Package ‘dynutils’

October 13, 2022

Type Package
Title Common Functionality for the ‘dynverse’ Packages
Version 1.0.11
Description Provides common functionality for the ‘dynverse’ packages.
‘dynverse’ is created to support the development, execution, and benchmarking of trajectory inference methods.
For more information, check out <https://dynverse.org>.
License MIT + file LICENSE
URL https://github.com/dynverse/dynutils
BugReports https://github.com/dynverse/dynutils/issues
RoxygenNote 7.2.1
Depends R (>= 3.0.0)
Imports assertthat, crayon, desc, dplyr, magrittr, Matrix, methods, proxyC (>= 0.3.3), purrr, Rcpp, remotes, stringr, tibble
Suggests covr, ggplot2, hdf5r (>= 1.3.4), knitr, rmarkdown, testthat
LinkingTo Rcpp
Encoding UTF-8
VignetteBuilder knitr
NeedsCompilation yes
Author Robrecht Cannoodt [aut, cre] (<https://orcid.org/0000-0003-3641-729X>, rcannood),
Wouter Saelens [aut] (<https://orcid.org/0000-0002-7114-6248>, zouter)
Maintainer Robrecht Cannoodt <rcannood@gmail.com>
Repository CRAN
Date/Publication 2022-10-11 11:02:32 UTC
add_class

Description
Add class to object whilst keeping the old classes

Usage
add_class(x, class)
Arguments

x a R object
class A character vector naming classes

Examples

library(purrr)
l <- list(important_number = 42) %>% add_class("my_list")

Description

Check whether a vector are all elements of another vector

Usage

all_in(x, table)

x %all_in% table

Arguments

x The values to be matched.
table The values to be matched against.

Examples

Not run:
library(assertthat)
assert_that(c(1, 2) %all_in% c(0, 1, 2, 3, 4))
TRUE

assert_that("a" %all_in% letters)
TRUE

assert_that("A" %all_in% letters)
Error: "A" is missing 1 element from letters: "A"

assert_that(1:10 %all_in% letters)
Error: 1:10 is missing 10 elements from letters: 1L, 2L, 3L, ...

End(Not run)
apply_minmax_scale

Apply a minmax scale.

Description

Anything outside the range of [0, 1] will be set to 0 or 1.

Usage

apply_minmax_scale(x, addend, multiplier)

Arguments

x A numeric vector, matrix or data frame.
addend A minimum vector for each column
multiplier A scaling vector for each column

Value

The scaled matrix or vector. The numeric centering and scalings used are returned as attributes.

apply_quantile_scale

Apply a quantile scale.

Description

Anything outside the range of [0, 1] will be set to 0 or 1.

Usage

apply_quantile_scale(x, addend, multiplier)

Arguments

x A numeric vector, matrix or data frame.
addend A minimum vector for each column
multiplier A scaling vector for each column

Value

The scaled matrix or vector. The numeric centering and scalings used are returned as attributes.
apply_uniform_scale

Apply a uniform scale

Description

Apply a uniform scale

Usage

apply_uniform_scale(x, addend, multiplier)

Arguments

x A numeric vector, matrix or data frame.
addend A centering vector for each column
multiplier A scaling vector for each column

Value

The centered, scaled matrix. The numeric centering and scalings used are returned as attributes.

calculate_distance

Calculate (column-wise) distances/similarity between two matrices

Description

These matrices can be dense or sparse.

Usage

calculate_distance(
 x,
 y = NULL,
 method = c("pearson", "spearman", "cosine", "euclidean", "chisquared", "hamming",
 "kullback", "manhattan", "maximum", "canberra", "minkowski"),
 margin = 1,
 diag = FALSE,
 drop0 = FALSE
)

list_distance_methods()

calculate_similarity(
 x,
 y = NULL,
```r
margin = 1,
method = c("spearman", "pearson", "cosine"),
diag = FALSE,
drop0 = FALSE
)

list_similarity_methods()
```

Arguments

- `x` A numeric matrix, dense or sparse.
- `y` (Optional) a numeric matrix, dense or sparse, with `nrow(x) == nrow(y)`.
- `method` Which distance method to use. Options are: "cosine", "pearson", "spearman", "euclidean", and "manhattan".
- `margin` integer indicating margin of similarity/distance computation. 1 indicates rows or 2 indicates columns.
- `diag` if TRUE, only compute diagonal elements of the similarity/distance matrix; useful when comparing corresponding rows or columns of `x` and `y`.
- `drop0` if TRUE, zero values are removed regardless of `min_simil` or `rank`.

