Package ‘dynr’

September 24, 2018

Date 2018-09-24
Title Dynamic Modeling in R
Author Lu Ou [aut],
       Michael D. Hunter [aut, cre],
       Sy-Miin Chow [aut]
Maintainer Michael D. Hunter <mhunter.ou@gmail.com>
Depends R (>= 3.0.0), ggplot2
Imports MASS, Matrix, numDeriv, xtable, latex2exp, grid, reshape2,
plyr, mice, magrittr, Rdpack, methods
Suggests testthat, roxygen2 (>= 3.1), knitr, rmarkdown
VignetteBuilder knitr
Description Intensive longitudinal data have become increasingly prevalent in
various scientific disciplines. Many such data sets are noisy, multivariate,
and multi-subject in nature. The change functions may also be continuous, or
continuous but interspersed with periods of discontinuities (i.e., showing
regime switches). The package ‘dynr’ (Dynamic Modeling in R) is an R package
that implements a set of computationally efficient algorithms for handling a
broad class of linear and nonlinear discrete- and continuous-time models with
regime-switching properties under the constraint of linear Gaussian measurement
functions. The discrete-time models can generally take on the form of a state-
space or difference equation model. The continuous-time models are generally
expressed as a set of ordinary or stochastic differential equations. All
estimation and computations are performed in C, but users are provided with the
option to specify the model of interest via a set of simple and easy-to-learn
model specification functions in R. Model fitting can be performed using single-
subject time series data or multiple-subject longitudinal data.

SystemRequirements GNU make
NeedsCompilation yes
License GPL-3
LazyLoad yes
LazyData yes
Collate 'dynrData.R' 'dynrRecipe.R' 'dynrModelInternal.R'
    'dynrModel.R' 'dynrCook.R' 'dynrPlot.R' 'dynrFuncAddress.R'
    'dynrMi.R' 'dynrVersion.R' 'dataDoc.R'

RdMacros Rdpack
Biarch true
Version 0.1.13-4
RoxygenNote 5.0.1
Repository CRAN
Date/Publication 2018-09-24 18:30:12 UTC

R topics documented:

dynr-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
coef.dynrModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
confint.dynrCook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
diag.character-method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
dynr.cook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
dynr.data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
dynr.ggplot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
dynr.ldl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
dynr.mi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
dynr.model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
dynr.plotFreq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
dynr.version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
dynrCook-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
dynrDynamics-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
dynrInitial-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
dynrMeasurement-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
dynrModel-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
dynrNoise-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
dynrRecipe-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
dynrRegimes-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
dynrTrans-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
EMG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
EMGsim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
internalModelPrep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
LogisticSetPointSDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
logLik.dynrCook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
names.dynrCook-method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
names.dynrModel-method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
nobs.dynrCook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
nobs.dynrModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
NonlinearDFAsim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
PFAsim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
plot.dynrCook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Intensive longitudinal data have become increasingly prevalent in various scientific disciplines. Many such data sets are noisy, multivariate, and multi-subject in nature. The change functions may also be continuous, or continuous but interspersed with periods of discontinuities (i.e., showing regime switches). The package 'dynr' (Dynamic Modeling in R) is an R package that implements a set of computationally efficient algorithms for handling a broad class of linear and nonlinear discrete- and continuous-time models with regime-switching properties under the constraint of linear Gaussian measurement functions. The discrete-time models can generally take on the form of a state-space or difference equation model. The continuous-time models are generally expressed as a set of ordinary or stochastic differential equations. All estimation and computations are performed in C, but users are provided with the option to specify the model of interest via a set of simple and easy-to-learn model specification functions in R. Model fitting can be performed using single-subject time series data or multiple-subject longitudinal data.

Details

The DESCRIPTION file:

Package: dynr
Date: 2018-09-24
Title: Dynamic Modeling in R
Authors@R: c(person("Lu", "Ou", role="aut", email="lzo114@psu.edu"), person(c("Michael", "D.", "Hunter", role="cre", email="mhunter.ou@gmail.com"), "Sy-Miin", "Chow", role="aut"))
Author: Lu Ou [aut], Michael D. Hunter [aut, cre], Sy-Miin Chow [aut]
Maintainer: Michael D. Hunter <mhunter.ou@gmail.com>
Depends: R (>= 3.0.0), ggplot2
Imports: MASS, Matrix, numDeriv, xtable, latex2exp, grid, reshape2, plyr, mice, magrittr, Rdpack, methods
Suggests: testthat, roxygen2 (>= 3.1), knitr, rmarkdown
VignetteBuilder: knitr
Description: Intensive longitudinal data have become increasingly prevalent in various scientific disciplines. Many such ...
SystemRequirements: GNU make
NeedsCompilation: yes
License: GPL-3
LazyLoad: yes
LazyData: yes
RdMacros: Rdpack
Biarch: true
Version: 0.1.13-4
RoxygenNote: 5.0.1

Index of help topics:

EMG Single-subject time series of facial electromyography data
EMGsim Simulated single-subject time series to capture features of facial electromyography data
LogisticSetPointSDE Simulated time series data for a stochastic linear damped oscillator model with logistic time-varying setpoints
NonlinearDFAsim Simulated multi-subject time series based on a dynamic factor analysis model with nonlinear relations at the latent level
Oscillator Simulated time series data of a damped linear oscillator
PFAsim Simulated time series data of a multisubject process factor analysis
PPsim Simulated time series data for multiple eco-systems based on a predator-and-prey model
RSPPsim Simulated time series data for multiple eco-systems based on a regime-switching predator-and-prey model
coef.dynrModel Extract fitted parameters from a dynrCook Object
confint.dynrCook Confidence Intervals for Model Parameters
diag.character-method Create a diagonal matrix from a character vector
dynr-package Dynamic Modeling in R
dynr.cook Cook a dynr model to estimate its free parameters
dynr.data Create a list of data for parameter estimation (cooking dynr) using 'dynr.cook'
dynr.ggplot The ggplot of the smoothed state estimates and the most likely regimes
dynr.ldl LDL Decomposition for Matrices
dynr.mi
Multiple Imputation of dynrModel objects
dynr.model
Create a dynrModel object for parameter estimation (cooking dynr) using 'dynr.cook'
dynr.plotFreq
Plot of the estimated frequencies of the regimes across all individuals and time points based on their smoothed regime probabilities
dynr.version
Current Version String
dynrCook-class
The dynrCook Class
dynrDynamics-class
The dynrDynamics Class
dynrInitial-class
The dynrInitial Class
dynrMeasurement-class
The dynrMeasurement Class
dynrModel-class
The dynrModel Class
dynrNoise-class
The dynrNoise Class
dynrRecipe-class
The dynrRecipe Class
dynrRegimes-class
The dynrRegimes Class
dynrTrans-class
The dynrTrans Class
internalModelPrep
Do internal model preparation for dynr
logLik.dynrCook
Extract the log likelihood from a dynrCook Object
names,dynrCook-method
Extract the free parameter names of a dynrCook object
names,dynrModel-method
Extract the free parameter names of a dynrModel object
nobs.dynrCook
Extract the number of observations for a dynrCook object
nobs.dynrModel
Extract the number of observations for a dynrModel object
plot.dynrCook
Plot method for dynrCook objects
plotFormula
Plot the formula from a model
prep.formulaDynamics
Recipe function for specifying dynamic functions using formulas
prep.initial
Recipe function for preparing the initial conditions for the model.
prep.loadings
Recipe function to quickly create factor loadings
prep.matrixDynamics
Recipe function for creating Linear Dynamics using matrices
prep.measurement
Prepare the measurement recipe
prep.noise
Recipe function for specifying the measurement error and process noise covariance structures
prep.regimes
Recipe function for creating regime switching (Markov transition) functions
prep.tfun
Create a dynrTrans object to handle the transformations and inverse transformations of model parameters
printex
The printex Method
summary.dynrCook
Get the summary of a dynrCook object
The dynr package is designed to be user-friendly and efficient, allowing for the
analysis of data through the use of dynamic models. The package compiles C
code in response to user input, which requires more setup than many others.
We acknowledge that this additional setup can be bothersome, but we believe the ease
of use for the rest of the package and the wide variety of models it is possible
to fit with it will compensate for this initial burden. Hopefully you will agree!

See the installation vignette referenced in the Examples section below for installation instructions.

The naming convention for dynr exploits the pronunciation of the package name, dynr, pronounced
the same as “dinner”. That is, the names of functions and methods are specifically designed to relate
to things done surrounding dinner, such as gathering ingredients (e.g., the data), preparing recipes,
cooking, and serving the finished product. The general procedure for using the dynr package can
be summarized in five steps as below.

1. Data are prepared using the dynr.data() function.
2. Recipes are prepared. To each part of a model there is a corresponding prep.*() recipe func-
tion. Examples of such prep.*() functions include: prep.measurement(), prep.matrixDynamics(),
prep.formulaDynamics(), prep.initial(), prep.noise(), and prep.regimes().
3. The function dynr.model() mixes the data and recipes together into a model object of class
dynrModel.
4. The model is cooked with dynr.cook().
5. Results from model fitting and related estimation are served using functions such as summary(),
plot(), dynr.ggplot() (or its alias autoplot()), plotFormula(), and printex().

Note

State-space modeling, dynamic model, differential equation, regime switching, nonlinear

Author(s)

Lu Ou [aut], Michael D. Hunter [aut, cre], Sy-Miin Chow [aut]
Maintainer: Michael D. Hunter <mhunter.ou@gmail.com>

References

See Also

For other annotated tutorials using the dynr package see https://quantdev.ssri.psu.edu/resources/what's-dynr-package-linear-and-nonlinear-dynamic-modeling-r

Examples

# For installation instructions see the package vignette below
class('dynr', 'InstallationForUsers')
# This should open a pdf/html file to guide you through proper
# installation and configuration.

