, can be "none", "grouping", or "feature".

trajectory A dynwrap trajectory.

grouping A grouping of the cells (e.g. clustering) as a named character vector.

groups A tibble containing character columns group_id and color. If NULL, this object is inferred from the grouping itself.

feature_oi The name of a feature to use for colouring the cells.

expression_source Source of the feature expression, defaults to get_expression(trajectory).

padding The padding in the edges to the plot, relative to the size of the plot.

nbins Number of bins for calculating the density.

bw Bandwidth, relative to the size of the plot.

density_cutoff Cutoff for density, the lower the larger the areas.

density_cutoff_label Cutoff for density for labeling, the lower the further way from cells.

Value

A named list with objects:

- polygon: A layer to add to the ggplot.
- scale: A scale to add to the ggplot.

Description

Add colouring to a set of milestones.
Usage

```r
add_milestone_coloring(
  milestones = NULL,
  color_milestones = c("auto", "given", "cubeHelix", "Set3", "rainbow")
)
```

Arguments

- **milestones**: Tibble containing the column `milestone_id` (character). If `color_milestones` is set to "given", this tibble should also contain a column `color` (character), containing colour hex codes (e.g. "#123456").
- **color_milestones**: Which palette to use for colouring the milestones
 - `auto`: Determine colours automatically. If color is already specified in milestones tibble, this will be used. Otherwise, the colour scheme is determined by `milestone_palette_list$auto`.
 - `given`: The milestones object already contains a column `color`.
 - `cubeHelix`: Use the `rje::cubeHelix()` palette.
 - `Set3`: Use the `RColorBrewer::brewer.pal(name = "Set3")` palette.
 - `rainbow`: Use the `grDevices::rainbow()` palette.

Value

A tibble containing the input character column `milestone_id` and a character column `color` containing colour hex-codes (e.g. "#123456").

Description

Visualise a single-cell trajectory as a graph or dendrogram, as a dimensionality reduction or heatmap of the expression data, or a comparison between two trajectories as a pairwise scatterplot or dimensionality reduction projection.
empty_plot

Create an empty plot for spacing

Description
Create an empty plot for spacing

Usage
empty_plot()

Value
An empty ggplot2.

Examples
empty_plot()

example_bifurcating
An example bifurcating dataset

Description
An example bifurcating dataset

Usage
eexample_bifurcating

Format
An object of class dynwrap::with_prior (inherits from dynwrap::with_expression, dynwrap::with_cell_waypoints, dynwrap::with_trajectory, dynwrap::data_wrapper, list) of length 20.
example_disconnected

An example disconnected dataset

Usage

example_disconnected

Format

An object of class `dynwrap::with_prior` (inherits from `dynwrap::with_expression`, `dynwrap::with_cell_waypoints`, `dynwrap::with_trajectory`, `dynwrap::data_wrapper`, list) of length 20.

example_linear

An example linear dataset

Usage

example_linear

Format

An object of class `dynwrap::with_prior` (inherits from `dynwrap::with_expression`, `dynwrap::with_cell_waypoints`, `dynwrap::with_trajectory`, `dynwrap::data_wrapper`, list) of length 20.

example_tree

An example tree dataset

Usage

example_tree

Format

An object of class `dynwrap::with_prior` (inherits from `dynwrap::with_expression`, `dynwrap::with_cell_waypoints`, `dynwrap::with_trajectory`, `dynwrap::data_wrapper`, list) of length 20.
linearise_cells

Prepare a trajectory for linearised visualisation.

Description

This is an internal function and should probably not be used manually.

Usage

linearise_cells(
 trajectory,
 margin = 0.05,
 no_margin_between_linear = TRUE,
 one_edge = FALSE,
 equal_cell_width = FALSE
)

Arguments

trajectory A dynwrap trajectory.
margin A margin between trajectory segments.
no_margin_between_linear Whether to add a margin only when a branch occurs.
one_edge Whether or not to assign each cell to one cell only. This can occur when a cell is on a branching point, or in between multiple edges.
equal_cell_width Whether or not to space segments according to cell count.

