Package ‘dynplot’

October 13, 2022

Type Package

Title Visualising Single-Cell Trajectories

Version 1.1.2

Description Visualise a single-cell trajectory as a graph or dendrogram, as a dimensionality reduction or heatmap of the expression data, or a comparison between two trajectories as a pairwise scatterplot or dimensionality reduction projection. Saelens and Cannoodt et al. (2019) <doi:10.1038/s41587-019-0071-9>.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

URL https://github.com/dynverse/dynplot

BugReports https://github.com/dynverse/dynplot/issues

Depends R (>= 3.0.0)

Imports assertthat, dplyr, dynutils (>= 1.0.2), dynfeature (>= 1.0.0), dyndimred (>= 1.0.0), dynwrap (>= 1.0.0), GA, ggforce, ggplot2 (>= 3.0), ggraph (>= 2.0), ggrepel, igraph, MASS, methods, patchwork, purrr, reshape2, tibble, tidyr, tidygraph, vipor

Suggests covr, hexbin, knitr, RColorBrewer, rje, rmarkdown, testthat (>= 3.0.0), uwot

VignetteBuilder knitr

NeedsCompilation no
add_cell_coloring

Add colouring to a set of cells.

Description

The cells can be coloured by a grouping (clustering), according to a feature (gene expression), closest milestone, or pseudotime from the root of the trajectory.
add_cell_coloring

Usage

```r
add_cell_coloring(
  cell_positions,
  color_cells = c("auto", "none", "grouping", "feature", "milestone", "pseudotime"),
  trajectory,
  grouping = NULL,
  groups = NULL,
  feature_oi = NULL,
  expression_source = "expression",
  pseudotime = NULL,
  color_milestones = c("auto", "given", "cubeHelix", "Set3", "rainbow"),
  milestones = NULL,
  milestone_percentages = NULL
)
```

Arguments

- **cell_positions**: The positions of the cells, represented by a tibble. Must contain column `cell_id` (character) and may contain columns `from`, `to`, `pseudotime`, depending on the value of `color_cells`.
- **color_cells**: How to color the cells.
 - "auto": Try to figure out how to color cells depending on whether one of the `grouping`, `feature_oi`, `milestones` or `pseudotime` parameters are defined.
 - "none": Cells are not coloured.
 - "grouping": Cells are coloured according to a grouping (e.g. clustering). Either the `grouping` parameter or `trajectory$grouping` must be a named character vector.
 - "feature": Cells are coloured according to the values of a given feature (e.g. gene expression). Either the `expression_source` parameter or `get_expression(trajectory)` must be a matrix. Parameter `feature_oi` must also be defined.
 - "milestone" (recommended): Cells are coloured according their position in the trajectory. The positioning of the cells are determined by parameter `milestone_percentages` or else by `trajectory$milestone_percentages`. The colours of the milestones can be determined automatically or can be specified by passing a tibble containing character columns `milestone_id` and `color` (See `add_milestone_coloring()` for help in constructing this object).
 - "pseudotime": Cells are coloured according to the pseudotime value from the root.
- **trajectory**: A dynwrap trajectory.
- **grouping**: A grouping of the cells (e.g. clustering) as a named character vector.
- **groups**: A tibble containing character columns `group_id` and `color`. If NULL, this object is inferred from the grouping itself.
- **feature_oi**: The name of a feature to use for colouring the cells.
expression_source
Source of the feature expression, defaults to get_expression(trajectory).

pseudotime
The pseudotime from the root of the trajectory to the cells as a named numeric vector.

color_milestones
Which palette to use for colouring the milestones

- auto: Determine colours automatically. If color is already specified in milestones tibble, this will be used. Otherwise, the colour scheme is determined by milestone_palette_list$auto.
- given: The milestones object already contains a column color.
- cubeHelix: Use the rje::cubeHelix() palette.
- Set3: Use the RColorBrewer::brewer.pal(name = "Set3") palette.
- rainbow: Use the grDevices::rainbow() palette.

milestones
Tibble containing the column milestone_id (character). If color_milestones is set to "given", this tibble should also contain a column color (character), containing colour hex codes (e.g. "#123456").

milestone_percentages
The milestone percentages.