# For illustrations of the functions in dynr, check out some of the demo examples in:
demo(package='dynr')

# For example, to run the demo 'LinearSDE' type
the following without the comment character (#) in front of it.
# demo('LinearSDE', package='dynr')

coefficients 

Extract fitted parameters from a dynrCook Object

Description

aliases coef.dynrModel coef<- coef<-.dynrModel

Usage

### S3 method for class 'dynrModel'
coef(object, ...)

coef(object) <- value

### S3 replacement method for class 'dynrModel'
coef(object) <- value

### S3 method for class 'dynrCook'
coef(object, ...)

Arguments

object  The dynrCook object for which the coefficients are desired
... further named arguments, ignored for this method
value  values for setting

Value

A numeric vector of the fitted parameters.
Confidence Intervals for Model Parameters

Usage

```r
# S3 method for class 'dynrCook'
confint(object, parm, level = 0.95, 
    type = c("delta.method", "endpoint.transformation"),
    transformation = NULL, ...)
```

Arguments

- `object`: a fitted model object
- `parm`: which parameters are to be given confidence intervals
- `level`: the confidence level
- `type`: The type of confidence interval to compute. See details. Partial name matching is used.
- `transformation`: For `type='endpoint.transformation'` the transformation function used.
- `...`: further named arguments. Ignored.

Details

The `parm` argument can be a numeric vector or a vector of names. If it is missing then it defaults to using all the parameters.

These are Wald-type confidence intervals based on the standard errors of the (transformed) parameters. Wald-type confidence intervals are known to be inaccurate for variance parameters, particularly when the variance is near zero (See references for issues with Wald-type confidence intervals).

Value

A matrix with columns giving lower and upper confidence limits for each parameter. These will be labelled as (1-level)/2 and 1 - (1-level)/2 as a percentage (e.g. by default 2.5)
# References


# Examples

```r
# Let cookedModel be the output from dynr.cook
#confint(cookedModel)
```

---

**diag.character-method**  
Create a diagonal matrix from a character vector

## Description

Create a diagonal matrix from a character vector

## Usage

```r
## S4 method for signature 'character'
diag(x = 1, nrow, ncol)
```

## Arguments

- `x`  
  Character vector used to create the matrix

- `nrow`  
  Numeric. Number of rows for the resulting matrix.

- `ncol`  
  Numeric. Number of columns for the resulting matrix.

## Details

The default behavior for missing `nrow` and/or `ncol` arguments is the same as for the `diag` function in the base package. Off-diagonal entries are filled with "0".

## Examples

```r
diag(letters[1:3])
```
Cook a dynr model to estimate its free parameters

Description

Cook a dynr model to estimate its free parameters

Usage

dynr.cook(dynrModel, conf.level = 0.95, infile, optimization_flag = TRUE,
    hessian_flag = TRUE, verbose = TRUE, weight_flag = FALSE,
    debug_flag = FALSE)

Arguments

dynrModel: a dynr model compiled using dynr.model, consisting of recipes for submodels,
    starting values, parameter names, and C code for each submodel
conf.level: a cumulative proportion indicating the level of desired confidence intervals for
    the final parameter estimates (default is .95)
infile: (not required for models specified through the recipe functions) the name of a
    file that has the C codes for all dynr submodels for those interested in specifying
    a model directly in C
optimization_flag: a flag (TRUE/FALSE) indicating whether optimization is to be done.
hessian_flag: a flag (TRUE/FALSE) indicating whether the Hessian matrix is to be calculated.
verbose: a flag (TRUE/FALSE) indicating whether more detailed intermediate output during
    the estimation process should be printed
weight_flag: a flag (TRUE/FALSE) indicating whether the negative log likelihood function
    should be weighted by the length of the time series for each individual
debug_flag: a flag (TRUE/FALSE) indicating whether users want additional dynr output that
    can be used for diagnostic purposes

Details

Free parameter estimation uses the SLSQP routine from NLOPT.

The typical items returned in the cooked model are the filtered and smoothed latent variable estimates.
eta_smooth_final, error_cov_smooth_final and pr_t_given_T are respectively time-varying smoothed latent variable mean estimates, smoothed error covariance estimates, and smoothed regime probability.
eta_filtered, error_cov_filtered and pr_t_given_T are respectively time-varying filtered latent variable mean estimates, filtered error covariance matrix estimates, and filtered regime probability.

When debug_flag is TRUE, then additional information is passed into the cooked model.
eta_predicted, error_cov_predicted, innov_vec, and residual_cov are respectively time-varying predicted latent variable mean estimates, predicted error covariance matrix estimates, the error/residual estimates (innovation vector), and the error/residual covariance matrix estimates.
The exit flag given after optimization has finished is from the SLSQP optimizer. Generally, error codes have negative values and successful codes have positive values. However, codes 5 and 6 do not indicate the model converged, but rather simply ran out of iterations or time, respectively. A more full description of each code is available at http://ab-initio.mit.edu/wiki/index.php/NLopt_Reference#Return_values and is also listed in the table below.

<table>
<thead>
<tr>
<th>NLOPT Term</th>
<th>Numeric Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUCCESS</td>
<td>1</td>
<td>Generic success return value.</td>
</tr>
<tr>
<td>STOPVAL_REACHED</td>
<td>2</td>
<td>Optimization stopped because stopval (above) was reached.</td>
</tr>
<tr>
<td>FTOL_REACHED</td>
<td>3</td>
<td>Optimization stopped because ftol_rel or ftol_abs (above) was reached.</td>
</tr>
<tr>
<td>XTOL_REACHED</td>
<td>4</td>
<td>Optimization stopped because xtol_rel or xtol_abs (above) was reached.</td>
</tr>
<tr>
<td>MAXEVAL_REACHED</td>
<td>5</td>
<td>Optimization stopped because maxeval (above) was reached.</td>
</tr>
<tr>
<td>MAXTIME_REACHED</td>
<td>6</td>
<td>Optimization stopped because maxtime (above) was reached.</td>
</tr>
<tr>
<td>FAILURE</td>
<td>-1</td>
<td>Generic failure code.</td>
</tr>
<tr>
<td>INVALID_ARGS</td>
<td>-2</td>
<td>Invalid arguments (e.g. lower bounds are bigger than upper bounds, an unknown algorithm was specified, etcetera).</td>
</tr>
<tr>
<td>OUT_OF_MEMORY</td>
<td>-3</td>
<td>Ran out of memory.</td>
</tr>
<tr>
<td>ROUNDOFF_LIMITED</td>
<td>-4</td>
<td>Halted because roundoff errors limited progress. (In this case, the optimization still typically returns a useful result.)</td>
</tr>
<tr>
<td>FORCED_STOP</td>
<td>-5</td>
<td>Halted because of a forced termination: the user called nlopt_force_stop(opt) on the optimization's nlopt_opt object opt from the user's objective function or constraints.</td>
</tr>
</tbody>
</table>

See Also

autoplot, coef, confint, deviance, initialize, logLik, names, nobs, plot, print, show, summary, vcov.

Examples

```r
#fitted.model <- dynr.cook(model)
```

dynr.data  

Create a list of data for parameter estimation (cooking dynr) using `dynr.cook`

Description

Create a list of data for parameter estimation (cooking dynr) using `dynr.cook`

Usage

dynr.data(dataframe, id = "id", time = "time", observed, covariates)

Arguments

- `dataframe` either a “ts” class object of time series data for a single subject or a data frame object of data for potentially multiple subjects that contain a column of subject ID numbers (i.e., an ID variable), a column indicating subject-specific measurement occasions (i.e., a TIME variable), at least one column of observed values, and any number of covariates. If the data are fit to a discrete-time model, the
The TIME variable should contain subject-specific sequences of (subsets of) consecutively equally spaced numbers (e.g., 1, 2, 3, ...). That is, the program assumes that the input data.frame is equally spaced with potential missingness. If the measurement occasions for a subject are a subset of an arithmetic sequence but are not consecutive, NAs will be inserted automatically to create an equally spaced data set before estimation. If the data are fit to a continuous-time model, the TIME variables can contain subject-specific increasing sequences of irregularly spaced real numbers. Missing values in the observed variables should be indicated by NA. Missing values in covariates are not allowed. That is, missing values in the covariates, if there are any, should be imputed first.

id
a character string of the name of the ID variable in the data. Optional for a “ts” class object.

time
a character string of the name of the TIME variable in the data. Optional for a “ts” class object.

observed
a vector of character strings of the names of the observed variables in the data. Optional for a “ts” class object.

covariates
(optional) a vector of character strings of the names of the covariates in the data, which can be missing.

Examples

data(EMGsim)

dd <- dynr.data(EMGsim, id = 'id', time = 'time', observed = 'EMG', covariates = 'self')

z <- ts(matrix(rnorm(300), 100, 3), start = c(1961, 1), frequency = 12)
dz <- dynr.data(z)

---

The ggplot of the smoothed state estimates and the most likely regimes

Description

The ggplot of the smoothed state estimates and the most likely regimes

Usage

dynr.ggplot(res, dynrModel, style = 1, numSubjDemo = 2, idtoPlot = c(),
 names.state, names.observed, names.regime, shape.values, title, ylab,
is.bw = FALSE, colorPalette = "Set2", fillPalette = "Set2",
mancolorPalette, manfillPalette, ...)

# S3 method for class 'dynrCook'
autoplott(object, dynrModel, style = 1, numSubjDemo = 2,
 idtoPlot = c(), names.state, names.observed, names.regime, shape.values,
title, ylab, is.bw = FALSE, colorPalette = "Set2", fillPalette = "Set2",
mancolorPalette, manfillPalette, ...)
**Arguments**

- **res**: The dynr object returned by `dynr.cook()`.
- **dynrModel**: The model object to plot.
- **style**: The style of the plot. If style is 1 (default), user-selected smoothed state variables are plotted. If style is 2, user-selected observed-versus-predicted values are plotted.
- **numSubjDemo**: The number of subjects to be randomly selected for plotting.
- **idtoPlot**: Values of the ID variable to plot.
- **names.state** (optional): The names of the states to be plotted, which should be a subset of the state.names slot of the measurement slot of `dynrModel`.
- **names.observed** (optional): The names of the observed variables to be plotted, which should be a subset of the obs.names slot of the measurement slot of `dynrModel`.
- **names.regime** (optional): The names of the regimes to be plotted, which can be missing.
- **shape.values** (optional): A vector of values that correspond to the shapes of the points, which can be missing. See the R documentation on `pch` for details on possible shapes.
- **title** (optional): A title of the plot.
- **ylab** (optional): The label of the y axis.
- **isbw**: Is plot in black and white? The default is FALSE.
- **colorPalette**: A color palette for lines and dots. It is a value passed to the palette argument of the `ggplot2::scale_colour_brewer()` function. These palettes are in the R package `RColorBrewer`. One can find them by attaching the package with `library(RColorBrewer)` and run `display.brewer.all()`.
- **fillPalette**: A color palette for blocks. It is a value passed to the palette argument of the `ggplot2::scale_fill_brewer()` function. These palettes are in the package `RColorBrewer`. One can find them by attaching the package with `library(RColorBrewer)` and run `display.brewer.all()`.
- **mancolorPalette** (optional): A color palette for manually scaling the colors of lines and dots. It is a vector passed to the values argument of the `ggplot2::scale_colour_manual` function.
- **manfillPalette** (optional): A color palette for manually scaling the colors of filled blocks. It is a vector passed to the values argument of the `ggplot2::scale_fill_manual` function.
- **...**: A list of elements that modify the existing `ggplot` theme. Consult the `ggplot2::theme()` function in the R package `ggplot2` for more options.
- **object**: The same as res. The dynr object returned by `dynr.cook()`.