Value

A named list with values:

- milestone_network: A linearised version of trajectory$milestone_network with extra columns: add_margin, nMargins, cumstart, cumend, edge_id.
- progressions: A linearised version of trajectory$progressions with extra columns: percentage2, length, directed, add_margin, nMargins, cumstart, cumend, edge_id, cumpercentage.
- margin: The used margin (numeric).

Examples

linearise_cells(example_bifurcating)
milestone_palette
Get the names of valid color palettes

Description

Get the names of valid color palettes

Usage

```r
milestone_palette(name, n)
get_milestone_palette_names()
```

Arguments

- `name` The name of the palette. Must be one of "cubeHelix", "Set3", or "rainbow".
- `n` The number of colours to be in the palette.

Value

The names of supported palettes.

Examples

```r
get_milestone_palette_names()
```

plot_dendro
Plot a trajectory as a dendrogram

Description

Plot a trajectory as a dendrogram

Usage

```r
plot_dendro(
  trajectory,
  color_cells = c("auto", "none", "grouping", "feature", "milestone", "pseudotime"),
  grouping = NULL,
  groups = NULL,
  feature_oi = NULL,
  expression_source = "expression",
  pseudotime = NULL,
  color_milestones = c("auto", "given", "cubeHelix", "Set3", "rainbow"),
  milestones = NULL,
  milestone_percentages = NULL,
```
alpha_cells = 1,
size_cells = 2.5,
border_radius_percentage = 0.1,
diag_offset = 0.05,
y_offset = 0.2,
arrow = grid::arrow(type = "closed")
)

Arguments

trajectory A dynwrap trajectory.

color_cells How to color the cells.

- "auto": Try to figure out how to color cells depending on whether one of the grouping, feature_io, milestones or pseudotime parameters are defined.
- "none": Cells are not coloured.
- "grouping": Cells are coloured according to a grouping (e.g. clustering). Either the grouping parameter or trajectory$grouping must be a named character vector.
- "feature": Cells are coloured according to the values of a given feature (e.g. gene expression). Either the expression_source parameter or get_expression(trajectory) must be a matrix. Parameter feature_oi must also be defined.
- "milestone" (recommended): Cells are coloured according their position in the trajectory. The positioning of the cells are determined by parameter milestone_percentages or else by trajectory$milestone_percentages. The colours of the milestones can be determined automatically or can be specified by passing a tibble containing character columns milestone_id and color (See add_milestone_coloring() for help in constructing this object).
- "pseudotime": Cells are coloured according to the pseudotime value from the root.

grouping A grouping of the cells (e.g. clustering) as a named character vector.

groups A tibble containing character columns group_id and color. If NULL, this object is inferred from the grouping itself.

feature_oi The name of a feature to use for colouring the cells.

expression_source Source of the feature expression, defaults to get_expression(trajectory).

pseudotime The pseudotime from the root of the trajectory to the cells as a named numeric vector.

color_milestones Which palette to use for colouring the milestones

- auto: Determine colours automatically. If color is already specified in milestones tibble, this will be used. Otherwise, the colour scheme is determined by milestone_palette_list$auto.
• given: The milestones object already contains a column color.
• cubeHelix: Use the rje::cubeHelix() palette.
• Set3: Use the RColorBrewer::brewer.pal(name = "Set3") palette.
• rainbow: Use the grDevices::rainbow() palette.

milestones Tibble containing the column milestone_id (character). If color_milestones is set to "given", this tibble should also contain a column color (character), containing colour hex codes (e.g. "#123456").
milestone_percentages The milestone percentages.
alpha_cells The alpha of the cells
size_cells The size of the cells
border_radius_percentage The fraction of the radius that is used for the border
diag_offset The x-offset (percentage of the edge lengths) between milestones
y_offset The size of the quasirandom cell spreading in the y-axis
arrow The type and size of arrow in case of directed trajectories. Set to NULL to remove arrow altogether.

Value
A dendrogram ggplot of the trajectory.