Value
A named list with following objects:

- cell_positions: The trajectory$progressions object with a color column added.
- color_scale: A ggplot colour scale to add to the downstream ggplot.
- fill_scale: A ggplot fill scale to add to the downstream ggplot.
- color_cells: The input color_cells value, except "auto" will have been replaced depending on which other parameters were passed.

add_density_coloring
Color cells using a background density

Description
Color cells using a background density

Usage
add_density_coloring(
 cell_positions,
 color_density = c("none", "grouping", "feature"),
 trajectory,
 grouping = NULL,
 groups = NULL,
 feature_oi = NULL,
add_milestone_coloring

expression_source = "expression",
padding = 0.1,
nbins = 1000,
bw = 0.2,
density_cutoff = 0.3,
density_cutoff_label = density_cutoff/10
)

Arguments

- **cell_positions** The positions of the cells in 2D. Must be a tibble with character column `cell_id` and numeric columns `comp_1` and `comp_2`.
- **color_density** How to color density, can be "none", "grouping", or "feature".
- **trajectory** A dynwrap trajectory.
- **grouping** A grouping of the cells (e.g. clustering) as a named character vector.
- **groups** A tibble containing character columns `group_id` and `color`. If NULL, this object is inferred from the grouping itself.
- **feature_oi** The name of a feature to use for colouring the cells.
- **expression_source** Source of the feature expression, defaults to `get_expression(trajectory)`.
- **padding** The padding in the edges to the plot, relative to the size of the plot.
- **nbins** Number of bins for calculating the density.
- **bw** Bandwidth, relative to the size of the plot.
- **density_cutoff** Cutoff for density, the lower the larger the areas.
- **density_cutoff_label** Cutoff for density for labeling, the lower the further way from cells.

Value

A named list with objects:

- **polygon**: A layer to add to the ggplot.
- **scale**: A scale to add to the ggplot.

Add colouring to a set of milestones.

Description

Add colouring to a set of milestones.
Usage

```r
add_milestone_coloring(
  milestones = NULL,
  color_milestones = c("auto", "given", "cubeHelix", "Set3", "rainbow")
)
```

Arguments

- **milestones**: Tibble containing the column `milestone_id` (character). If `color_milestones` is set to "given", this tibble should also contain a column `color` (character), containing colour hex codes (e.g. "#123456").
- **color_milestones**: Which palette to use for colouring the milestones
 - `auto`: Determine colours automatically. If `color` is already specified in milestones tibble, this will be used. Otherwise, the colour scheme is determined by `milestone_palette_list$auto`.
 - `given`: The milestones object already contains a column `color`.
 - `cubeHelix`: Use the `rje::cubeHelix()` palette.
 - `Set3`: Use the `RColorBrewer::brewer.pal(name = "Set3")` palette.
 - `rainbow`: Use the `grDevices::rainbow()` palette.

Value

A tibble containing the input character column `milestone_id` and a character column `color` containing colour hex-codes (e.g. "#123456").

dynplot

dynplot: Plotting Single-Cell Trajectories

Description

Visualise a single-cell trajectory as a graph or dendrogram, as a dimensionality reduction or heatmap of the expression data, or a comparison between two trajectories as a pairwise scatterplot or dimensionality reduction projection.
empty_plot

Create an empty plot for spacing

Description
Create an empty plot for spacing

Usage
empty_plot()

Value
An empty ggplot2.

Examples
empty_plot()

example_bifurcating An example bifurcating dataset

Description
An example bifurcating dataset

Usage
e example_bifurcating

Format
An object of class dynwrap::with_prior (inherits from dynwrap::with_expression, dynwrap::with_cell_waypoints, dynwrap::with_trajectory, dynwrap::data_wrapper.list) of length 20.
example_disconnected

Description

An example disconnected dataset

Usage

example_disconnected

Format

An object of class `dynwrap::with_prior` (inherits from `dynwrap::with_expression`, `dynwrap::with_cell_waypoints`, `dynwrap::with_trajectory`, `dynwrap::data_wrapper`, `list`) of length 20.

example_linear

Description

An example linear dataset

Usage

example_linear

Format

An object of class `dynwrap::with_prior` (inherits from `dynwrap::with_expression`, `dynwrap::with_cell_waypoints`, `dynwrap::with_trajectory`, `dynwrap::data_wrapper`, `list`) of length 20.

example_tree

Description

An example tree dataset

Usage

example_tree

Format

An object of class `dynwrap::with_prior` (inherits from `dynwrap::with_expression`, `dynwrap::with_cell_waypoints`, `dynwrap::with_trajectory`, `dynwrap::data_wrapper`, `list`) of length 20.
linearise_cells

Prepare a trajectory for linearised visualisation.

Description
This is an internal function and should probably not be used manually.