**Details**

This function outputs a `ggplot` layer that can be modified using functions in the package `ggplot2`. That is, one can add layers, scales, coords and facets with the "+" sign. In an example below, the `ggplot2::ylim()` function is used to modify the limits of the y axis of the graph. More details can be found on [http://ggplot2.org](http://ggplot2.org) and [http://ggplot2.tidyverse.org/reference/](http://ggplot2.tidyverse.org/reference/).
The two functions `dynr.ggpplot()` and `autoplot()` as identical aliases of one another. The `autoplot()` function is an S3 method from the package `ggplot2` that allows many objects to be plotted and works like the base `plot()` function.

**Examples**

```r
# The following code is part of a demo example in dynr
# One can obtain the yum and rsmod objects needed below by running demo(RSLinearDiscreteYang).
# p <- dynr.ggpplot(yum, dynrModel = rsmod, style = 1,
# names.regime = c("Deactivated", "Activated"),
# title = "(B) Results from RS-AR model", numSubjDemo = 1,
# shape.values = c(1),
# text = element_text(size = 16),
# is.bw = TRUE)
# One can modify the limits on the y axis by using '+'
# p + ggplot2::ylim(-2, 4)

# autoplot(yum, dynrModel = rsmod, style = 1,
# names.regime = c("Deactivated", "Activated"),
# title = "(B) Results from RS-AR model", numSubjDemo = 1,
# shape.values = c(1),
# text = element_text(size = 16),
# is.bw = TRUE)
```

---

**Description**

LDL Decomposition for Matrices

**Usage**

```r
dynr.ldl(x)
```

**Arguments**

- `x` a numeric matrix

This is a wrapper function around the `chol` function. The goal is to factor a square, symmetric, positive (semi-)definite matrix into the product of a lower triangular matrix, a diagonal matrix, and the transpose of the lower triangular matrix. The value returned is a lower triangular matrix with the elements of D on the diagonal.
**dynr.mi**

Multiple Imputation of dynrModel objects

**Description**

Multiple Imputation of dynrModel objects

**Usage**

```r
dynr.mi(model, m = 5, aux.variable, imp.obs = FALSE, imp.exo = FALSE, lag)
```

**Arguments**

- `model`: dynrModel object
- `m`: number of multiple imputations
- `aux.variable`: names of auxiliary variables used in imputation
- `imp.obs`: logical. whether to impute the observed variables
- `imp.exo`: logical. whether to impute the exogenous variables
- `lag`: numeric. the number of lags to use

**Details**

This function is in alpha-testing form. Please do not use or rely on it for now. A full implementation is in progress.

---

**dynr.model**

Create a dynrModel object for parameter estimation (cooking dynr) using `dynr.cook`

**Description**

Create a dynrModel object for parameter estimation (cooking dynr) using `dynr.cook`

**Usage**

```r
dynr.model(dynamics, measurement, noise, initial, data, ..., outfile = tempfile())
```
Arguments

dynamics a dynrDynamics object prepared with prep.formulaDynamics or prep.matrixDynamics
measurement a dynrMeasurement object prepared with prep.loadings or prep.measurement
noise a dynrNoise object prepared with prep.noise
initial a dynrInitial object prepared with prep.initial
data a dynrData object made with dynr.data
... additional arguments specifying other dynrRecipe objects. Argument regimes is for a dynrRegimes object prepared with prep.regimes and argument transform is for a dynrTrans object prepared with prep.tfun.
outfile a character string of the name of the output C script of model functions to be compiled for parameter estimation. The default is the name for a potential temporary file returned by tempfile().

Details

A dynrModel is a collection of recipes. The recipes are constructed with the functions prep.measurement, prep.noise, prep.formulaDynamics, prep.matrixDynamics, prep.initial, and in the case of regime-switching models prep.regimes. Additionally, data must be prepared with dynr.data and added to the model.

Several named arguments can be passed into the ... section of the function. These include

- Argument regimes is for a dynrRegimes object prepared with prep.regimes
- Argument transform is for a dynrTrans object prepared with prep.tfun.
- Argument options a list of options. Check the NLopt website http://ab-initio.mit.edu/wiki/index.php/NLOpt_Reference#Stopping_criteria for details. Available options for use with a dynrModel object include xtol_rel, stopval, ftol_rel, ftol_abs, maxeval, and maxtime, all of which control the termination conditions for parameter optimization. The examples below show a case where options were set.

There are several available methods for dynrModel objects.

- The dollar sign ($) can be used to both get objects out of a model and to set pieces of the model.
- names returns the names of the free parameters in a model.
- printex prints LaTeX expressions for the equations that compose a model. The output can then be readily typeset for inclusion in presentations and papers.
- nobs gives the total number of observations (e.g. all times across all people)
- coef gives the free parameter starting values. Free parameters can also be assigned with coef(model) <- aNamedVectorOfCoefficients

Examples

#rsmod <- dynr.model(dynamics=recDyn, measurement=recMeas, noise=recNoise,
#   initial=recIni, regimes=recReg, data=dd, outfile="RLinearDiscrete.c")

#Set relative tolerance on function value via 'options':
dynr.plotFreq

Plot of the estimated frequencies of the regimes across all individuals and time points based on their smoothed regime probabilities

Usage

dynr.plotFreq(res, dynrModel, names.regime, title, xlab, ylab, textsize = 12, print = TRUE)

Arguments

res The dynr object returned by dynr.cook().
dynrModel The model object to plot.
names.regime (optional) Names of the regimes (must match the length of the number of regimes)
title (optional) Title of the plot.
xlab (optional) Label of the x-axis.
ylab (optional) Label of the y-axis.
textsize (default = 12) Text size for the axis labels and title (= textsize + 2).
print (default = TRUE) A flag for whether the plot should be printed.

dynr.version

Current Version String

Description

Current Version String

Usage

dynr.version(verbose = TRUE)
**dynrInitial-class**

**Arguments**

- **verbose**
  If TRUE, print detailed information to the console (default).
  This function returns a string with the current version number of dynr. Optionally (with verbose = TRUE (the default)), it prints a message containing the version of R and the platform. The primary purpose of the function is for bug reporting.

**Examples**

```r
dynr_version()
dynr_version( verbose = FALSE)
packageVersion("dynr")
```

---

**dynrCook-class**  
*The dynrCook Class*

**Description**

The dynrCook Class

**Details**

This is an internal class structure. You should not use it directly. Use `dynr.cook` instead.

---

**dynrDynamics-class**  
*The dynrDynamics Class*

**Description**

The dynrDynamics Class

**Details**

This is an internal class structure. The classes `dynrDynamicsFormula-class` and `dynrDynamicsMatrix-class` are subclasses of this. However, you should not use it directly. Use `prep.matrixDynamics` or `prep.formulaDynamics` instead.

---

**dynrInitial-class**  
*The dynrInitial Class*

**Description**

The dynrInitial Class

**Details**

This is an internal class structure. You should not use it directly. Use `prep.initial` instead.
**dynrMeasurement-class**  
*The dynrMeasurement Class*

**Description**

The dynrMeasurement Class

**Details**

This is an internal class structure. You should not use it directly. Use `prep.measurement` or `prep.loadings` instead.

---

**dynrModel-class**  
*The dynrModel Class*

**Description**

The dynrModel Class

**Details**

This is an internal class structure. You should not use it directly. Use `dynr.model` instead.

---

**dynrNoise-class**  
*The dynrNoise Class*

**Description**

The dynrNoise Class

**Details**

This is an internal class structure. You should not use it directly. Use `prep.noise` instead.
The dynrRecipe Class

Description
The dynrRecipe Class

Details
This is an internal class structure. You should not use it directly. The following are all subclasses of this class: dynrMeasurement-class, dynrDynamics-class, dynrRegimes-class, dynrInitial-class, dynrNoise-class, and dynrTrans-class. Recipes are the things that go into a dynrModel-class using dynr.model. Use the recipe prep functions (prep.measurement, prep.formulaDynamics, prep.matrixDynamics, prep.regimes, prep.initial, prep.noise, or prep.tfun) to create these classes instead.

The dynrRegimes Class

Description
The dynrRegimes Class

Details
This is an internal class structure. You should not use it directly. Use prep.regimes instead.

The dynrTrans Class

Description
The dynrTrans Class

Details
This is an internal class structure. You should not use it directly. Use prep.tfun instead.
**EMG**

*Single-subject time series of facial electromyography data*

**Description**

A dataset obtained and analyzed in Yang and Chow (2010).

**Usage**

data(EMG)

**Format**

A data frame with 695 rows and 4 variables

**Details**


The variables are as follows:

- id. ID of the participant (= 1 in this case, over 695 time points)
- time Time in seconds
- iEMG. Observed integrated facial electromyography data
- SelfReport. Covariate - the individual’s concurrent self-reports

---

**EMGsim**

*Simulated single-subject time series to capture features of facial electromyography data*

**Description**

A dataset simulated using an autoregressive model of order (AR(1)) with regime-specific AR weight, intercept, and slope for a covariate. This model is a special case of Model 1 in Yang and Chow (2010) in which the moving average coefficient is set to zero.