Examples

data(example_tree)
plot_dimred(example_tree)
plot_dimred(example_tree, color_cells = "pseudotime")
plot_dimred(
 example_tree,
 color_cells = "grouping",
 grouping = dynwrap::group_onto_nearest_milestones(example_tree)
)

plot_dimred Plot a trajectory in a (given) dimensionality reduction

Description
Plot a trajectory in a (given) dimensionality reduction
plot_dimred

Usage

plot_dimred(
 trajectory,
 color_cells = c("auto", "none", "grouping", "feature", "milestone", "pseudotime"),
 dimred = ifelse(dynwrap::is_wrapper_with_dimred(trajectory), NA,
 dyndimred::dimred_landmark_mds),
 plot_trajectory = dynwrap::is_wrapper_with_trajectory(trajectory) &&
 !plot_milestone_network,
 plot_milestone_network = FALSE,
 label_milestones = dynwrap::is_wrapper_with_milestone_labelling(trajectory),
 alpha_cells = 1,
 size_cells = 2.5,
 border_radius_percentage = 0.1,
 size_milestones = 6,
 size_transitions = 2,
 hex_cells = ifelse(length(trajectory$cell_ids) > 10000, 100, FALSE),
 grouping = NULL,
 groups = NULL,
 feature_oi = NULL,
 color_milestones = c("auto", "given", "cubeHelix", "Set3", "rainbow"),
 milestones = NULL,
 milestone_percentages = NULL,
 pseudotime = NULL,
 expression_source = "expression",
 arrow = grid::arrow(type = "closed", length = unit(0.1, "inches")),
 color_density = c("none", "grouping", "feature"),
 padding = 0.1,
 nbins = 1000,
 bw = 0.2,
 density_cutoff = 0.3,
 density_cutoff_label = density_cutoff/10,
 waypoints = dynwrap::select_waypoints(trajectory),
 trajectory_projection_sd = sum(trajectory$milestone_network$length) * 0.05,
 color_trajectory = "none"
)

Arguments

trajectory A dynwrap trajectory.

color_cells How to color the cells.

 - "auto": Try to figure out how to color cells depending on whether one
 of the grouping, feature_oi, milestones or pseudotime parameters are
 defined.
 - "none": Cells are not coloured.
 - "grouping": Cells are coloured according to a grouping (e.g. clustering).
 Either the grouping parameter or trajectory$grouping must be a named
 character vector.
• "feature": Cells are coloured according to the values of a given feature (e.g. gene expression). Either the expression_source parameter or get_expression(trajectory) must be a matrix. Parameter feature_oi must also be defined.

• "milestone" (recommended): Cells are coloured according their position in the trajectory. The positioning of the cells are determined by parameter milestone_percentages or else by trajectory$milestone_percentages. The colours of the milestones can be determined automatically or can be specified by passing a tibble containing character columns milestone_id and color (See add_milestone_coloring() for help in constructing this object).

• "pseudotime": Cells are coloured according to the pseudotime value from the root.

plot_dimred

- Can be
 - A function which will perform the dimensionality reduction, see dyndimred::list_dimred_methods()
 - A matrix with the dimensionality reduction, with cells in rows and dimensions (comp_1, comp_2, ...) in columns

plot_trajectory

Whether to plot the projected trajectory on the dimensionality reduction

plot_milestone_network

Whether to plot the projected milestone network on the dimensionality reduction

label_milestones

How to label the milestones. Can be TRUE (in which case the labels within the trajectory will be used), "all" (in which case both given labels and milestone_ids will be used), a named character vector, or FALSE

alpha_cells

The alpha of the cells

size_cells

The size of the cells

border_radius_percentage

The fraction of the radius that is used for the border

size_milestones

The size of the milestones

size_transitions

The size of the trajectory segments

hex_cells

The number of hexes to use, to avoid overplotting points. Default is FALSE if number of cells <= 10000.

grouping

A grouping of the cells (e.g. clustering) as a named character vector.

groups

A tibble containing character columns group_id and color. If NULL, this object is inferred from the grouping itself.

feature_oi

The name of a feature to use for colouring the cells.

color_milestones

Which palette to use for colouring the milestones

- auto: Determine colours automatically. If color is already specified in milestones tibble, this will be used. Otherwise, the colour scheme is determined by milestone_palette_list$auto.
• **given**: The milestones object already contains a column `color`.
• **cubeHelix**: Use the `rje::cubeHelix()` palette.
• **Set3**: Use the `RColorBrewer::brewer.pal(name = "Set3")` palette.
• **rainbow**: Use the `grDevices::rainbow()` palette.