Usage
linearise_cells(
 trajectory,
 margin = 0.05,
 no_margin_between_linear = TRUE,
 one_edge = FALSE,
 equal_cell_width = FALSE
)

Arguments

 trajectory A dynwrap trajectory.
 margin A margin between trajectory segments.
 no_margin_between_linear
 Whether to add a margin only when a branch occurs.
 one_edge Whether or not to assign each cell to one cell only. This can occur when a cell
 is on a branching point, or in between multiple edges.
 equal_cell_width
 Whether or not to space segments according to cell count.

Value
A named list with values:

- milestone_network: A linearised version of trajectory$milestone_network with extra
 columns: add_margin, n_margins, cumstart, cumend, edge_id.
- progressions: A linearised version of trajectory$progressions with extra columns:
 percentage2, length, directed, add_margin, n_margins, cumstart, cumend, edge_id, cumpercentage.
- margin: The used margin (numeric).

Examples
linearise_cells(example_bifurcating)
milestone_palette

Get the names of valid color palettes

Usage

```r
milestone_palette(name, n)
get_milestone_palette_names()
```

Arguments

- **name**
 - The name of the palette. Must be one of "cubeHelix", "Set3", or "rainbow".

- **n**
 - The number of colours to be in the palette.

Value

The names of supported palettes.

Examples

```r
get_milestone_palette_names()
```

plot_dendro

Plot a trajectory as a dendrogram

Usage

```r
plot_dendro(
  trajectory,
  color_cells = c("auto", "none", "grouping", "feature", "milestone", "pseudotime"),
  grouping = NULL,
  groups = NULL,
  feature_oi = NULL,
  expression_source = "expression",
  pseudotime = NULL,
  color_milestones = c("auto", "given", "cubeHelix", "Set3", "rainbow"),
  milestones = NULL,
  milestone_percentages = NULL,
)```
alpha_cells = 1,
size_cells = 2.5,
border_radius_percentage = 0.1,
diag_offset = 0.05,
y_offset = 0.2,
arrow = grid::arrow(type = "closed")
)

Arguments

trajectory A dynwrap trajectory.
color_cells How to color the cells.
  • "auto": Try to figure out how to color cells depending on whether one of the grouping, feature_io, milestones or pseudotime parameters are defined.
  • "none": Cells are not coloured.
  • "grouping": Cells are coloured according to a grouping (e.g. clustering). Either the grouping parameter or trajectory$grouping must be a named character vector.
  • "feature": Cells are coloured according to the values of a given feature (e.g. gene expression). Either the expression_source parameter or get_expression(trajectory) must be a matrix. Parameter feature_oi must also be defined.
  • "milestone" (recommended): Cells are coloured according to the positioning in the trajectory. The positioning of the cells is determined by parameter milestone_percentages or else by trajectory$milestone_percentages. The colours of the milestones can be determined automatically or can be specified by passing a tibble containing character columns milestone_id and color (See add_milestone_coloring() for help in constructing this object).
  • "pseudotime": Cells are coloured according to the pseudotime value from the root.
gruping A grouping of the cells (e.g. clustering) as a named character vector.
groups A tibble containing character columns group_id and color. If NULL, this object is inferred from the grouping itself.
feature_oi The name of a feature to use for colouring the cells.
expression_source Source of the feature expression, defaults to get_expression(trajectory).
pseudotime The pseudotime from the root of the trajectory to the cells as a named numeric vector.
color_milestones Which palette to use for colouring the milestones
  • auto: Determine colours automatically. If color is already specified in milestones tibble, this will be used. Otherwise, the colour scheme is determined by milestone_palette_list$auto.
plot_dimred

- given: The milestones object already contains a column color.
- cubeHelix: Use the rje::cubeHelix() palette.
- Set3: Use the RColorBrewer::brewer.pal(name = "Set3") palette.
- rainbow: Use the grDevices::rainbow() palette.

milestones: Tibble containing the column milestone_id (character). If color_milestones is set to "given", this tibble should also contain a column color (character), containing colour hex codes (e.g. \\
#123456").

milestone_percentages: The milestone percentages.

alpha_cells: The alpha of the cells

size_cells: The size of the cells

border_radius_percentage: The fraction of the radius that is used for the border

diag_offset: The x-offset (percentage of the edge lengths) between milestones

y_offset: The size of the quasirandom cell spreading in the y-axis

arrow: The type and size of arrow in case of directed trajectories. Set to NULL to remove arrow altogether.

Value

A dendrogram ggplot of the trajectory.

Examples

data(example_tree)
plot_dendro(example_tree)
plot_dendro(example_tree, color_cells = "pseudotime")
plot_dendro(
  example_tree,
  color_cells = "grouping",
  grouping = dynwrap::group_onto_nearest_milestones(example_tree)
)

plot_dimred

Plot a trajectory in a (given) dimensionality reduction

Description

Plot a trajectory in a (given) dimensionality reduction
Usage