**Usage**

data(EMGsim)

**Format**

A data frame with 500 rows and 6 variables
Details

The variables are as follows:

- **id**: ID of the participant (= 1 in this case, over 500 time points)
- **EMG**: Hypothetical observed facial electromyography data
- **self**: Covariate - the individual’s concurrent self-reports
- **truestate**: The true score of the individual’s EMG at each time point
- **trueregime**: The true underlying regime for the individual at each time point

### internalModelPrep

*Do internal model preparation for dynr*

#### Description

Principally, this function takes a host of arguments and gives back a list that importantly includes the function addresses.

#### Usage

```r
internalModelPrep(num_regime, dim_latent_var, xstart, ub, lb,
                   options = default.model.options, isContinuousTime, infile, outfile,
                   compileLib, verbose)
```

#### Arguments

- **num_regime**: An integer number of the regimes.
- **dim_latent_var**: An integer number of the latent variables.
- **xstart**: The starting values for parameter estimation.
- **ub**: The upper bounds of the estimated parameters.
- **lb**: The lower bounds of the estimated parameters.
- **options**: A list of NLopt estimation options. By default, xtol_rel=1e-7, stopval=-9999, ftol_rel=-1, ftol_abs=-1, maxeval=as.integer(-1), and maxtime=-1.
- **isContinuousTime**: A binary flag indicating whether the model is a continuous-time model (FALSE/0 = no; TRUE/1 = yes)
- **infile**: Input file name
- **outfile**: Output file name
- **compileLib**: Whether to compile the library anew
- **verbose**: Logical flag for verbose output

#### Value

A list of model statements to be passed to dynr.cook().
LogisticSetPointSDE

Simulated time series data for a stochastic linear damped oscillator model with logistic time-varying setpoints

Description
A dataset simulated using a continuous-time stochastic linear damped oscillator model. The variables are as follows:

Usage
data(LogisticSetPointSDE)

Format
A data frame with 2410 rows and 6 variables

Details
- id. ID of the systems (1 to 10)
- times. Time index (241 time points for each system)
- x. Latent level variable
- y. Latent first derivative variable
- z. True values of time-varying setpoints
- obsy. Observed level

Examples

```r
# The following was used to generate the data
#-------------------------------------------
#require(Sim.DiffProc)
#freq <- -1
#damp <- -.1
#mu <- -2
#r <- .5
#b <- .1
#sigma1 <- 0.1
#sigma2 <- 0.1
#fx <- expression(y, freq*(x-z) + damp*y, r*z*(1-b*z))
#gx <- expression(0, sigma1, 0)
#r3dall <- c()
#for (j in 1:10){
#  r3dtemp <- c(-5,0,.1)
#  r3d <- r3dtemp
#  for (i in seq(0.125, 30, by=0.125)){
#    mod3dtemp <- snssde3d(drift=fx, diffusion=gx, M=1, t0=i-0.125,
#      x0=as.numeric(r3dtemp), T=i, N=500, type="str",
```

```
logLik.dynrCook

Extract the log likelihood from a dynrCook Object

Description

Extract the log likelihood from a dynrCook Object

Usage

## S3 method for class 'dynrCook'
logLik(object, ...)

## S3 method for class 'dynrCook'
deviance(object, ...)

Arguments

object The dynrCook object for which the log likelihood is desired
...

further named arguments, ignored for this method

Details

The 'df' attribute for this object is the number of freely estimated parameters. The 'nobs' attribute is the total number of rows of data, adding up the number of time points for each person.

The deviance method returns minus two times the log likelihood.

Value

In the case of logLik, an object of class logLik.

See Also

Other S3 methods coef.dynrCook

Examples

# Let cookedModel be the output from dynr.cook
#logLik(cookedModel)
**names,dynrCook-method**

*Extract the free parameter names of a dynrCook object*

---

**Description**

Extract the free parameter names of a dynrCook object

**Usage**

```r
## S4 method for signature 'dynrCook'
names(x)
```

**Arguments**

- `x` The dynrCook object from which the free parameter names are desired

---

**names,dynrModel-method**

*Extract the free parameter names of a dynrModel object*

---

**Description**

Extract the free parameter names of a dynrModel object

**Usage**

```r
## S4 method for signature 'dynrModel'
names(x)
```

**Arguments**

- `x` The dynrModel object from which the free parameter names are desired
nobs.dynrCook

**Extract the number of observations for a dynrCook object**

**Description**

Extract the number of observations for a dynrCook object

**Usage**

```r
## S3 method for class 'dynrCook'
nobs(object, ...)
```

**Arguments**

- **object**: A fitted model object
- **...**: Further named arguments. Ignored.

**Details**

We return the total number of rows of data, adding up the number of time points for each person. For some purposes, you may want the mean number of observations per person or the number of people instead. These are not currently supported via nobs.

**Value**

A single number. The total number of observations across all IDs.

**Examples**

```r
# Let cookedModel be the output from dynr.cook
#nobs(cookedModel)
```

---

nobs.dynrModel

**Extract the number of observations for a dynrModel object**

**Description**

Extract the number of observations for a dynrModel object

**Usage**

```r
## S3 method for class 'dynrModel'
nobs(object, ...)
```
NonlinearDFAsim

Arguments

object
An unfitted model object

... Further named arguments. Ignored.

Details

We return the total number of rows of data, adding up the number of time points for each person. For some purposes, you may want the mean number of observations per person or the number of people instead. These are not currently supported via nobs.

Value

A single number. The total number of observations across all IDs.

Examples

# Let rawModel be the output from dynr.model
#nobs(rawModel)

NonlinearDFAsim Simulated multi-subject time series based on a dynamic factor analysis model with nonlinear relations at the latent level

Description

A dataset simulated using a discrete-time nonlinear dynamic factor analysis model with 6 observed indicators for identifying two latent factors: individuals’ positive and negative emotions. Proposed by Chow and Zhang (2013), the model was inspired by models of affect and it posits that the two latent factors follow a vector autoregressive process of order 1 (VAR(1)) with parameters that vary between two possible regimes: (1) an "independent" regime in which the lagged influences between positive and negative emotions are zero; (2) a "high-activation" regime to capture instances on which the lagged influences between PA and NA intensify when an individual’s previous levels of positive and negative emotions were unusually high or low (see Model 2 in Chow & Zhang).


Usage

data(NonlinearDFAsim)

Format

A data frame with 3000 rows and 8 variables
Details

- id. ID of the participant (1 to 10)
- time. Time index (300 time points from each subject)
- y1-y3. Observed indicators for positive emotion
- y4-y6. Observed indicators for negative emotion

Description

A dataset simulated using a damped linear oscillator model in continuous time with 1 observed indicator for identifying two latent factors (position and velocity). The variables are as follows:

Usage

data(Oscillator)

Format

A data frame with 1000 rows and 5 variables

Details

- id. ID of the systems (1 to 1 because this is a single person)
- y1. Noisy observed position
- times. Time index (1000 time points) spaced at one unit intervals
- x1. True latent position
- x2. True latent velocity

Examples

# The following was used to generate the data
#----------------------------------------
# Data Generation
#require(mvtnorm)
#require(Matrix)
#
#xdim <- 2
#udim <- 1
#ydim <- 1
#tdim <- 1000
#set.seed(315)
#tA <- matrix(c(0, -.3, 1, -.7), xdim, xdim)
#tB <- matrix(c(0), xdim, udim)
#tC <- matrix(c(1, 0), ydim, xdim)
PFAsim

Simulated time series data of a multisubject process factor analysis

Description

A multiple subject dataset simulated using a two factor process factor analysis model in discrete time with 6 observed indicators for identifying two latent factors. The variables are as follows:

Usage

data(PFAsim)

Format

A data frame with 2,500 rows and 10 variables
Details

- ID. Person ID variable (1 to 50 because there are 50 simulated people)
- Time. Time ID variable (1 to 50 because there are 50 time points)
- V1. Noisy observed variable 1
- V2. Noisy observed variable 2
- V3. Noisy observed variable 3
- V4. Noisy observed variable 4
- V5. Noisy observed variable 5
- V6. Noisy observed variable 6
- F1. True latent variable 1 scores
- F2. True latent variable 2 scores

Variables V1, V2, and V3 load on F1, whereas variables V4, V5, V6 load on F2. The true values of the factor loadings are 1, 2, 1, 1, 2, and 1, respectively. The true measurement error variance is 0.5 for all variables. The true dynamic noise covariance has F1 with a variance of 2.77, F2 with a variance of 8.40, and their covariance is 2.47. The across-time dynamics have autoregressive effects of 0.5 for both F1 and F2 with a cross-lagged effect from F1 to F2 at 0.4. The cross-lagged effect from F2 to F1 is zero. The true initial latent state distribution as mean zero and a diagonal covariance matrix with var(F1) = 2 and var(F2) = 1. The generating model is the same for all individuals.

Examples