Examples

```r
## Generate two matrices with 50 and 100 samples
library(Matrix)
x <- Matrix::rsparsematrix(50, 1000, 0.01)
y <- Matrix::rsparsematrix(100, 1000, 0.01)
dist_euclidean <- calculate_distance(x, y, method = "euclidean")
dist_manhattan <- calculate_distance(x, y, method = "manhattan")
dist_spearman <- calculate_distance(x, y, method = "spearman")
dist_pearson <- calculate_distance(x, y, method = "pearson")
dist_angular <- calculate_distance(x, y, method = "cosine")
```

calculate_mean

Calculate a (weighted) mean between vectors or a list of vectors

Description

This function supports the arithmetic, geometric and harmonic mean.

Usage

```r
calculate_mean(..., method, weights = NULL)
calculate_harmonic_mean(..., weights = NULL)
calculate_geometric_mean(..., weights = NULL)
calculate_arithmetic_mean(..., weights = NULL)
```
check_packages

Arguments

... Can be:
- One numeric vector
- A list containing numeric vectors
- Numeric vectors given as separate inputs

method The aggregation function. Must be one of "arithmetic", "geometric", and "harmonic".

weights Weights with the same length as

Examples

calculate_arithmetic_mean(0.1, 0.5, 0.9)
calculate_geometric_mean(0.1, 0.5, 0.9)
calculate_harmonic_mean(0.1, 0.5, 0.9)
calculate_mean(.1, .5, .9, method = "harmonic")

example with multiple vectors
calculate_arithmetic_mean(c(0.1, 0.9), c(0.2, 1))

example with a list of vectors
vectors <- list(c(0.1, 0.2), c(0.4, 0.5))
calculate_geometric_mean(vectors)

example of weighted means
calculate_geometric_mean(c(0.1, 1), c(0.9, 20), c(0.5, 2), weights = c(1, 2, 5))

check_packages

Check which packages are installed

Description

Check which packages are installed

Usage

check_packages(...)

Arguments

... A set of package names

Examples

check_packages("SCORPIUS", "dynutils")
check_packages(c("princurve", "mlr", "tidyverse"))
dynutils

Common functionality for the dynverse packages

Description

Provides common functionality for the dynverse packages. dynverse is created to support the development, execution, and benchmarking of trajectory inference methods. For more information, check out dynverse.org.

Manipulation of lists

- `add_class()`: Add a class to an object
- `extend_with()`: Extend list with more data

Calculations

- `calculate_distance()`: Calculate pairwise distances between two (sparse) matrices
- `calculate_similarity()`: Calculate pairwise similarities between two (sparse) matrices
- `calculate_mean()`: Calculate a (weighted) mean between vectors or a list of vectors; supports the arithmetic, geometric and harmonic mean
- `project_to_segments()`: Project a set of points to set of segments

Manipulation of matrices

- `expand_matrix()`: Add rows and columns to a matrix

Scaling of matrices and vectors

- `scale_uniform()`: Rescale data to have a certain center and max range
- `scale_minmax()`: Rescale data to a [0, 1] range
- `scale_quantile()`: Cut off outer quantiles and rescale to a [0, 1] range

Manipulation of functions

- `inherit_default_params()`: Have one function inherit the default parameters from other functions

Manipulation of packages

- `check_packages()`: Easily checking whether certain packages are installed
- `install_packages()`: Install packages taking into account the remotes of another

Manipulation of vectors

- `random_time_string()`: Generates a string very likely to be unique
euclidean_distance

Tibble helpers

- `list_as_tibble()`: Convert a list of lists to a tibble whilst retaining class information
- `tibble_as_list()`: Convert a tibble back to a list of lists whilst retaining class information
- `extract_row_to_list()`: Extracts one row from a tibble and converts it to a list
- `mapdf()`: Apply a function to each row of a data frame

File helpers

- `safe_tempdir()`: Create an empty temporary directory and return its path

Assertion helpers

- `%all_in()%`: Check whether a vector are all elements of another vector
- `%has_names%()`: Check whether an object has certain names
- `is_single_numeric()`: Check whether a value is a single numeric
- `is_bounded()`: Check whether a value within a certain interval

Package helpers

- `recent_news()`: Print the most recent news (assumes NEWS.md file as specified by `news()`)

euclidean_distance These functions will be removed soon

Description

Use `calculate_distance()` instead.