```r
plot_dimred(
 trajectory,
 color_cells = c("auto", "none", "grouping", "feature", "milestone", "pseudotime"),
 dimred = ifelse(dyndimred::is_wrapper_with_dimred(trajectory), NA,
 dyndimred::dimred_landmark_mds),
 plot_trajectory = dynwrap::is_wrapper_with_trajectory(trajectory) &&
 !plot_milestone_network,
 plot_milestone_network = FALSE,
 label_milestones = dynwrap::is_wrapper_with_milestone_labelling(trajectory),
 alpha_cells = 1,
 size_cells = 2.5,
 border_radius_percentage = 0.1,
 size_milestones = 6,
 size_transitions = 2,
 hex_cells = ifelse(length(trajectory$cell_ids) > 10000, 100, FALSE),
 grouping = NULL,
 groups = NULL,
 feature_oi = NULL,
 color_milestones = c("auto", "given", "cubeHelix", "Set3", "rainbow"),
 milestones = NULL,
 milestone_percentages = NULL,
 pseudotime = NULL,
 expression_source = "expression",
 arrow = grid::arrow(type = "closed", length = unit(0.1, "inches")),
 color_density = c("none", "grouping", "feature"),
 padding = 0.1,
 nbins = 1000,
 bw = 0.2,
 density_cutoff = 0.3,
 density_cutoff_label = density_cutoff/10,
 waypoints = dynwrap::select_waypoints(trajectory),
 trajectory_projection_sd = sum(trajectory$milestone_network$length) * 0.05,
 color_trajectory = "none"
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>trajectory</td>
<td>A dynwrap trajectory.</td>
</tr>
<tr>
<td>color_cells</td>
<td>How to color the cells.</td>
</tr>
<tr>
<td></td>
<td>• &quot;auto&quot;: Try to figure out how to color cells depending on whether one of the grouping, feature_oi, milestones or pseudotime parameters are defined.</td>
</tr>
<tr>
<td></td>
<td>• &quot;none&quot;: Cells are not coloured.</td>
</tr>
<tr>
<td></td>
<td>• &quot;grouping&quot;: Cells are coloured according to a grouping (e.g. clustering). Either the grouping parameter or trajectory$grouping must be a named character vector.</td>
</tr>
</tbody>
</table>
• "feature": Cells are coloured according to the values of a given feature (e.g., gene expression). Either the expression_source parameter or get_expression(trajectory) must be a matrix. Parameter feature_oi must also be defined.

• "milestone" (recommended): Cells are coloured according to their position in the trajectory. The positioning of the cells are determined by parameter milestone_percentages or else by trajectory$milestone_percentages. The colours of the milestones can be determined automatically or can be specified by passing a tibble containing character columns milestone_id and color (See add_milestone_coloring() for help in constructing this object).

• "pseudotime": Cells are coloured according to the pseudotime value from the root.

**dimred**

Can be

- A function which will perform the dimensionality reduction, see dyndimred::list_dimred_methods()
- A matrix with the dimensionality reduction, with cells in rows and dimensions (comp_1, comp_2, ...) in columns

**plot_trajectory**

Whether to plot the projected trajectory on the dimensionality reduction

**plot_milestone_network**

Whether to plot the projected milestone network on the dimensionality reduction

**label_milestones**

How to label the milestones. Can be TRUE (in which case the labels within the trajectory will be used), "all" (in which case both given labels and milestone_ids will be used), a named character vector, or FALSE

**alpha_cells**

The alpha of the cells

**size_cells**

The size of the cells

**border_radius_percentage**

The fraction of the radius that is used for the border

**size_milestones**

The size of the milestones

**size_transitions**

The size of the trajectory segments

**hex_cells**

The number of hexes to use, to avoid overplotting points. Default is FALSE if number of cells <= 10000.

**grouping**

A grouping of the cells (e.g., clustering) as a named character vector.

**groups**

A tibble containing character columns group_id and color. If NULL, this object is inferred from the grouping itself.

**feature_oi**

The name of a feature to use for colouring the cells.