milestones
Tibble containing the column `milestone_id` (character). If `color_milestones` is set to "given", this tibble should also contain a column `color` (character), containing colour hex codes (e.g. "#123456").

milestone_percentages
The milestone percentages.

pseudotime
The pseudotime from the root of the trajectory to the cells as a named numeric vector.

expression_source
Source of the expression.

arrow
The type and size of arrow in case of directed trajectories. Set to NULL to remove arrow altogether.

color_density
How to color density, can be "none", "grouping", or "feature".

padding
The padding in the edges to the plot, relative to the size of the plot.

nbins
Number of bins for calculating the density.

bw
Bandwidth, relative to the size of the plot.

density_cutoff
Cutoff for density, the lower the larger the areas.

density_cutoff_label
Cutoff for density for labeling, the lower the further way from cells.

waypoints
The waypoints to use for projecting. Can be generated using `dynwrap::select_waypoints()`.

trajectory_projection_sd
The standard deviation of the Gaussian kernel to be used for projecting the trajectory. This is in the order of magnitude as the lengths of the milestone_network. The lower, the more closely the trajectory will follow the cells.

color_trajectory
How to color the trajectory, can be "nearest" for coloring to nearest cell, or "none".

Value
A dimensionality reduction ggplot of the data.

Examples
```r
data(example_bifurcating)
plot_dimred(example_bifurcating)

# plotting with umap
if (requireNamespace("uwot", quietly = TRUE)) {
  plot_dimred(example_bifurcating, dimred = dyndimred::dimred_umap)
}
```
using a custom dimred
dimred <- dyndimred::dimred_mds(example_bifurcating$expression)
plot_dimred(example_bifurcating, dimred = dimred)

coloring cells by pseudotime
plot_dimred(example_bifurcating, color_cells = "pseudotime")

coloring cells by cluster
plot_dimred(
 example_bifurcating,
 color_density = "grouping",
 grouping = dynwrap::group_onto_nearest_milestones(example_bifurcating)
)