Usage

euclidean_distance(x, y = NULL)
correlation_distance(x, y = NULL)

Arguments

- `x` A numeric matrix, dense or sparse.
- `y` (Optional) a numeric matrix, dense or sparse, with `nrow(x) == nrow(y)`.
expand_matrix

Expand a matrix with given rownames and colnames

Description

Expand a matrix with given rownames and colnames

Usage

expand_matrix(mat, rownames = NULL, colnames = NULL, fill = 0)

Arguments

mat The matrix to expand
rownames The desired rownames
colnames The desired colnames
fill With what to fill missing data

Examples

x <- matrix(runif(12), ncol = 4, dimnames = list(c("a", "c", "d"), c("D", "F", "H", "I")))
expand_matrix(x, letters[1:5], LETTERS[1:10], fill = 0)

extend_with

Extend an object

Description

Extend an object

Usage

extend_with(object, .class_name, ...)

Arguments

object A list
.class_name A class name to add
... Extra information in the list
Examples

library(purrr)
l <- list(important_number = 42) %>% add_class("my_list")
l %>% extend_with(
 .class_name = "improved_list",
 url = "https://github.com/dynverse/dynverse"
)
l

extract_row_to_list

Extracts one row from a tibble and converts it to a list

Description

Extracts one row from a tibble and converts it to a list

Usage

extract_row_to_list(tib, row_id)

Arguments

tib the tibble
row_id the index of the row to be selected, or alternatively an expression which will be evaluated to such an index

Value

the corresponding row from the tibble as a list

See Also

list_as_tibble tibble_as_list mapdf

Examples

library(tibble)

tib <- tibble(
 a = c(1, 2),
 b = list(log10, sqrt),
 c = c("parrot", "quest"),
 .object_class = list(c("myobject", "list"), c("yourobject", "list"))
)
extract_row_to_list(tib, 2)
extract_row_to_list(tib, which(a == 1))
has_names
Check whether an object has certain names

Description
Check whether an object has certain names

Usage

```r
has_names(x, which)
```

```r
x %has_names% which
```

Arguments

<table>
<thead>
<tr>
<th>x</th>
<th>object to test</th>
</tr>
</thead>
<tbody>
<tr>
<td>which</td>
<td>name</td>
</tr>
</tbody>
</table>

Examples

```r
## Not run:
library(assertthat)
li <- list(a = 1, b = 2)

assert_that(li %has_names% "a")
# TRUE

assert_that(li %has_names% "c")
# Error: li is missing 1 name from "c": "c"

assert_that(li %has_names% letters)
# Error: li is missing 24 names from letters: "c", "d", "e", ...

## End(Not run)
```

__inherit_default_params__

Inherit default parameters from a list of super functions

Description
Inherit default parameters from a list of super functions

Usage

```r
inherit_default_params(super_functions, fun)
```
install_packages

Arguments

super_functions
A list of super functions of which “fun” needs to inherit the default parameters

fun
The function whose default parameters need to be overridden

Value

Function fun, but with the default parameters of the super_functions

Examples

```r
fun1 <- function(a = 10, b = 7) runif(a, -b, b)
fun2 <- function(c = 9) 2^c

fun3 <- inherit_default_params(super = list(fun1, fun2),
                               fun = function(a, b, c) {
                                 list(x = fun1(a, b), y = fun2(c))
                               })

fun3
```

install_packages

Check package availability

Description

If the session is interactive, prompt the user whether to install the packages.