```r
require(dynr)
#
# Load the data with
data(PFAsim)
#
# Create a dynr data object with
dd <- dynr.data(PFAsim, id="ID", time="Time", observed=paste0("v",1:6))
#
# The following was used to generate the data
#set.seed(12345678)
#library(mvtnorm)
## setting up matrices
#time <- 50
## Occasions to throw out to wash away the effects of initial condition
#npad <- 0
#np <- 50
#ne <- 2 #Number of latent variables
#ny <- 6 #Number of manifest variables
## Residual variance-covariance matrix
#psi <- matrix(c(2.77, 2.47, 
# 2.47, 8.40),
# ncol = ne, byrow = T)
## Lambda matrix containing contemporaneous relations among
## observed variables and 2 latent variables.
#lambda <- matrix(c(1, 0,
# 2, 0,
# 1, 0, 
```

# 0, 1,
# 0, 2,
# 0, 1),
# ncol = ne, byrow = TRUE)
## Measurement error variances
#theta  <- diag(.5, ncol = ny, nrow = ny)
## Lagged directed relations among variables
#beta   <- matrix(c(0.5, 0,
# 0.4, 0.5),
# ncol = ne, byrow = TRUE)
#a0     <- mvrtnorm::rmvnorm(1, mean = c(0, 0),
# sigma = matrix(c(2,0,0,1),ncol=ne))
#yall   <- matrix(0,nrow = time*np, ncol = ny)
#eall   <- matrix(0,nrow = time*np, ncol = ne)
#for (p in 1:np){
## Latent variable residuals
# zeta   <- mvrtnorm::rmvnorm(time+npad, mean = c(0, 0), sigma = psi)
## Measurement errors
# epsilon <- rmvnorm(time, mean = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0), sigma = theta)
## Set up matrix for contemporaneous variables
# etaC   <- matrix(0, nrow = ne, ncol = time + npad)
## Set up matrix for lagged variables
# etaL   <- matrix(0, nrow = ne, ncol = time + npad + 1)
##
## etaL[,1]  <- a0
## etaC[,1]  <- a0
## generate factors
## for (i in 2:(time+npad)){
## etaL[i] <- etaC,i-1
## etaC[i] <- beta %*% etaL[i] + zeta[i, ]
## }
## etaC <- etaC,(npad+1):(npad+time]
## eta <- t(etaC)
##
## generate observed series
## y <- matrix(0, nrow = time, ncol = ny)
## for (i in 1:nrow(y)){
## y[i, ] <- lambda %*% eta[i, ] + epsilon[i, ]
## }
## yall[(i+(p-1)*time),(p*time),] <- y
## eall[(i+(p-1)*time),(p*time),] <- eta
##}#yall <- cbind(rep(1:np,each=time),rep(1:time,np),yall)
#yeall  <- cbind(yall,eall)
#write.table(yeall,'PFAsim.txt',row.names=FALSE,
#col.names=c("ID", "Time", paste0("V", 1:ny), paste0("F", 1:ne)))
### Description
Plot method for dynrCook objects

### Usage
```r
## S3 method for class 'dynrCook'
plot(x, dynrModel, style = 1, names.state, names.observed,
     printDyn = TRUE, printMeas = TRUE, textsize = 4, ...)
```

### Arguments
- `x`: dynrCook object
- `dynrModel`: model object
- `style`: The style of the plot in the first panel. If style is 1 (default), user-selected smoothed state variables are plotted. If style is 2, user-selected observed-versus-predicted values are plotted.
- `names.state`: (optional) The names of the states to be plotted, which should be a subset of the state.names slot of the measurement slot of dynrModel.
- `names.observed`: (optional) The names of the observed variables to be plotted, which should be a subset of the obs.names slot of the measurement slot of dynrModel.
- `printDyn`: A logical value indicating whether or not to plot the formulas for the dynamic model
- `printMeas`: A logical value indicating whether or not to plot the formulas for the measurement model
- `textsize`: numeric. Font size used in the plot.
- `...`: Further named arguments

### Details
This is a wrapper around `dynr.ggplot`. A great benefit of it is that it shows the model equations in a plot.

---

### plotFormula

**Plot the formula from a model**

### Description
Plot the formula from a model

### Usage
```r
plotFormula(dynrModel, ParameterAs, printDyn = TRUE, printMeas = TRUE,
            printRS = FALSE, textsize = 4)
```
Arguments

- **dynrModel**: The model object to plot.
- **ParameterAs**: The parameter values or names to plot. The underscores in parameter names are saved for use of subscripts. Greek letters can be specified as corresponding LaTeX symbols without backslashes (e.g., \"lambda\") and printed as greek letters.
- **printDyn**: A logical value indicating whether or not to plot the formulas for the dynamic model.
- **printMeas**: A logical value indicating whether or not to plot the formulas for the measurement model.
- **printRS**: logical. Whether or not to print the regime-switching model. The default is FALSE.
- **textsize**: The text size use in the plot.

Details

This function typesets a set of formulas that represent the model. Typical inputs to the **ParameterAs** argument are (1) the starting values for a model, (2) the final estimated values for a model, and (3) the parameter names. These are accessible with (1) `model$xstart`, (2) `coef(cook)`, and (3) `model$param.names` or `names(coef(cook))`, respectively.

**PPsim**

Simulated time series data for multiple eco-systems based on a predator-and-prey model

Description

A dataset simulated using a continuous-time nonlinear predator-and-prey model with 2 observed indicators for identifying two latent factors. The variables are as follows:

Usage

data(PPsim)

Format

A data frame with 1000 rows and 6 variables

Details

- id. ID of the systems (1 to 20)
- time. Time index (50 time points for each system)
- prey. The true population of the prey species
- predator. The true population of the predator species
- x. Observed indicator for the population of the prey species
- y. Observed indicator for the population of the predator species
prep.formulaDynamics

Recipe function for specifying dynamic functions using formulas

Description

Recipe function for specifying dynamic functions using formulas

Usage

```
prep.formulaDynamics(formula, startval = numeric(0),
                      isContinuousTime = FALSE, jacobian)
```

Arguments

- **formula**: a list of formulas specifying the drift or state-transition equations for the latent variables in continuous or discrete time, respectively.
- **startval**: a named vector of starting values of the parameters in the formulas for estimation with parameter names as its name. If there are no free parameters in the dynamic functions, leave startval as the default numeric(0).
- **isContinuousTime**: if True, the left hand side of the formulas represent the first-order derivatives of the specified variables; if False, the left hand side of the formulas represent the current state of the specified variable while the same variable on the right hand side is its previous state.
- **jacobian**: (optional) a list of formulas specifying the analytic jacobian matrices containing the analytic differentiation function of the dynamic functions with respect to the latent variables. If this is not provided, dynr will invoke an automatic differentiation procedure to compute the jacobian functions.

Details

This function defines the dynamic functions of the model either in discrete time or in continuous time. The function can be either linear or nonlinear, with free or fixed parameters, numerical constants, covariates, and other mathematical functions that define the dynamics of the latent variables. Every latent variable in the model needs to be defined by a differential (for continuous time model), or difference (for discrete time model) equation. The names of the latent variables should match the specification in prep.measurement(). For nonlinear models, the estimation algorithm generally needs a Jacobian matrix that contains elements of first differentiations of the dynamic functions with respect to the latent variables in the model. For most nonlinear models, such differentiations can be handled automatically by dynr. However, in some cases, such as when the absolute function (abs) is used, the automatic differentiation would fail and the user may need to provide his/her own Jacobian functions.
Examples

# In this example, we present how to define the dynamics of a bivariate dual change score model
# (McArdle, 2009). This is a linear model and the user does not need to worry about
# providing any jacobian function (the default).

# We start by creating a list of formula that describes the model. In this model, we have four
# latent variables, which are "readLevel", "readSlope", "mathLevel", and "math Slope". The right-
# hand side of each formula gives a function that defines the dynamics.

formula =list(
  list(readLevel = (1+beta.read)*readLevel + readSlope + gamma.read*mathLevel,
       readSlope = readSlope,
       mathLevel = (1+beta.math)*mathLevel + mathSlope + gamma.math*readLevel,
       mathSlope = mathSlope
  )
)

# Then we use prep.formulaDynamics() to define the formula, starting value of the parameters in
# the model, and state the model is in discrete time by setting isContinuousTime=FALSE.

dynm <- prep.formulaDynamics(formula=formula,
  startval=c(beta.read = -.5, beta.math = -.5,
              gamma.read = .3, gamma.math = .03
  ), isContinuousTime=FALSE)

# For a full demo example of regime switching nonlinear discrete time model, you
# may refer to a tutorial on
# url(https://quantdev.ssri.psu.edu/tutorials/dynr-rsnonlinediscreteexample)

#Not run:
#For a full demo example that uses user-supplied analytic jacobian functions see:
#demo(RSNonlinearDiscrete, package="dynr")

formula <- list(
  list( x1 = a1*x1, x2 = a2*x2),
  list( x1 = a1*x1 + c12*(exp(abs(x2)))/(1+exp(abs(x2)))^x2,
       x2 = a2*x2 + c21*(exp(abs(x1)))/(1+exp(abs(x1)))^x1)
)
jacob <- list(
  list(x1=x1=a1, x2=x2=a2),
  list(x1=x1=a1, x2=x2-a2,
       x1=x2-c12*(exp(abs(x2))/(exp(abs(x2))+1)*x2*sign(x2)*exp(abs(x2))/(1+exp(abs(x2))^2)),
       x2=x2-a2,
       x2=x1-c21*(exp(abs(x1))/(exp(abs(x1))+1)*x1*sign(x1)*exp(abs(x1))/(1+exp(abs(x1))^2))))

dynm <- prep.formulaDynamics(formula=formula, startval=c( a1=.3, a2=.4, c12=-.5, c21=-.5),
  isContinuousTime=FALSE, jacobian=jacob)

#For a full demo example that uses automatic jacobian functions (the default) see:
#demo(RSNonlinearODE , package="dynr")
prep.initial

Recipe function for preparing the initial conditions for the model.

Description

Recipe function for preparing the initial conditions for the model.

Usage