**color_milestones**

Which palette to use for colouring the milestones

- auto: Determine colours automatically. If color is already specified in milestones tibble, this will be used. Otherwise, the colour scheme is determined by milestone_palette_list$auto.
• given: The milestones object already contains a column color.
• cubeHelix: Use the rje::cubeHelix() palette.
• Set3: Use the RColorBrewer::brewer.pal(name = "Set3") palette.
• rainbow: Use the grDevices::rainbow() palette.

milestones Tibble containing the column milestone_id (character). If color_milestones is set to "given", this tibble should also contain a column color (character), containing colour hex codes (e.g. "#123456").

milestone_percentages
The milestone percentages.

pseudotime The pseudotime from the root of the trajectory to the cells as a named numeric vector.

expression_source
Source of the expression

arrow
The type and size of arrow in case of directed trajectories. Set to NULL to remove arrow altogether.

color_density How to color density, can be "none", "grouping", or "feature".

padding The padding in the edges to the plot, relative to the size of the plot.

nbins Number of bins for calculating the density.

bw Bandwidth, relative to the size of the plot.

density_cutoff Cutoff for density, the lower the larger the areas.

density_cutoff_label Cutoff for density for labeling, the lower the further way from cells.

waypoints The waypoints to use for projecting. Can be generated using dynwrap::select_waypoints().

trajectory_projection_sd The standard deviation of the Gaussian kernel to be used for projecting the trajectory. This is in the order of magnitude as the lengths of the milestone_network. The lower, the more closely the trajectory will follow the cells.

color_trajectory How to color the trajectory, can be "nearest" for coloring to nearest cell, or "none".

Value
A dimensionality reduction ggplot of the data.

Examples

data(example_bifurcating)
plot_dimred(example_bifurcating)

# plotting with umap
if (requireNamespace("uwot", quietly = TRUE)) {
  plot_dimred(example_bifurcating, dimred = dyndimred::dimred_umap)
}
# using a custom dimred
dimred <- dyndimred::dimred_mds(example_bifurcating$expression)
plot_dimred(example_bifurcating, dimred = dimred)

# coloring cells by pseudotime
plot_dimred(example_bifurcating, color_cells = "pseudotime")

# coloring cells by cluster
plot_dimred(
  example_bifurcating,
  color_density = "grouping",
  grouping = dynwrap::group_onto_nearest_milestones(example_bifurcating)
)

---

## plot_graph

**Plot a trajectory as a graph**

### Description

Plot a trajectory as a graph

### Usage

```r
plot_graph(
 trajectory,
 color_cells = c("auto", "none", "grouping", "feature", "milestone", "pseudotime"),
 color_milestones = c("auto", "given", "cubeHelix", "Set3", "rainbow"),
 grouping = NULL,
 groups = NULL,
 feature_oi = NULL,
 pseudotime = NULL,
 expression_source = "expression",
 milestones = NULL,
 milestone_percentages = NULL,
 size_trajectory = 3,
 size_milestones = 8,
 alpha_cells = 1,
 size_cells = 2.5,
 border_radius_percentage = 0.1,
 arrow = grid::arrow(length = grid::unit(1, "cm"), type = "closed"),
 label_milestones = dynwrap::is_wrapper_with_milestone_labelling(trajectory),
 plot_milestones = FALSE,
 adjust_weights = FALSE
)
```
Arguments

trajectory  The trajectory as created by `infer_trajectory()` or `add_trajectory()`

color_cells  How to color the cells.

- "auto": Try to figure out how to color cells depending on whether one of the grouping, feature_io, milestones or pseudotime parameters are defined.
- "none": Cells are not coloured.
- "grouping": Cells are coloured according to a grouping (e.g. clustering). Either the grouping parameter or trajectory$grouping must be a named character vector.
- "feature": Cells are coloured according to the values of a given feature (e.g. gene expression). Either the expression_source parameter or get_expression(trajectory) must be a matrix. Parameter feature_oi must also be defined.
- "milestone" (recommended): Cells are coloured according their position in the trajectory. The positioning of the cells are determined by parameter milestone_percentages or else by trajectory$milestone_percentages. The colours of the milestones can be determined automatically or can be specified by passing a tibble containing character columns milestone_id and color (See add_milestone_coloring() for help in constructing this object).
- "pseudotime": Cells are coloured according to the pseudotime value from the root.

color_milestones  Which palette to use for colouring the milestones

- auto: Determine colours automatically. If color is already specified in milestones tibble, this will be used. Otherwise, the colour scheme is determined by milestone_palette_list$auto.
- given: The milestones object already contains a column color.
- cubeHelix: Use the rje::cubeHelix() palette.
- Set3: Use the RColorBrewer::brewer.pal(name = "Set3") palette.
- rainbow: Use the grDevices::rainbow() palette.

grouping  A grouping of the cells (e.g. clustering) as a named character vector.

groups  A tibble containing character columns group_id and color. If NULL, this object is inferred from the grouping itself.

feature_oi  The name of a feature to use for colouring the cells.

pseudotime  The pseudotime from the root of the trajectory to the cells as a named numeric vector.

expression_source  Source of the feature expression, defaults to get_expression(trajectory).

milestones  Tibble containing the column milestone_id (character). If color_milestones is set to "given", this tibble should also contain a column color (character), containing colour hex codes (e.g. "#123456").
**milestone_percentages**

The milestone percentages.