text

plot_graph

Plot a trajectory as a graph

Description

Plot a trajectory as a graph

Usage

```r
plot_graph(
  trajectory,
  color_cells = c("auto", "none", "grouping", "feature", "milestone", "pseudotime"),
  color_milestones = c("auto", "given", "cubeHelix", "Set3", "rainbow"),
  grouping = NULL,
  groups = NULL,
  feature_oi = NULL,
  pseudotime = NULL,
  expression_source = "expression",
  milestones = NULL,
  milestone_percentages = NULL,
  size_trajectory = 3,
  size_milestones = 8,
  alpha_cells = 1,
  size_cells = 2.5,
  border_radius_percentage = 0.1,
  arrow = grid::arrow(length = grid::unit(1, "cm"), type = "closed"),
  label_milestones = dynwrap::is_wrapper_with_milestone_labelling(trajectory),
  plot_milestones = FALSE,
  adjust_weights = FALSE
)
```
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>trajectory</td>
<td>The trajectory as created by <code>infer_trajectory()</code> or <code>add_trajectory()</code></td>
</tr>
<tr>
<td>color_cells</td>
<td>How to color the cells.</td>
</tr>
<tr>
<td></td>
<td>- "auto": Try to figure out how to color cells depending on whether one</td>
</tr>
<tr>
<td></td>
<td>of the grouping, feature_io, milestones or pseudotime parameters are</td>
</tr>
<tr>
<td></td>
<td>defined.</td>
</tr>
<tr>
<td></td>
<td>- "none": Cells are not coloured.</td>
</tr>
<tr>
<td></td>
<td>- "grouping": Cells are coloured according to a grouping (e.g. clustering).</td>
</tr>
<tr>
<td></td>
<td>Either the grouping parameter or trajectory$grouping must be a named</td>
</tr>
<tr>
<td></td>
<td>character vector.</td>
</tr>
<tr>
<td></td>
<td>- "feature": Cells are coloured according to the values of a given feature</td>
</tr>
<tr>
<td></td>
<td>(e.g. gene expression). Either the expression_source parameter or</td>
</tr>
<tr>
<td></td>
<td>get_expression(trajectory) must be a matrix. Parameter feature_oi must</td>
</tr>
<tr>
<td></td>
<td>also be defined.</td>
</tr>
<tr>
<td></td>
<td>- "milestone" (recommended): Cells are coloured according their position</td>
</tr>
<tr>
<td></td>
<td>in the trajectory. The positioning of the cells are determined by parameter</td>
</tr>
<tr>
<td></td>
<td>milestone_percentages or else trajectory$milestone_percentages. The</td>
</tr>
<tr>
<td></td>
<td>colours of the milestones can be determined automatically or can be</td>
</tr>
<tr>
<td></td>
<td>specified by passing a tibble containing character columns milestone_id</td>
</tr>
<tr>
<td></td>
<td>and color (See add_milestone_coloring() for help in constructing this</td>
</tr>
<tr>
<td></td>
<td>object).</td>
</tr>
<tr>
<td></td>
<td>- "pseudotime": Cells are coloured according to the pseudotime value from</td>
</tr>
<tr>
<td></td>
<td>the root.</td>
</tr>
<tr>
<td>color_milestones</td>
<td>Which palette to use for colouring the milestones</td>
</tr>
<tr>
<td></td>
<td>- auto: Determine colours automatically. If color is already specified in</td>
</tr>
<tr>
<td></td>
<td>milestones tibble, this will be used. Otherwise, the colour scheme is</td>
</tr>
<tr>
<td></td>
<td>determined by milestone_palette_list$auto.</td>
</tr>
<tr>
<td></td>
<td>- given: The milestones object already contains a column color.</td>
</tr>
<tr>
<td></td>
<td>- cubeHelix: Use the rje::cubeHelix() palette.</td>
</tr>
<tr>
<td></td>
<td>- Set3: Use the RColorBrewer::brewer.pal(name = "Set3") palette.</td>
</tr>
<tr>
<td></td>
<td>- rainbow: Use the grDevices::rainbow() palette.</td>
</tr>
<tr>
<td>grouping</td>
<td>A grouping of the cells (e.g. clustering) as a named character vector.</td>
</tr>
<tr>
<td>groups</td>
<td>A tibble containing character columns group_id and color. If NULL, this</td>
</tr>
<tr>
<td></td>
<td>object is inferred from the grouping itself.</td>
</tr>
<tr>
<td>feature_oi</td>
<td>The name of a feature to use for colouring the cells.</td>
</tr>
<tr>
<td>pseudotime</td>
<td>The pseudotime from the root of the trajectory to the cells as a named</td>
</tr>
<tr>
<td></td>
<td>numeric vector.</td>
</tr>
<tr>
<td>expression_source</td>
<td>Source of the feature expression, defaults to get_expression(trajectory).</td>
</tr>
<tr>
<td>milestones</td>
<td>Tibble containing the column milestone_id (character). If color_milestones</td>
</tr>
<tr>
<td></td>
<td>is set to "given", this tibble should also contain a column color (character),</td>
</tr>
<tr>
<td></td>
<td>containing colour hex codes (e.g. "#123456").</td>
</tr>
</tbody>
</table>
milestone_percentages
The milestone percentages.

size_trajectory
The size of the transition lines between milestones.

size_milestones
The size of milestones.

alpha_cells
The alpha of the cells.

size_cells
The size of the cells.

border_radius_percentage
The fraction of the radius that is used for the border.

arrow
The type and size of arrow in case of directed trajectories. Set to NULL to remove arrow altogether.

label_milestones
How to label the milestones. Can be TRUE (in which case the labels within the trajectory will be used), "all" (in which case both given labels and milestone_ids will be used), a named character vector, or FALSE

plot_milestones
Whether to plot the milestones.

adjust_weights
Whether or not to rescale the milestone network weights

Value
A graph ggplot of a trajectory.