```r
prep.initial(values.inistate, params.inistate, values.inicov, params.inicov, 
values.regimep = 1, params.regimep = 0, covariates, deviation = FALSE, 
refRow)
```

Arguments

values.inistate

A vector or list of vectors of the starting or fixed values of the initial state vector in one or more regimes. May also be a matrix or list of matrices.

params.inistate

A vector or list of vectors of the parameter names that appear in the initial state vector in one or more regimes. If an element is 0 or "fixed", the corresponding element is fixed at the value specified in the values vector; Otherwise, the corresponding element is to be estimated with the starting value specified in the values vector. May also be a matrix or list of matrices.

values.inicov

A positive definite matrix or a list of positive definite matrices of the starting or fixed values of the initial error covariance structure(s) in one or more regimes. If only one matrix is specified for a regime-switching dynamic model, the initial error covariance structure stays the same across regimes. To ensure the matrix is positive definite in estimation, we apply LDL transformation to the matrix. Values are hence automatically adjusted for this purpose.

params.inicov

A matrix or list of matrices of the parameter names that appear in the initial error covariance(s) in one or more regimes. If an element is 0 or "fixed", the corresponding element is fixed at the value specified in the values matrix; Otherwise, the corresponding element is to be estimated with the starting value specified in the values matrix. If only one matrix is specified for a regime-switching dynamic model, the process noise structure stays the same across regimes. If a list is specified, any two sets of the parameter names as in two matrices should be either the same or totally different to ensure proper parameter estimation.

values.regimep

A vector/matrix of the starting or fixed values of the initial probabilities of being in each regime. By default, the initial probability of being in the first regime is fixed at 1.
prep.initial

params.regimep a vector/matrix of the parameter indices of the initial probabilities of being in each regime. If an element is 0 or "fixed", the corresponding element is fixed at the value specified in the "values" vector/matrix; Otherwise, the corresponding element is to be estimated with the starting value specified in the values vector/matrix.

covariates character vector of the names of the (person-level) covariates
deviation logical. Whether to use the deviation form or not. See Details.
refRow numeric. Which row is treated at the reference. See Details.

Details

The initial condition model includes specifications for the initial state vector, initial error covariance matrix, initial probabilities of being in each regime and all associated parameter specifications. The initial probabilities are specified in multinomial logistic regression form. When there are no covariates, this implies multinomial logistic regression with intercepts only. In particular, the initial probabilities not not specified on a 0 to 1 probability scale, but rather a negative infinity to positive infinity log odds scale. Fixing an initial regime probability to zero does not mean zero probability. It translates to a comparison log odds scale against which other regimes will be judged.

The structure of the initial state vector and the initial probability vector depends on the presence of covariates. When there are no covariates these should be vectors, or equivalently single-column matrices. When there are covariates they should have $c + 1$ columns for $c$ covariates. The number of rows should be the number of regimes for the initial regimes, or the number of latent states for the initial states.

When deviation=FALSE, the non-deviation form of the multinomial logistic regression is used. This form has a separate intercept term for each entry of the initial probability vector. When deviation=TRUE, the deviation form of the multinomial logistic regression is used. This form has an intercept term that is common to all rows of the initial probability vector. The rows are then distinguished by their own individual deviations from the common intercept. The deviation form requires the same reference row constraint as the non-deviation form (described below). By default the reference row is taken to be the row with all zero covariate effects. Of course, if there are no covariates and the deviation form is desired, then the user must provide the reference row.

The refRow argument determines which row is used as the intercept row. It is only used in the deviation form (i.e. deviation=TRUE). In the deviation form, one row of values.regimep and params.regimep contains the intercepts, other rows contain deviations from these intercepts. The refRow argument says which row contains the intercept terms. The default behavior for refRow is to detect the reference row automatically based on which parameters are fixed. If we have problems detecting which is the reference row, then we provide error messages that are as helpful as we can make them.

See Also

Methods that can be used include: print, printex, show

Examples

### No-covariates
# Single regime, no covariates
# latent states are position and velocity
# initial position is free and called 'inipos'
# initial slope is fixed at 1
# initial covariance is fixed to a diagonal matrix of 1s
initialNoC <- prep.initial(
    values.inistate=c(0, 1),
    params.inistate=c('inipos', 'fixed'),
    values.inicov=diag(1, 2),
    params.inicov=diag('fixed', 2))

### One covariate
# Single regime, one covariate on the initial mean
# latent states are position and velocity
# initial covariance is fixed to a diagonal matrix of 1s
# initial latent means have
# nrow = numLatentState, ncol = numCovariates + 1
# initial position has free intercept and free u1 effect
# initial slope is fixed at 1
initialOneC <- prep.initial(
    values.inistate=matrix(
        c(0, .5,
         1, 0), byrow=TRUE, nrow=2, ncol=2),
    params.inistate=matrix(
        c('iniPosInt', 'iniPosSlopeU1', 'fixed', 'fixed'), byrow=TRUE, nrow=2, ncol=2),
    values.inicov=diag(1, 2),
    params.inicov=diag('fixed', 2),
    covariates='u1')

### Regime-switching, one covariate
# latent states are position and velocity
# initial covariance is fixed to a diagonal matrix of 1s
# initial latent means have
# nrow = numLatentState, ncol = numCovariates + 1
# initial position has free intercept and free u1 effect
# initial slope is fixed at 1
# There are 3 regimes but the mean and covariance
# are not regime-switching.
initialRSOneC <- prep.initial(
    values.regimep=matrix(
        c(1, 1,
         0, 1,
         0, 0), byrow=TRUE, nrow=3, ncol=2),
    params.regimep=matrix(
        c('r1Int', 'r1SlopeU1', 'r2Int', 'r2SlopeU2', 'fixed', 'fixed'), byrow=TRUE, nrow=3, ncol=2),
    values.inistate=matrix(
        c(0, .5,
         1, 0), byrow=TRUE, nrow=2, ncol=2),
    params.inistate=matrix(
        c('iniPosInt', 'iniPosSlopeU1', 'fixed', 'fixed'), byrow=TRUE, nrow=2, ncol=2),
    values.inicov=diag(1, 2),
    params.inicov=diag('fixed', 2),
    covariates='u1')
Recipe function to quickly create factor loadings

Description
Recipe function to quickly create factor loadings

Usage
prep.loadings(map, params, idvar, exo.names = character(0),
intercept = FALSE)

Arguments
map list giving how the latent variables map onto the observed variables
params parameter numbers
idvar names of the variables used to identify the factors
exo.names names of the exogenous covariates
intercept logical. Whether to include freely estimated intercepts

Details
The default pattern for ‘idvar’ is to fix the first factor loading for each factor to one. The variable names listed in ‘idvar’ have their factor loadings fixed to one. However, if the names of the latent variables are used for ‘idvar’, then all the factor loadings will be freely estimated and you should fix the factor variances in the noise part of the model (e.g. prep.noise).
This function does not have the full set of features possible in the dynr package. In particular, it does not have any regime-switching. Covariates can be included with the exo.names argument, but all covariate effects are freely estimated and the starting values are all zero. Likewise, intercepts can be included with the intercept logical argument, but all intercept terms are freely estimated with zero as the starting value. For complete functionality use prep.measurement.
Examples

# Single factor model with one latent variable fixing first loading
prep.loadings(list(eta1=paste('y', 1:4), paste0("\texttt{\textup{\textbackslash lambda}}\_\textsubscript{\textup{\textbackslash L}}"', 2:4)))

# Single factor model with one latent variable fixing the fourth loading
prep.loadings(list(eta1=paste('y', 1:4), paste0("\texttt{\textup{\textbackslash lambda}}\_\textsubscript{\textup{\textbackslash L}}"', 4:1), idvar='y4')

# Single factor model with one latent variable freeing all loadings
prep.loadings(list(eta1=paste('y', 1:4), paste0("\texttt{\textup{\textbackslash lambda}}\_\textsubscript{\textup{\textbackslash L}}"', 1:4), idvar='eta1')

# Single factor model with one latent variable fixing first loading
# and freely estimated intercept
prep.loadings(list(eta1=paste('y', 1:4), paste0("\texttt{\textup{\textbackslash lambda}}\_\textsubscript{\textup{\textbackslash L}}"', 2:4), intercept=\texttt{\textup{\textbackslash TRUE}})

# Single factor model with one latent variable fixing first loading
# and freely estimated covariate effects for \texttt{u1} and \texttt{u2}
prep.loadings(list(eta1=paste('y', 1:4), paste0("\texttt{\textup{\textbackslash lambda}}\_\textsubscript{\textup{\textbackslash L}}"', 2:4),
\texttt{exo.names}=paste0('u', 1:2))

# Two factor model with simple structure
prep.loadings(list(eta1=paste('y', 1:4), eta2=paste0('y', 5:7),
paste0("\texttt{\textup{\textbackslash lambda}}\_\textsubscript{\textup{\textbackslash L}}"', c(2:4, 6:7)))

# Two factor model with repeated use of a free parameter
prep.loadings(list(eta1=paste0('y', 1:4), eta2=paste0('y', 5:8),
paste0("\texttt{\textup{\textbackslash lambda}}\_\textsubscript{\textup{\textbackslash L}}"', c(2:4, 6:7, 4)))

# Two factor model with a cross loading
prep.loadings(list(eta1=paste0('y', 1:4), eta2=c('y5', 'y2', 'y6'),
paste0("\texttt{\textup{\textbackslash lambda}}\_\textsubscript{\textup{\textbackslash L}}"', c("21", "31", "41", "22", "62")))

---

**Description**

Recipe function for creating Linear Dynamics using matrices

**Usage**

```
prep.matrixDynamics(params.dyn = \texttt{\textup{\textbackslash NULL}}, values.dyn, params.exo = \texttt{\textup{\textbackslash NULL}},
values.exo = \texttt{\textup{\textbackslash NULL}}, params.int = \texttt{\textup{\textbackslash NULL}}, values.int = \texttt{\textup{\textbackslash NULL}},
covariates, isContinuousTime)
```

**Arguments**

- `params.dyn`: the matrix of parameter names for the transition matrix in the specified linear dynamic model
prep.matrixDynamics

values.dyn the matrix of starting/fixed values for the transition matrix in the specified linear dynamic model
params.exo the matrix of parameter names for the regression slopes of covariates on the latent variables (see details)
values.exo matrix of starting/fixed values for the regression slopes of covariates on the latent variables (see details)
params.int vector of names for intercept parameters in the dynamic model specified as a matrix or list of matrices.
values.int vector of intercept values in the dynamic model specified as matrix or list of matrices. Contains starting/fixed values of the intercepts.
covariates the names or the index numbers of the covariates used in the dynamic model
isContinuousTime logical. When TRUE, use a continuous time model. When FALSE use a discrete time model.

Details

A recipe function for specifying the deterministic portion of a set of linear dynamic functions as:
Discrete-time model: \eta(t+1) = int + dyn*\eta(t) + exo*x(t), where \eta(t) is a vector of latent variables, x(t) is a vector of covariates, int, dyn, and exo are vectors and matrices specified via the arguments *.int, *.dyn, and *.exo.
Continuous-time model: \frac{d}{dt} \eta(t) = int + dyn*\eta(t) + exo*x(t), where \eta(t) is a vector of latent variables, x(t) is a vector of covariates, int, dyn, and exo are vectors and matrices specified via the arguments *.int, *.dyn, and *.exo.

The left-hand side of the dynamic model consists of a vector of latent variables for the next time point in the discrete-time case, and the vector of derivatives for the latent variables at the current time point in the continuous-time case.

For models with regime-switching dynamic functions, the user will need to provide a list of the *.int, *.dyn, and *.exo arguments. (when they are specified to take on values other than the default of zero vectors and matrices), or if a single set of vectors/matrices are provided, the same vectors/matrices are assumed to hold across regimes.

prep.matrixDynamics serves as an alternative to prep.formulaDynamics.

See Also

Methods that can be used include: print, show

Examples

#Single-regime, continuous-time model. For further details run:
#demo(RSnonlinearDiscrete, package="dynr")
dynamics <- prep.matrixDynamics(
  values.dyn=matrix(c(0, -0.1, 1, -0.2), 2, 2),
  params.dyn=matrix(c('fixed', 'spring', 'fixed', 'friction'), 2, 2),
  isContinuousTime=TRUE)
```r
#Two-regime, continuous-time model. For further details run:
demo(RSNonlinearDiscrete, package="dynr")
dynamics <- prep.matrixDynamics(
  values.dyn=list(matrix(c(0, -0.1, 1, -0.2), 2, 2),
    matrix(c(0, -0.1, 1, 0), 2, 2)),
  params.dyn=list(matrix(c('fixed', 'spring', 'fixed', 'friction'), 2, 2),
    matrix(c('fixed', 'spring', 'fixed', 'fixed'), 2, 2)),
  isContinuousTime=TRUE)
```

### Description

Prepare the measurement recipe

### Usage