**size_trajectory**

The size of the transition lines between milestones.

**size_milestones**

The size of milestones.

**alpha_cells**

The alpha of the cells.

**size_cells**

The size of the cells.

**border_radius_percentage**

The fraction of the radius that is used for the border.

**arrow**

The type and size of arrow in case of directed trajectories. Set to NULL to remove arrow altogether.

**label_milestones**

How to label the milestones. Can be TRUE (in which case the labels within the trajectory will be used), "all" (in which case both given labels and milestone_ids will be used), a named character vector, or FALSE.

plot_milestones

Whether to plot the milestones.

adjust_weights

Whether or not to rescale the milestone network weights

**Value**

A graph ggplot of a trajectory.

**Examples**

```r
data(example_disconnected)
plot_graph(example_disconnected)
plot_graph(example_disconnected, color_cells = "pseudotime")
plot_graph(
 example_disconnected,
 color_cells = "grouping",
 grouping = dynwrap::group_onto_nearest_milestones(example_disconnected)
)

data(example_tree)
plot_graph(example_tree)
```

---

**plot_heatmap**

*Plot expression data along a trajectory*

**Description**

NOTE: When using RStudio, the heatmap might not show inside the plot area, but will be visible once you click the 'Zoom' button.
Usage

plot_heatmap(
  trajectory,
  expression_source = "expression",
  features_oi = 20,
  clust = "ward.D2",
  margin = 0.02,
  color_cells = NULL,
  milestones = NULL,
  milestone_percentages = trajectory$milestone_percentages,
  grouping = NULL,
  groups = NULL,
  cell_feature_importances = NULL,
  heatmap_type = c("tiled", "dotted"),
  scale = dynutils::scale_quantile,
  label_milestones = TRUE
)

Arguments

trajectory A dynwrap trajectory.
expression_source Source of the feature expression, defaults to get_expression(trajectory).
features_oi The features of interest, either the number of features or a vector giving the
names of the different features
clust The method to cluster the features, or a hclust object
margin A margin between trajectory segments.
color_cells How to color the cells.
  • "auto": Try to figure out how to color cells depending on whether one
    of the grouping, feature_io, milestones or pseudotime parameters are
    defined.
  • "none": Cells are not coloured.
  • "grouping": Cells are coloured according to a grouping (e.g. clustering).
    Either the grouping parameter or trajectory$grouping must be a named
    character vector.
  • "feature": Cells are coloured according to the values of a given feature
    (e.g. gene expression). Either the expression_source parameter or
    get_expression(trajectory) must be a matrix. Parameter feature_oi
    must also be defined.
  • "milestone" (recommended): Cells are coloured according their position
    in the trajectory. The positioning of the cells are determined by parameter
    milestone_percentages or else by trajectory$milestone_percentages.
    The colours of the milestones can be determined automatically or can be
    specified by passing a tibble containing character columns milestone_id
    and color (See add_milestone_coloring() for help in constructing this
    object).
plot_linearised_comparison

- "pseudotime": Cells are coloured according to the pseudotime value from the root.

milestones Tibble containing the column milestone_id (character). If color_milestones is set to "given", this tibble should also contain a column color (character), containing colour hex codes (e.g. "#123456").

milestone_percentages The milestone percentages.

grouping A grouping of the cells (e.g. clustering) as a named character vector.

groups A tibble containing character columns group_id and color. If NULL, this object is inferred from the grouping itself.

cell_feature_importances The importances of every feature in every cell, as returned by dynfeature::calculate_cell_feature_importance()

heatmap_type The type of heatmap, either tiled or dotted

scale Whether to rescale the expression, can be a function or boolean

label_milestones How to label the milestones. Can be TRUE (in which case the labels within the trajectory will be used), "all" (in which case both given labels and milestone_ids will be used), a named character vector, or FALSE

Value

A heatmap ggplot of an expression dataset with trajectory.