Examples

data(example_disconnected)
plot_graph(example_disconnected)
plot_graph(example_disconnected, color_cells = "pseudotime")
plot_graph(example_disconnected, color_cells = "grouping", grouping = dynwrap::group_onto_nearest_milestones(example_disconnected)
)
data(example_tree)
plot_graph(example_tree)

plot_heatmap

Plot expression data along a trajectory

Description
NOTE: When using RStudio, the heatmap might not show inside the plot area, but will be visible once you click the 'Zoom' button.
Usage

plot_heatmap(
 trajectory,
 expression_source = "expression",
 features_oi = 20,
 clust = "ward.D2",
 margin = 0.02,
 color_cells = NULL,
 milestones = NULL,
 milestone_percentages = trajectory$milestone_percentages,
 grouping = NULL,
 groups = NULL,
 cell_feature_importances = NULL,
 heatmap_type = c("tiled", "dotted"),
 scale = dynutils::scale_quantile,
 label_milestones = TRUE
)

Arguments

trajectory A dynwrap trajectory.
expression_source Source of the feature expression, defaults to get_expression(trajectory).
features_oi The features of interest, either the number of features or a vector giving the names of the different features
clust The method to cluster the features, or a hclust object
margin A margin between trajectory segments.
color_cells How to color the cells.
 • "auto": Try to figure out how to color cells depending on whether one of the grouping, feature_io, milestones or pseudotime parameters are defined.
 • "none": Cells are not coloured.
 • "grouping": Cells are coloured according to a grouping (e.g. clustering). Either the grouping parameter or trajectory$grouping must be a named character vector.
 • "feature": Cells are coloured according to the values of a given feature (e.g. gene expression). Either the expression_source parameter or get_expression(trajectory) must be a matrix. Parameter feature_oi must also be defined.
 • "milestone" (recommended): Cells are coloured according their position in the trajectory. The positioning of the cells are determined by parameter milestone_percentages or else by trajectory$milestone_percentages. The colours of the milestones can be determined automatically or can be specified by passing a tibble containing character columns milestone_id and color (See add_milestone_coloring() for help in constructing this object).
• "pseudotime": Cells are coloured according to the pseudotime value from the root.

milestones Tibble containing the column milestone_id (character). If color_milestones is set to "given", this tibble should also contain a column color (character), containing colour hex codes (e.g. "#123456").

milestone_percentages The milestone percentages.

grouping A grouping of the cells (e.g. clustering) as a named character vector.

groups A tibble containing character columns group_id and color. If NULL, this object is inferred from the grouping itself.

cell_feature_importances The importances of every feature in every cell, as returned by \textit{dynfeature::calculate_cell_feature_importance()}

heatmap_type The type of heatmap, either tiled or dotted

scale Whether to rescale the expression, can be a function or boolean

label_milestones How to label the milestones. Can be TRUE (in which case the labels within the trajectory will be used), "all" (in which case both given labels and milestone_ids will be used), a named character vector, or FALSE

\textbf{Value}

A heatmap ggplot of an expression dataset with trajectory.

\textbf{Examples}

```r
  data(example_bifurcating)
  plot_heatmap(example_bifurcating)
```

\textit{plot_linearised_comparison}

\textbf{Compare two trajectories as a pseudotime scatterplot}

\textbf{Description}

Compare two trajectories as a pseudotime scatterplot

\textbf{Usage}

```r
  plot_linearised_comparison(
    traj1,
    traj2,
    reorder = TRUE,
    margin = 0.05,
    reorder_second_by = c("mapping", "optimisation")
  )
```
plot_onedim

Arguments

- **traj1**: The first trajectory
- **traj2**: The second trajectory
- **reorder**: Whether to reorder the trajectory
- **margin**: A margin between trajectory segments.
- **reorder_second_by**: How to reorder the second trajectory, either by mapping the milestones from both trajectories (mapping), or by trying to correlate the orderings between the two trajectories (optimisation)

Value

A scatterplot comparison ggplot of two linearised trajectories.