Usage

```r
install_packages(..., try_install = interactive())
```

Arguments

... The names of the packages to be checked

try_install Whether running interactively, which will prompt the user before installation

Examples

```r
## Not run:
install_packages("SCORPIUS")

## End(Not run)
is_bounded  

Check whether a value within a certain interval

Description

Check whether a value within a certain interval

Usage

is_bounded(
  x,
  lower_bound = -Inf,
  lower_closed = FALSE,
  upper_bound = Inf,
  upper_closed = FALSE
)

Arguments

x  
A value to be tested
lower_bound  
The lower bound
lower_closed  
Whether the lower bound is closed
upper_bound  
The upper bound
upper_closed  
Whether the upper bound is closed

Examples

## Not run:
library(assertthat)
assert_that(is_bounded(10))
# TRUE

assert_that(is_bounded(10:30))
# TRUE

assert_that(is_bounded(Inf))
# Error: Inf is not bounded by (-Inf,Inf)

assert_that(is_bounded(10, lower_bound = 20))
# Error: 10 is not bounded by (20,Inf)

assert_that(is_bounded(10,
  lower_bound = 20,
  lower_closed = TRUE,
  upper_bound = 30,
  upper_closed = FALSE))
is_single_numeric

# Error: 10 is not bounded by [20,30)
## End(Not run)

---

is_single_numeric  
*Check whether a value is a single numeric*

**Description**

Check whether a value is a single numeric

**Usage**

`is_single_numeric(x)`

**Arguments**

- `x`  
  A value to be tested

**Examples**

```r
Not run:
library(assertthat)
assert_that(is_single_numeric(1))
TRUE

assert_that(is_single_numeric(Inf))
TRUE

assert_that(is_single_numeric(1.6))
TRUE

assert_that(is_single_numeric(NA))
Error: NA is not a single numeric value

assert_that(is_single_numeric(1:6))
Error: 1:6 is not a single numeric value

assert_that(is_single_numeric("pie"))
Error: "pie" is not a single numeric value

End(Not run)
```
is_sparse  

**Check if an object is a sparse matrix**

**Description**
Check if an object is a sparse matrix

**Usage**
is_sparse(x)

**Arguments**
- x  
  An object to test

**Examples**
library(Matrix)
is_sparse(matrix(1:10))  # FALSE
is_sparse(Matrix::rsparsematrix(100, 200, .01))  # TRUE

list_as_tibble  

**Convert a list of lists to a tibble**

**Description**
Convert a list of lists to a tibble

**Usage**
list_as_tibble(list_of_rows)

**Arguments**
- list_of_rows  
  The list to be converted to a tibble

**Value**
A tibble with the same number of rows as there were elements in list_of_rows

**See Also**
tibble_as_list extract_row_to_list mapdf
Examples

library(purrr)

li <- list(
    list(a = 1, b = log10, c = "parrot") %>% add_class("myobject"),
    list(a = 2, b = sqrt, c = "quest") %>% add_class("yourobject")
)

tib <- list_as_tibble(li)

tib

mapdf

Apply a function to each row of a data frame

Description

The mapdf functions transform their input by applying a function to each row of a data frame and returning a vector the same length as the input. These functions work a lot like purrr’s map() functions.

Usage

mapdf(.x, .f, ...)

mapdf_lgl(.x, .f, ...)

mapdf_chr(.x, .f, ...)

mapdf_int(.x, .f, ...)

mapdf_dbl(.x, .f, ...)

mapdf_dfr(.x, .f, ...)

mapdf_dfc(.x, .f, ...)

mapdf_lat(.x, .f, ...)

walkdf(.x, .f, ...)

Arguments

.x  A data.frame, data_frame, or tibble.
.
.f  A function or formula. If a function, the first argument will be the row as a list. If a formula, e.g. ~ .a, the . is a placeholder for the row as a list.
.
... Additional arguments passed on to the mapped function.
Details

- `mapdf()` always returns a list.
- `mapdf_lgl()`, `mapdf_int()`, `mapdf_dbl()` and `mapdf_chr()` return vectors of the corresponding type (or die trying).
- `mapdf_dfr()` and `mapdf_dfc()` return data frames created by row-binding and column-binding respectively. They require dplyr to be installed.
- `mapdf_lat()` returns a tibble by transforming outputted lists to a tibble using `list_as_tibble`.
- `walkdf()` calls `.f` for its side-effect and returns the input `.x`.

Examples