Examples

```r
data(example_bifurcating)
plotHeatmap(example_bifurcating)
```

```r
plot_linearised_comparison(traj1, traj2, reorder = TRUE, margin = 0.05, reorder_second_by = c("mapping", "optimisation")
)```
Arguments

- **traj1**: The first trajectory
- **traj2**: The second trajectory
- **reorder**: Whether to reorder the trajectory
- **margin**: A margin between trajectory segments.
- **reorder_second_by**: How to reorder the second trajectory, either by mapping the milestones from both trajectories (mapping), or by trying to correlate the orderings between the two trajectories (optimisation)

Value

A scatterplot comparison ggplot of two linearised trajectories.

Examples

```r
data(example_bifurcating)
plot_linearised_comparison(example_bifurcating, example_bifurcating)
```

Description

Plot a trajectory as a one-dimensional set of connected segments

Usage

```r
plot_onedim(
  trajectory,
  color_cells = c("auto", "none", "grouping", "feature", "milestone", "pseudotime"),
  grouping = NULL,
  groups = NULL,
  feature_oi = NULL,
  pseudotime = NULL,
  expression_source = "expression",
  color_milestones = c("auto", "given", "cubeHelix", "Set3", "rainbow"),
  milestones = NULL,
  milestone_percentages = NULL,
  alpha_cells = 1,
  size_cells = 2.5,
  border_radius_percentage = 0.1,
  orientation = 1,
  margin = 0.05,
  linearised = linearise_cells(trajectory, margin, one_edge = TRUE),
  quasirandom_width = 0.2,
)```
plot_cells = TRUE,
label_milestones = dynwrap::is_wrapper_with_milestone_labelling(trajectory),
arrow = grid::arrow(type = "closed")
)

Arguments

trajectory A dynwrap trajectory.
color_cells How to color the cells.
  • "auto": Try to figure out how to color cells depending on whether one of the grouping, feature.io, milestones or pseudotime parameters are defined.
  • "none": Cells are not coloured.
  • "grouping": Cells are coloured according to a grouping (e.g. clustering). Either the grouping parameter or trajectory$grouping must be a named character vector.
  • "feature": Cells are coloured according to the values of a given feature (e.g. gene expression). Either the expression_source parameter or get_expression(trajectory) must be a matrix. Parameter feature_io must also be defined.
  • "milestone" (recommended): Cells are coloured according their position in the trajectory. The positioning of the cells are determined by parameter milestone_percentages or else by trajectory$milestone_percentages. The colours of the milestones can be determined automatically or can be specified by passing a tibble containing character columns milestone_id and color (See add_milestone_coloring() for help in constructing this object).
  • "pseudotime": Cells are coloured according to the pseudotime value from the root.
grouping A grouping of the cells (e.g. clustering) as a named character vector.
groups A tibble containing character columns group_id and color. If NULL, this object is inferred from the grouping itself.
feature_io The name of a feature to use for colouring the cells.
pseudotime The pseudotime from the root of the trajectory to the cells as a named numeric vector.
expression_source Source of the feature expression, defaults to get_expression(trajectory).
color_milestones Which palette to use for colouring the milestones
  • auto: Determine colours automatically. If color is already specified in milestones tibble, this will be used. Otherwise, the colour scheme is determined by milestone_palette_list$auto.
  • given: The milestones object already contains a column color.
  • cubeHelix: Use the rje::cubeHelix() palette.
  • Set3: Use the RColorBrewer::brewer.pal(name = "Set3") palette.
**plot_strip**

- **rainbow**: Use the `grDevices::rainbow()` palette.

**milestones**
Tibble containing the column `milestone_id` (character). If `color_milestones` is set to "given", this tibble should also contain a column `color` (character), containing colour hex codes (e.g. "#123456").

**milestone_percentages**
The milestone percentages.

**alpha_cells**
The alpha of the cells

**size_cells**
The size of the cells

**border_radius_percentage**
The fraction of the radius that is used for the border

**orientation**
Whether to plot the connections in the top (1) or bottom (-1)

**margin**
A margin between trajectory segments.

**linearised**
The linearised milestone network and progressions

**quasirandom_width**
The width of the quasirandom cell spreading

**plot_cells**
Whether to plot the cells

**label_milestones**
How to label the milestones. Can be TRUE (in which case the labels within the trajectory will be used), "all" (in which case both given labels and milestone_ids will be used), a named character vector, or FALSE

**arrow**
The type and size of arrow in case of directed trajectories. Set to NULL to remove arrow altogether.

**Value**
A linearised (non-)linear trajectory.

**Examples**

```r
data(example_linear)
plot_onedim(example_linear)
plot_onedim(example_linear, label_milestones = TRUE)

data(example_tree)
plot_onedim(example_tree)
```

---

**plot_strip**

**Plot strip**

**Description**
Plot strip

**Usage**

```r
plot_strip(traj1, traj2, margin = 0.05, reorder = TRUE)
```
plot_topology

Arguments

traj1 The first trajectory
traj2 The second traj
margin A margin between trajectory segments.
reorder Whether to reorder

Value

A scatterplot comparison ggplot of two linearized trajectories.