```r
prep.measurement(values.load, params.load = NULL, values.exo = NULL,
  params.exo = NULL, values.int = NULL, params.int = NULL, obs.names,
  state.names, exo.names)
```

### Arguments

- **values.load**: matrix of starting or fixed values for factor loadings. For models with regime-specific factor loadings provide a list of matrices of factor loadings.
- **params.load**: matrix or list of matrices. Contains parameter names of the factor loadings.
- **values.exo**: matrix or list of matrices. Contains starting/fixed values of the covariate regression slopes.
- **params.exo**: matrix or list of matrices. Parameter names of the covariate regression slopes.
- **values.int**: vector of intercept values specified as matrix or list of matrices. Contains starting/fixed values of the intercepts.
- **params.int**: vector of names for intercept parameters specified as a matrix or list of matrices.
- **obs.names**: vector of names for the observed variables in the order they appear in the measurement model.
- **state.names**: vector of names for the latent variables in the order they appear in the measurement model.
- **exo.names**: (optional) vector of names for the exogenous variables in the order they appear in the measurement model.

### Details

The `values.*` arguments give the starting and fixed values for their respective matrices. The `params.*` arguments give the free parameter labels for their respective matrices. Numbers can be used as labels. The number 0 and the character ’fixed’ are reserved for fixed parameters.

When a single matrix is given to `values.*`, that matrix is not regime-switching. Correspondingly, when a list of length r is given, that matrix is regime-switching with values and params for the r regimes in the elements of the list.
See Also

Methods that can be used include: `print`, `printex`, `show`

Examples

```r
prep.measurement(diag(1, 5), diag("lambda", 5))
prep.measurement(matrix(1, 5, 5), diag(paste0("lambda", 1:5)))
prep.measurement(diag(1, 5), diag(0, 5))  # identity measurement model

# Regime-switching measurement model where the first latent variable is
# active for regime 1, and the second latent variable is active for regime 2
# No free parameters are present.
prep.measurement(values.load=list(matrix(c(0, 1, 1, 2)),
                         matrix(c(0, 1, 1, 2))))
```

---

**prep.noise**

Recipe function for specifying the measurement error and process noise covariance structures

**Description**

Recipe function for specifying the measurement error and process noise covariance structures

**Usage**

```r
prep.noise(values.latent, params.latent, values.observed, params.observed)
```

**Arguments**

- `values.latent`: a positive definite matrix or a list of positive definite matrices of the starting or fixed values of the process noise covariance structure(s) in one or more regimes. If only one matrix is specified for a regime-switching dynamic model, the process noise covariance structure stays the same across regimes. To ensure the matrix is positive definite in estimation, we apply LDL transformation to the matrix. Values are hence automatically adjusted for this purpose.

- `params.latent`: a matrix or list of matrices of the parameter names that appear in the process noise covariance(s) in one or more regimes. If an element is 0 or "fixed", the corresponding element is fixed at the value specified in the values matrix; Otherwise, the corresponding element is to be estimated with the starting value specified in the values matrix. If only one matrix is specified for a regime-switching dynamic model, the process noise structure stays the same across regimes. If a list is specified, any two sets of the parameter names as in two matrices should be either the same or totally different to ensure proper parameter estimation. See Details.

- `values.observed`: a positive definite matrix or a list of positive definite matrices of the starting or fixed values of the measurement error covariance structure(s) in one or more regimes. If only one matrix is specified for a regime-switching measurement model, the measurement noise covariance structure stays the same across regimes.
regimes. To ensure the matrix is positive definite in estimation, we apply LDL transformation to the matrix. Values are hence automatically adjusted for this purpose.

params.observed

a matrix or list of matrices of the parameter names that appear in the measurement error covariance(s) in one or more regimes. If an element is 0 or "fixed", the corresponding element is fixed at the value specified in the values matrix; Otherwise, the corresponding element is to be estimated with the starting value specified in the values matrix. If only one matrix is specified for a regime-switching dynamic model, the process noise structure stays the same across regimes. If a list is specified, any two sets of the parameter names as in two matrices should be either the same or totally different to ensure proper parameter estimation. See Details.

Details

The arguments of this function should generally be either matrices or lists of matrices. Lists of matrices are used for regime-switching models with each list element corresponding to a regime. Thus, a list of three matrices implies a three-regime model. Single matrices are for non-regime-switching models. Some checking is done to ensure that the number of regimes implied by one part of the model matches that implied by the others. For example, the noise model (prep.noise) cannot suggest three regimes when the measurement model (prep.measurement) suggests two regimes. An exception to this rule is single-regime (i.e. non-regime-switching) components. For instance, the noise model can have three regimes even though the measurement model implies one regime. The single-regime components are simply assumed to be invariant across regimes.

Care should be taken that the parameters names for the latent covariances do not overlap with the parameters in the observed covariances. Likewise, the parameter names for the latent covariances in each regime should either be identical or completely distinct. Because the LDL’ transformation is applied to the covariances, sharing a parameter across regimes may cause problems with the parameter estimation.

Use $ to show specific arguments from a dynrNoise object (see examples).

See Also

printex to show the covariance matrices in latex.

Examples

# Two latent variables and one observed variable in a one-regime model Noise<-prep.noise(values.latent=diag(c(0.8, 1)), params.latent=diag(c("fixed", "e_x")), values.observed=diag(1.5,1), params.observed=diag("e_y", 1)) # For matrices that can be import to latex: printex(Noise,show=TRUE) # If you want to check specific arguments you've specified, for example, # values for variance structure of the latent variables Noise$values.latent # [[1]] # [,1] [,2] # [1,] 0.8 0
prep.regimes  

Recipe function for creating regime switching (Markov transition) functions

Description

Recipe function for creating regime switching (Markov transition) functions

Usage

prep.regimes(values, params, covariates, deviation = FALSE, refRow)

Arguments

values matrix giving the values. Should have (number of Regimes) rows and (number of regimes x number of covariates) columns
params matrix of the same size as "values" consisting of the names of the parameters
covariates a vector of the names of the covariates to be used in the regime-switching functions
deviation logical. Whether to use the deviation form or not. See Details.
refRow numeric. Which row is treated at the reference. See Details.

Details

Note that each row of the transition probability matrix must sum to one. To accomplish this fix at least one transition log odds parameter in each row of "values" (including its intercept and the regression slopes of all covariates) to 0.

When deviation=FALSE, the non-deviation form of the multinomial logistic regression is used. This form has a separate intercept term for each entry of the transition probability matrix (TPM). When deviation=TRUE, the deviation form of the multinomial logistic regression is used. This form has an intercept term that is common to each column of the TPM. The rows are then distinguished by their own individual deviations from the common intercept. The deviation form requires the same reference column constraint as the non-deviation form; however, the deviation form also requires one row to be indicated as the reference row (described below). By default the reference row is taken to be the same as the reference column.

The refRow argument determines which row is used as the intercept row. It is only used in the deviation form (i.e. deviation=TRUE). In the deviation form, one row of values and params
contains the intercepts, other rows contain deviations from these intercepts. The refRow argument says which row contains the intercept terms. The default behavior for refRow is to be the same as the reference column. The reference column is automatically detected. If we have problems detecting which is the reference column, then we provide error messages that are as helpful as we can make them.

See Also

Methods that can be used include: print, printex, show

Examples

# Two-regime example with a covariate, x; log odds (LO) parameters represented in default form,
# 2nd regime set to be the reference regime (i.e., have LO parameters all set to 0).
# The values and params matrices are of size 2 (numRegimes=2) x 4 (numRegimes*(numCovariates+1)).
# The LO of staying within the 1st regime (corresponding to the (1,1) entry in the
# 2 x 2 transition probability matrix for the 2 regimes) = a_{11} + d_{11}*x
# The log odds of switching from the 1st to the 2nd regime (the (1,2) entry in the
# transition probability matrix) = 0
# The log odds of moving from regime 2 to regime 1 (the (2,1) entry) = a_{21} + d_{21}*x
# The log odds of staying within the 2nd regime (the (2,2) entry) = 0
b <- prep.regimes(
  values=matrix(c(8,-1,rep(0,2),
                 -4,.1,rep(0,2)),
                 nrow=2, ncol=4, byrow=TRUE),
  params=matrix(c("a_{11}","d_{11}"),
                 nrow=2, ncol=4, byrow=TRUE),
  covariates=c("x"))

# Same example as above, but expressed in deviation form by specifying 'deviation = TRUE'
# The LO of staying within the 1st regime (corresponding to the (1,1) entry in the
# 2 x 2 transition probability matrix for the 2 regimes) = a_{21} + a_{11} + d_{11}*x
# The log odds of switching from the 1st to the 2nd regime (the (1,2) entry in the
# transition probability matrix) = 0
# The log odds of moving from regime 2 to regime 1 (the (2,1) entry) = a_{21} + d_{21}*x
# The log odds of staying within the 2nd regime (the (2,2) entry) = 0
b <- prep.regimes(
  values=matrix(c(8,-1,rep(0,2),
                 -4,.1,rep(0,2)),
                 nrow=2, ncol=4, byrow=TRUE),
  params=matrix(c("a_{11}"),
                 nrow=2, ncol=4, byrow=TRUE),
  covariates=c("x"), deviation = TRUE)

# An example of regime-switching with no covariates. The diagonal entries are fixed
# at zero for identification purposes
b <- prep.regimes(values=matrix(0, 3, 3),
                  params=matrix(c('fixed', 'p12', 'p13',
                                 'p21', 'fixed', 'p23',
                                 'p31', 'p32', 'fixed'), 3, 3, byrow=TRUE))

# An example of regime-switching with no covariates. The parameters for the second regime are
# fixed at zero for identification purposes, making the second regime the reference regime.
b <- prep.regimes(values=matrix(0, 3, 3),
params=matrix(c('p11', 'fixed', 'p13',
 'p21', 'fixed', 'p23',
 'p31', 'fixed', 'p33'), 3, 3, byrow=TRUE))

#2 regimes with three covariates
b <- prep.regimes(values=matrix(c(0), 2, 8),
params=matrix(c(paste0('p', 8:15), rep(0, 8)), 2, 8),
covariates=c('x1', 'x2', 'x3'))

prep.tfun

Create a dynrTrans object to handle the transformations and inverse transformations of model parameters

Description

Create a dynrTrans object to handle the transformations and inverse transformations of model parameters

Usage

prep.tfun(formula.trans, formula.inv, transCcode = TRUE)

Arguments

formula.trans a list of formulae for transforming freed parameters other than variance-covariance parameters during the optimization process. These transformation functions may be helpful for transforming parameters that would normally appear on a constrained scale to an unconstrained scale (e.g., parameters that can only take on positive values can be subjected to exponential transformation to ensure positivity.)

formula.inv a list of formulae that inverse the transformation on the free parameters and will be used to calculate the starting values of the parameters.

transCcode a logical value indicating whether the functions in formula.trans need to be transformed to functions in C. The default for transCcode is TRUE, which means that the formulae will be translated to C functions and utilized during the optimization process. If transCcode = FALSE, the transformations are only performed at the end of the optimization process for standard error calculations but not during the optimization process. ##'

Details

Prepares a dynr recipe that specifies the names of the parameters that are to be subjected to user-supplied transformation functions and the corresponding transformation and reverse-transformation functions. This can be very handy in fitting dynamic models in which certain parameters can only take on permissible values in particular ranges (e.g., a parameter may have to positive). Note that
all variance-covariance parameters in the model are automatically subjected to transformation functions to ensure that the resultant covariance matrices are positive-definite. Thus, no additional transformation functions are needed for variance-covariance parameters.

Examples

# Specifies a transformation recipe, r20, that subjects the parameters
#' r10' and 'r20' to exponential transformation to ensure that they are positive.
trans <- prep.tfun(formula.trans=list(r10~exp(r10), r20~exp(r20)),
                   formula.inv=list(r10~log(r10), r20~log(r20)))

printex

The printex Method

Description

The printex Method

Usage

printex(object, parameterAs, printDyn = TRUE, printMeas = TRUE,
         printInit = FALSE, printRS = FALSE, outFile, show, ...)

Arguments

object The dynr object (recipe, model, or cooked model).

ParameterAs The parameter values or names to plot. The underscores in parameter names
               are saved for use of subscripts. Greek letters can be specified as corresponding
               LaTeX symbols without #\#' backslashes (e.g., "lambda") and printed as greek
               letters.

printDyn logical. Whether or not to print the dynamic model. The default is TRUE.

printMeas logical. Whether or not to print the measurement model. The default is TRUE.

printInit logical. Whether or not to print the initial conditions. The default is FALSE.

printRS logical. Whether or not to print the regime-switching model. The default is
           FALSE.

outFile The name of the output tex file.

show logical indicator of whether or not to show the result in the console.

... Further named arguments, passed to internal method. AsMatrix is a logical
       indicator of whether to put the object in matrix form.
Details

This is a general way of getting a LaTeX string for recipes, models, and cooked models. It is a great way to check that you specified the model or recipe you think you did before estimating its free parameters (cooking). After the model is cooked, you can use it to get LaTeX code with the estimated parameters in it.

Typical inputs to the Parameters argument are (1) the starting values for a model, (2) the final estimated values for a model, and (3) the parameter names. These are accessible with (1) model$xstart, (2) coef(cook), and (3) model$param.names or names(coef(cook)), respectively.

See Also

A way to put this in a plot with plotFormula

---

RSPPsim

Simulated time series data for multiple eco-systems based on a regime-switching predator-and-prey model

Description

A dataset simulated using a regime-switching continuous-time nonlinear predator-and-prey model with 2 observed indicators for identifying two latent factors. The variables are as follows:

Usage

data(RSPPsim)

Format

A data frame with 6000 rows and 8 variables

Details

- id. ID of the systems (1 to 20)
- time. Time index (300 time points for each system)
- prey. The true population of the prey species
- predator. The true population of the predator species
- x. Observed indicator for the population of the prey species
- y. Observed indicator for the population of the predator species
- cond. A time-varying covariate indicating the conditions of the respective eco-system across time which affects the regime-switching transition matrix
- regime. The true regime indicators across time (1 and 2).
**summary.dynrCook**

*Get the summary of a dynrCook object*

**Description**

Get the summary of a dynrCook object

**Usage**