```r
library(dplyr)

create example tibble
a = c(1, 2),
b = list(log10, sqrt),
c = c("parrot", "quest"),
.object_class = list(c("myobject", "list"), c("yourobject", "list"))

tib <- tibble(
a = c(1, 2),
b = list(log10, sqrt),
c = c("parrot", "quest"),
.object_class = list(c("myobject", "list"), c("yourobject", "list"))
)

map over the rows using a function
tib %>% mapdf(class)

or use an anonymous function
tib %>% mapdf(function(row) paste0(row\$b(row\$a), ",", row\$c))

or a formula
tib %>% mapdf(~ .\$b)

there are many more variations available
see ?mapdf for more info
tib %>% mapdf_lgl(~ .\$a > 1)
tib %>% mapdf_chr(~ paste0("-", .\$c, "-"))
tib %>% mapdf_int(~ nchar(.\$c))
tib %>% mapdf_dbl(~ .\$a * 1.234)
```

---

**project_to_segments**

Project a set of points to to set of segments

---

**Description**

Finds the projection index for a matrix of points `x`, when projected onto a set of segments defined by `segment_start` and `segment_end`.

**Usage**

```r
project_to_segments(x, segment_start, segment_end)
```
**random_time_string**

Generate random string

**Description**

Generate a random string with first the current time, together with a random number

**Usage**

```r
random_time_string(name = NULL)
```

**Arguments**

- `name` Optional string to be added in the random_time_string

**Examples**

```r
random_time_string("test")
```
read_h5

Read/write R objects to a H5 file.

Description
Read/write R objects to a H5 file.

Usage
read_h5(path)
read_h5_(file_h5)
write_h5(x, path)
write_h5_(x, file_h5, path)

Arguments
path  Path to read from/write to.
file_h5  A H5 file to read from/write to.
x  R object to write.

recent_news

Print the most recent news

Description
Print the most recent news

Usage
recent_news(path = NULL, package = detect_package_name(path = path), n = 2)

Arguments
path  The path of the description in which the package resides
package  The package name
n  Number of recent news to print
safe_tempdir

Create an empty temporary directory and return its path

Description

Create an empty temporary directory and return its path

Usage

safe_tempdir(subfolder)

Arguments

subfolder Name of a subfolder to be created

Examples

## Not run:
safe_tempdir("samson")
# "/tmp/Rtmp8xCGJe/file339a13bec763/samson"
## End(Not run)

scale_minmax

Rescale data to a \([0, 1]\) range

Description

Rescale data to a \([0, 1]\) range

Usage

scale_minmax(x)

Arguments

x A numeric vector, matrix or data frame.

Value

The centered, scaled matrix or vector. The numeric centering and scalings used are returned as attributes.
Examples

```r
Generate a matrix from a normal distribution
with a large standard deviation, centered at c(5, 5)
x <- matrix(rnorm(200*2, sd = 10, mean = 5), ncol = 2)

Minmax scale the data
x_scaled <- scale_minmax(x)

Plot rescaled data
plot(x_scaled)

Show ranges of each column
apply(x_scaled, 2, range)
```

**scale_quantile**

Cut off outer quantiles and rescale to a [0, 1] range

### Description

Cut off outer quantiles and rescale to a [0, 1] range

### Usage

```r
scale_quantile(x, outlier_cutoff = 0.05)
```

### Arguments

- `x` A numeric vector, matrix or data frame.
- `outlier_cutoff` The quantile cutoff for outliers (default 0.05).

### Value

The centered, scaled matrix or vector. The numeric centering and scalings used are returned as attributes.

### Examples

```r
Generate a matrix from a normal distribution
with a large standard deviation, centered at c(5, 5)
x <- matrix(rnorm(200*2, sd = 10, mean = 5), ncol = 2)

Scale the dataset between [0,1]
x_scaled <- scale_quantile(x)

Plot rescaled data
plot(x_scaled)

Show ranges of each column
apply(x_scaled, 2, range)
```
scale_uniform

Rescale data to have a certain center and max range.

Description

scale_uniform uniformly scales a given matrix such that the returned space is centered on center, and each column was scaled equally such that the range of each column is at most max_range.

Usage

scale_uniform(x, center = 0, max_range = 1)

Arguments

x A numeric vector matrix or data frame.
center The new center point of the data.
max_range The maximum range of each column.

Value

The centered, scaled matrix. The numeric centering and scalings used are returned as attributes.

Examples

## Generate a matrix from a normal distribution
## with a large standard deviation, centered at c(5, 5)
x <- matrix(rnorm(200*2, sd = 10, mean = 5), ncol = 2)

## Center the dataset at c(0, 0) with a minimum of c(-.5, -.5) and a maximum of c(.5, .5)
x_scaled <- scale_uniform(x, center = 0, max_range = 1)

## Plot rescaled data
plot(x_scaled)

## Show ranges of each column
apply(x_scaled, 2, range)

switch_devel

Switching of development stage within the dynverse

Description

Switching of development stage within the dynverse


**Usage**