Examples

data(example_bifurcating)
plot_strip(example_bifurcating, example_bifurcating)

plot_topology

Plot the topology of a trajectory

Description

Plot the topology of a trajectory

Usage

plot_topology(
  trajectory,
  color_milestones = c("auto", "given", "cubeHelix", "Set3", "rainbow"),
  milestones = NULL,
  layout = NULL,
  arrow = grid::arrow(type = "closed", length = unit(0.4, "cm"))
)

Arguments

trajectory A dynwrap trajectory.
color_milestones Which palette to use for colouring the milestones
  • auto: Determine colours automatically. If color is already specified in
    milestones tibble, this will be used. Otherwise, the colour scheme is deter-
    mined by milestone_palette_list$auto.
  • given: The milestones object already contains a column color.
  • cubeHelix: Use the rje::cubeHelix() palette.
  • Set3: Use the RColorBrewer::brewer_pal(name = "Set3") palette.
  • rainbow: Use the grDevices::rainbow() palette.
project_waypoints_coloured

    milestones Tibble containing the column milestone_id (character). If color_milestones is set to "given", this tibble should also contain a column color (character), containing colour hex codes (e.g. "#123456").

    layout The type of layout to create. See ggraph::ggraph() for more info.

    arrow The type and size of arrow in case of directed trajectories. Set to NULL to remove arrow altogether.

Value

A topology ggplot of a trajectory.

Examples

    data(example_disconnected)
    plot_topology(example_disconnected)

    data(example_tree)
    plot_topology(example_tree)

---

project_waypoints_coloured

*Project the waypoints*

Description

Project the waypoints

Usage

    project_waypoints_coloured(
        trajectory,
        cell_positions,
        edge_positions = NULL,
        waypoints = dynwrap::select_waypoints(trajectory),
        trajectory_projection_sd = sum(trajectory$milestone_network$length) * 0.05,
        color_trajectory = "none"
    )

Arguments

    trajectory A dynwrap trajectory.

    cell_positions The positions of the cells in 2D. Must be a tibble with character column cell_id and numeric columns comp_1 and comp_2.

    edge_positions The positions of the edges.

    waypoints The waypoints to use for projecting. Can be generated using dynwrap::select_waypoints().

    trajectory_projection_sd The standard deviation of the gaussian kernel.
How to color the trajectory, can be "nearest" for coloring to nearest cell, or "none".

Value

A named list containing items:

- segments: A tibble containing columns comp_1 (numeric), comp_2 (numeric), waypoint_id (character), milestone_id (character), from (character), to (character) percentage (numeric), group (factor), and arrow (logical).

---

theme_clean

We like our plots clean

Description

We like our plots clean

Usage

theme_clean()

Value

A ggplot2 theme.

Examples

data(example_bifurcating)
g <- plot_dimred(example_bifurcating)g + theme_clean()

---

theme_graph

We like our plots clean

Description

We like our plots clean

Usage

theme_graph()

Value

A ggplot2 theme.
Examples

data(example_bifurcating)
  g <- plot_dimred(example_bifurcating)
  g + theme_graph()
Index

* compare_trajectory
  plot_linearised_comparison, 20
  plot_strip, 23

* datasets
  example_bifurcating, 7
  example_disconnected, 8
  example_linear, 8
  example_tree, 8

* plot_helpers
  empty_plot, 7
  milestone_palette, 10
  theme_clean, 26
  theme_graph, 26

* plot_trajectory
  plot_dendro, 10
  plot_dimred, 12
  plot_graph, 16
  plot_heatmap, 18
  plot_onedim, 21
  plot_topology, 24

add_cell_coloring, 2
add_density_coloring, 4
add_milestone_coloring, 5
add_trajectory(), 17

dyndimred::list_dimred_methods(), 14
dynfeature::calculate_cell_feature_importance(), 20
dynplot, 6
dynwrap::select_waypoints(), 15, 25

empty_plot, 7
example_bifurcating, 7
example_disconnected, 8
example_linear, 8
example_tree, 8

get_milestone_palette_names
  (milestone_palette), 10

ggraph::ggraph(), 25
infer_trajectory(), 17
linearise_cells, 9
milestone_palette, 10
plot_default(plot_graph), 16
plot_dendro, 10
plot_dimred, 12
plot_graph, 16
plot_heatmap, 18
plot_linearised_comparison, 20
plot_onedim, 21
plot_strip, 23
plot_topology, 24
project_waypoints_coloured, 25

theme_clean, 26
theme_graph, 26