```r
## S3 method for class 'dynrCook'
summary(object, ...)
```

**Arguments**

- `object`: The dynrCook object for which the summary is desired.
- `...`: Further named arguments, passed to the print method (e.g., `digits` and `signif.stars`).

**Details**

The summary gives information on the free parameters estimated: names, parameter values, numerical Hessian-based standard errors, t-values (values divided by standard errors), and standard-error based confidence intervals. Additionally, the likelihood, AIC, and BIC are provided.

Note that an exclamation point (!) in the final column of the summary table indicates that the standard error and confidence interval for this parameter may not be trustworthy. The corresponding element of the (transformed, inverse) Hessian was negative and an absolute value was taken to make it positive.

---

**vcov.dynrCook**

*Extract the Variance-Covariance Matrix of a dynrCook object*

**Description**

Extract the Variance-Covariance Matrix of a dynrCook object

**Usage**

```r
## S3 method for class 'dynrCook'
vcov(object, ...)
```

**Arguments**

- `object`: The dynrCook object for which the variance-covariance matrix is desired
- `...`: Further named arguments, ignored by this method

**Details**

This is the inverse Hessian of the transformed parameters.
Index

*Topic State-space modeling
  dynr-package, 3
*Topic datasets
  EMG, 21
  EMGs, 21
  LogisticSetPointSDE, 23
  NonlinearDFAsim, 27
  Oscillator, 28
  PAAsim, 29
  PPSim, 33
  RSPPsim, 49
*Topic differential equation
  dynr-package, 3
*Topic dynamic model
  dynr-package, 3
*Topic nonlinear
  dynr-package, 3
*Topic regime switching
  dynr-package, 3
*Topic
dynr-package, 3
\$,, dynrCook-method (dynrCook-class), 18
\$, dynrModel-method (dynrModel-class), 19
\$, dynrRecipe-method (dynrRecipe-class), 20
\$<-, dynrModel-method (dynrModel-class), 19

autoplot, 11
autoplot.dynrCook (dynr.ggplot), 12

chol, 14
coeff, 11
coeff.dynrCook, 24
coeff.dynrCook (coeff.dynrModel), 7
coeff.dynrModel, 7
coeff<- (coeff.dynrModel), 7
confint, 11
confint.dynrCook, 8
deviance, 11
deviance.dynrCook (logLik.dynrCook), 24
diag, 9
diag(diag, character-method), 9
diag.character (diag, character-method), 9
dynr (dynr-package), 3
dynr-package, 3
dynr.cook, 10, 11, 15, 18
dynr.data, 11, 16
dynr.ggplot, 12, 32
dynr.ldl, 14
dynr.mi, 15
dynr.model, 15, 19, 20
dynr.plotFreq, 17
dynr.version, 17
dynrCook-class, 18
dynrDebug-class (dynrCook-class), 18
dynrDynamics-class, 18
dynrDynamicsFormula-class
  (dynrDynamics-class), 18
dynrDynamicsMatrix-class
  (dynrDynamics-class), 18
dynrInitial-class, 18
dynrMeasurement-class, 19
dynrModel-class, 19
dynrNoise-class, 19
dynrRecipe-class, 20
dynrRegimes-class, 20
dynrTrans-class, 20

EMG, 21
EMGs, 21

initialize, 11
internalModelPrep, 22

LogisticSetPointSDE, 23
logLik, 11
logLik.dynrCook, 8, 24
names, 11
names, dynrCook-method, 25
names, dynrModel-method, 25
nobs, 11
nobs.dynrCook, 26
nobs.dynrModel, 26
NonlinearDFAsim, 27

Oscillator, 28
PFAsim, 29
plot, 11
plot.dynrCook, 31
plotFormula, 32, 49
PPsim, 33
prep.formulaDynamics, 16, 18, 20, 34, 41
prep.initial, 16, 18, 20, 36
prep.loadings, 16, 19, 39
prep.matrixDynamics, 16, 18, 20, 40
prep.measurement, 16, 19, 20, 39, 42, 44
prep.noise, 16, 19, 20, 39, 43
prep.regimes, 16, 20, 45
prep.tfun, 16, 20, 47
print, 11, 37, 41, 43, 46
print, dynrCook-method (dynrCook-class), 18
print, dynrModel-method
 (dynrModel-class), 19
print, dynrRecipe-method
 (dynrRecipe-class), 20
printex, 16, 37, 43, 44, 46, 48
printex, dynrCook-method (printex), 48
printex, dynrDynamicsFormula-method
 (printex), 48
printex, dynrDynamicsMatrix-method
 (printex), 48
printex, dynrInitial-method (printex), 48
printex, dynrMeasurement-method
 (printex), 48
printex, dynrModel-method (printex), 48
printex, dynrNoise-method (printex), 48
printex, dynrRegimes-method (printex), 48

RSPPsim, 49
show, 11, 37, 41, 43, 46
show, dynrCook-method (dynrCook-class), 18
vcov, 11
vcov.dynrCook, 50
summary, 11
summary.dynrCook, 50

show, dynrModel-method
 (dynrModel-class), 19
show, dynrRecipe-method
 (dynrRecipe-class), 20

vcov. 11
vcov.dynrCook, 50

summary. 11
summary.dynrCook, 50
show. 11, 37, 41, 43, 46