```r
switch_devel(file = "DESCRIPTION", desc = desc::desc(file = file))
switch_master(file = "DESCRIPTION", desc = desc::desc(file = file))
switch_cran(file = "DESCRIPTION", desc = desc::desc(file = file))
```

**Arguments**

- `file` The description file, defaults to DESCRIPTION
- `desc` The read in description using the desc package

---

**test_h5_installation**  
Tests whether hdf5 is correctly installed and can load/write data

**Usage**

```r
test_h5_installation(detailed = FALSE)
get_h5_test_data()
```

**Arguments**

- `detailed` Whether top do a detailed check

---

**tibble_as_list**  
Convert a tibble to a list of lists

**Description**

Convert a tibble to a list of lists

**Usage**

```r
tibble_as_list(tib)
```

**Arguments**

- `tib` A tibble
Value

A list with the same number of lists as there were rows in tib

See Also

list_as_tibble extract_row_to_list mapdf

Examples

library(tibble)

tib <- tibble(
  a = c(1, 2),
  b = list(log10, sqrt),
  c = c("parrot", "quest"),
  .object_class = list(c("myobject", "list"), c("yourobject", "list"))
)

li <- tibble_as_list(tib)

li
Index

%all_in% (all_in), 3
%has_names% (has_names), 12
%all_in% (), 9
%has_names% (), 9

add_class, 2
add_class(), 8
all_in, 3
apply_minmax_scale, 4
apply_quantile_scale, 4
apply_uniform_scale, 5

calculate_arithmetic_mean
  (calculate_mean), 6
calculate_distance, 5
calculate_distance(), 8, 9
calculate_geometric_mean
  (calculate_mean), 6
calculate_harmonic_mean
  (calculate_mean), 6
calculate_mean, 6
calculate_mean(), 8
calculate_similarity
  (calculate_distance), 5
calculate_similarity(), 8
check_packages, 7
check_packages(), 8
correlation_distance
  (euclidean_distance), 9
dynutils, 8
euclidean_distance, 9
expand_matrix, 10
expand_matrix(), 8
extend_with, 10
extend_with(), 8
extract_row_to_list, 11
extract_row_to_list(), 9

getc_h5_test_data
  (test_h5_installation), 24
has_names, 12
inherit_default_params, 12
inherit_default_params(), 8
install_packages, 13
install_packages(), 8
is_bounded, 14
is_bounded(), 9
is_single_numeric, 15
is_single_numeric(), 9
is_sparse, 16
list_as_tibble, 16, 18
list_as_tibble(), 9
list_distance_methods
  (calculate_distance), 5
list_similarity_methods
  (calculate_distance), 5
map(), 17
mapdf, 17
mapdf(), 9
mapdf_chr (mapdf), 17
mapdf_dbl (mapdf), 17
mapdf_dfc (mapdf), 17
mapdf_dfr (mapdf), 17
mapdf_int (mapdf), 17
mapdf_lat (mapdf), 17
mapdf_lgl (mapdf), 17
news(), 9
project_to_segments, 18
project_to_segments(), 8
random_time_string, 19
random_time_string(), 8
read_h5, 20
INDEX

read_h5_(read_h5), 20
recent_news, 20
recent_news(), 9

safe_tempdir, 21
safe_tempdir(), 9
scale_minmax, 21
scale_minmax(), 8
scale_quantile, 22
scale_quantile(), 8
scale_uniform, 23
scale_uniform(), 8
switch_cran (switch_devel), 23
switch_devel, 23
switch_master (switch_devel), 23

test_h5_installation, 24
tibble_as_list, 24
tibble_as_list(), 9

walkdf (mapdf), 17
write_h5 (read_h5), 20
write_h5_(read_h5), 20