Examples

```r
data(example_bifurcating)
plot_linearised_comparison(example_bifurcating, example_bifurcating)
```

Description

Plot a trajectory as a one-dimensional set of connected segments

Usage

```r
plot_onedim(
  trajectory,
  color_cells = c("auto", "none", "grouping", "feature", "milestone", "pseudotime"),
  grouping = NULL,
  groups = NULL,
  feature_oi = NULL,
  pseudotime = NULL,
  expression_source = "expression",
  color_milestones = c("auto", "given", "cubeHelix", "Set3", "rainbow"),
  milestones = NULL,
  milestone_percentages = NULL,
  alpha_cells = 1,
  size_cells = 2.5,
  border_radius_percentage = 0.1,
  orientation = 1,
  margin = 0.05,
  linearised = linearise_cells(trajectory, margin, one_edge = TRUE),
  quasirandom_width = 0.2,
)```
plot_cells = TRUE,
label_milestones = dynwrap::is_wrapper_with_milestone_labelling(trajectory),
arrow = grid::arrow(type = "closed")
)

Arguments

trajectory A dynwrap trajectory.

color_cells How to color the cells.
  • "auto": Try to figure out how to color cells depending on whether one of the grouping, feature_io, milestones or pseudotime parameters are defined.
  • "none": Cells are not coloured.
  • "grouping": Cells are coloured according to a grouping (e.g. clustering). Either the grouping parameter or trajectory$grouping must be a named character vector.
  • "feature": Cells are coloured according to the values of a given feature (e.g. gene expression). Either the expression_source parameter or get_expression(trajectory) must be a matrix. Parameter feature_oi must also be defined.
  • "milestone" (recommended): Cells are coloured according their position in the trajectory. The positioning of the cells are determined by parameter milestone_percentages or else by trajectory$milestone_percentages. The colours of the milestones can be determined automatically or can be specified by passing a tibble containing character columns milestone_id and color (See add_milestone_coloring() for help in constructing this object).
  • "pseudotime": Cells are coloured according to the pseudotime value from the root.

grouping A grouping of the cells (e.g. clustering) as a named character vector.
groups A tibble containing character columns group_id and color. If NULL, this object is inferred from the grouping itself.
feature_oi The name of a feature to use for colouring the cells.
pseudotime The pseudotime from the root of the trajectory to the cells as a named numeric vector.
expression_source Source of the feature expression, defaults to get_expression(trajectory).
color_milestones Which palette to use for colouring the milestones
  • auto: Determine colours automatically. If color is already specified in milestones tibble, this will be used. Otherwise, the colour scheme is determined by milestone_palette_list$auto.
  • given: The milestones object already contains a column color.
  • cubeHelix: Use the rje::cubeHelix() palette.
  • Set3: Use the RColorBrewer::brewer.pal(name = "Set3") palette.
• rainbow: Use the grDevices::rainbow() palette.

milestones Tibble containing the column milestone_id (character). If color_milestones is set to "given", this tibble should also contain a column color (character), containing colour hex codes (e.g. "#123456").

milestone_percentages The milestone percentages.
alpha_cells The alpha of the cells
size_cells The size of the cells
border_radius_percentage The fraction of the radius that is used for the border
orientation Whether to plot the connections in the top (1) or bottom (-1)
margin A margin between trajectory segments.
linearised The linearised milestone network and progressions
quasirandom_width The width of the quasirandom cell spreading
plot_cells Whether to plot the cells
label_milestones How to label the milestones. Can be TRUE (in which case the labels within the trajectory will be used), "all" (in which case both given labels and milestone_ids will be used), a named character vector, or FALSE
arrow The type and size of arrow in case of directed trajectories. Set to NULL to remove arrow altogether.

Value A linearised (non-)linear trajectory.

Examples
data(example_linear)
plot_onedim(example_linear)
plot_onedim(example_linear, label_milestones = TRUE)
data(example_tree)
plot_onedim(example_tree)
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>traj1</td>
<td>The first trajectory</td>
</tr>
<tr>
<td>traj2</td>
<td>The second traj</td>
</tr>
<tr>
<td>margin</td>
<td>A margin between trajectory segments.</td>
</tr>
<tr>
<td>reorder</td>
<td>Whether to reorder</td>
</tr>
</tbody>
</table>

Value

A scatterplot comparison ggplot of two linearised trajectories.

Examples

```r
data(example_bifurcating)
plot_strip(example_bifurcating, example_bifurcating)
```

plot_topo

Plot the topology of a trajectory

Description

Plot the topology of a trajectory

Usage

```r
plot_topo(
 trajectory,
 color_milestones = c("auto", "given", "cubeHelix", "Set3", "rainbow"),
 milestones = NULL,
 layout = NULL,
 arrow = grid::arrow(type = "closed", length = unit(0.4, "cm"))
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>trajectory</td>
<td>A dynwrap trajectory.</td>
</tr>
<tr>
<td>color_milestones</td>
<td>Which palette to use for colouring the milestones</td>
</tr>
<tr>
<td></td>
<td>• auto: Determine colours automatically. If color is already specified in milestones tibble, this will be used. Otherwise, the colour scheme is determined by milestone_palette_list$auto.</td>
</tr>
<tr>
<td></td>
<td>• given: The milestones object already contains a column color.</td>
</tr>
<tr>
<td></td>
<td>• cubeHelix: Use the rje::cubeHelix() palette.</td>
</tr>
<tr>
<td></td>
<td>• Set3: Use the RColorBrewer::brewer_pal(name = &quot;Set3&quot;) palette.</td>
</tr>
<tr>
<td></td>
<td>• rainbow: Use the grDevices::rainbow() palette.</td>
</tr>
</tbody>
</table>
project_waypoints_coloured

milestones  Tibble containing the column milestone_id (character). If color_milestones
            is set to "given", this tibble should also contain a column color (character),
            containing colour hex codes (e.g. "#123456").
layout      The type of layout to create. See `ggraph::ggraph()` for more info.
arrow      The type and size of arrow in case of directed trajectories. Set to NULL to
            remove arrow altogether.

Value

A topology ggplot of a trajectory.

Examples

data(example_disconnected)
plot_topology(example_disconnected)

data(example_tree)
plot_topology(example_tree)

Description

Project the waypoints

Usage

project_waypoints_coloured(
  trajectory,  
  cell_positions,  
  edge_positions = NULL,  
  waypoints = dynwrap::select_waypoints(trajectory),  
  trajectory_projection_sd = sum(trajectory$milestone_network$length) * 0.05,  
  color_trajectory = "none"
)

Arguments

trajectory  A dynwrap trajectory.
cell_positions  The positions of the cells in 2D. Must be a tibble with character column cell_id
            and numeric columns comp_1 and comp_2.
edge_positions  The positions of the edges.
waypoints  The waypoints to use for projecting. Can be generated using `dynwrap::select_waypoints()`.
trajectory_projection_sd  The standard deviation of the gaussian kernel.
color_trajectory

How to color the trajectory, can be "nearest" for coloring to nearest cell, or "none".

Value

A named list containing items:

- segments: A tibble containing columns comp_1 (numeric), comp_2 (numeric), waypoint_id (character), milestone_id (character), from (character), to (character) percentage (numeric), group (factor), and arrow (logical).

theme_clean

We like our plots clean

Description

We like our plots clean

Usage

theme_clean()

Value

A ggplot2 theme.

Examples

data(example_bifurcating)
g <- plot_dimred(example_bifurcating)
g + theme_clean()

theme_graph

We like our plots clean

Description

We like our plots clean

Usage

theme_graph()

Value

A ggplot2 theme.
Examples

data(example_bifurcating)
g <- plot_dimred(example_bifurcating)
g + theme_graph()
Index

* **compare_trajectory**
  - plot_linearised_comparison, 20
  - plot_strip, 23

* **datasets**
  - example_bifurcating, 7
  - example_disconnected, 8
  - example_linear, 8
  - example_tree, 8

* **plot_helpers**
  - empty_plot, 7
  - milestone_palette, 10
  - theme_clean, 26
  - theme_graph, 26

* **plot_trajectory**
  - plot_dendro, 10
  - plot_dimred, 12
  - plot_graph, 16
  - plot_heatmap, 18
  - plot_onedim, 21
  - plot_topology, 24

add_cell_coloring, 2
add_density_coloring, 4
add_milestone_coloring, 5
add_trajectory(), 17

dyndimred::list_dimred_methods(), 14
dynfeature::calculate_cell_feature_importance(), 20
dynplot, 6
dynwrap::select_waypoints(), 15, 25

empty_plot, 7
example_bifurcating, 7
example_disconnected, 8
example_linear, 8
example_tree, 8

get_milestone_palette_names
  (milestone_palette), 10