Package ‘dynutils’

February 21, 2020

Type Package
Title Common Functionality for the 'dynverse' Packages
Version 1.0.5
Description Provides common functionality for the 'dynverse' packages.
‘dynverse’ is created to support the development, execution, and benchmarking of trajectory inference methods.
For more information, check out <https://dynverse.org>.
License MIT + file LICENSE
URL https://github.com/dynverse/dynutils
BugReports https://github.com/dynverse/dynutils/issues
LazyData TRUE
RoxygenNote 7.0.2
Depends R (>= 3.0.0)
Imports assertthat, crayon, desc, dplyr, magrittr, Matrix, methods, proxyC, purrr, Rcpp, remotes, stringr, tibble
Suggests ggplot2, hdf5r, knitr, readr, rmarkdown, testthat
LinkingTo Rcpp
Encoding UTF-8
VignetteBuilder knitr
NeedsCompilation yes
Author Robrecht Cannoodt [aut, cre] (<https://orcid.org/0000-0003-3641-729X>, rcannood),
Wouter Saelens [aut] (<https://orcid.org/0000-0002-7114-6248>, zouter)
Maintainer Robrecht Cannoodt <rcannood@gmail.com>
Repository CRAN
Date/Publication 2020-02-21 12:30:02 UTC
add_class

Description
Add class to object whilst keeping the old classes

Usage
add_class(x, class)
all_in

Arguments

x a R object
class A character vector naming classes

Examples

library(purrr)
l <- list(important_number = 42) %>% add_class("my_list")

all_in

Check whether a vector are all elements of another vector

Description

Check whether a vector are all elements of another vector

Usage

all_in(x, table)

x %all_in% table

Arguments

x The values to be matched.
table The values to be matched against.

Examples

Not run:
library(assertthat)
assert_that(c(1, 2) %all_in% c(0, 1, 2, 3, 4))
TRUE

assert_that("a" %all_in% letters)
TRUE

assert_that("A" %all_in% letters)
Error: "A" is missing 1 element from letters: "A"

assert_that(1:10 %all_in% letters)
Error: 1:10 is missing 10 elements from letters: 1L, 2L, 3L, ...

End(Not run)
apply_minmax_scale Apply a minmax scale.

Description

Anything outside the range of [0, 1] will be set to 0 or 1.

Usage

apply_minmax_scale(x, addend, multiplier)

Arguments

x A numeric vector, matrix or data frame.
addend A minimum vector for each column
multiplier A scaling vector for each column

Value

The scaled matrix or vector. The numeric centering and scalings used are returned as attributes.

apply_quantile_scale Apply a quantile scale.

Description

Anything outside the range of [0, 1] will be set to 0 or 1.

Usage

apply_quantile_scale(x, addend, multiplier)

Arguments

x A numeric vector, matrix or data frame.
addend A minimum vector for each column
multiplier A scaling vector for each column

Value

The scaled matrix or vector. The numeric centering and scalings used are returned as attributes.
apply_uniform_scale
Apply a uniform scale

Description

Apply a uniform scale

Usage

```r
apply_uniform_scale(x, addend, multiplier)
```

Arguments

- **x**: A numeric vector, matrix or data frame.
- **addend**: A centering vector for each column
- **multiplier**: A scaling vector for each column

Value

The centered, scaled matrix. The numeric centering and scalings used are returned as attributes.

calculate_distance
Calculate (column-wise) distances/similarity between two matrices

Description

These matrices can be dense or sparse.

Usage

```r
calculate_distance(
  x,
  y = NULL,
  method = c("pearson", "spearman", "cosine", "euclidean", "manhattan"),
  margin = 1
)
```

```r
list_distance_methods()
```

```r
calculate_similarity(
  x,
  y = NULL,
  margin = 1,
  method = c("spearman", "pearson", "cosine")
)
```

```r
list_similarity_methods()
```
calculate_mean

Arguments

x A numeric matrix, dense or sparse.
y (Optional) a numeric matrix, dense or sparse, with nrow(x) == nrow(y).
method Which distance method to use. Options are: "cosine", "pearson", "spearman", "euclidean", and "manhattan".
margin Which margin to use for the pairwise comparison. 1 => rowwise, 2 => column-wise.

Examples

Generate two matrices with 50 and 100 samples
library(Matrix)
x <- Matrix::rsparsematrix(50, 1000, .01)
y <- Matrix::rsparsematrix(100, 1000, .01)
dist_euclidean <- calculate_distance(x, y, method = "euclidean")
dist_manhattan <- calculate_distance(x, y, method = "manhattan")
dist_spearman <- calculate_distance(x, y, method = "spearman")
dist_pearson <- calculate_distance(x, y, method = "pearson")
dist_angular <- calculate_distance(x, y, method = "cosine")

calculate_mean

Calculate a (weighted) mean between vectors or a list of vectors

Description

This function supports the arithmetic, geometric and harmonic mean.

Usage

calculate_mean(..., method, weights = NULL)
calculate_harmonic_mean(..., weights = NULL)
calculate_geometric_mean(..., weights = NULL)
calculate_arithmetic_mean(..., weights = NULL)

Arguments

... Can be:
 • One numeric vector
 • A list containing numeric vectors
 • Numeric vectors given as separate inputs
method The aggregation function. Must be one of "arithmetic", "geometric", and "harmonic".
weights Weights with the same length as
Examples

```r
calculate_arithmetic_mean(0.1, 0.5, 0.9)
calculate_geometric_mean(0.1, 0.5, 0.9)
calculate_harmonic_mean(0.1, 0.5, 0.9)
calculate_mean(.1, .5, .9, method = "harmonic")

# example with multiple vectors
calculate_arithmetic_mean(c(0.1, 0.9), c(0.2, 1))

# example with a list of vectors
vectors <- list(c(0.1, 0.2), c(0.4, 0.5))
calculate_geometric_mean(vectors)

# example of weighted means
calculate_geometric_mean(c(0.1, 10), c(0.9, 20), c(0.5, 2), weights = c(1, 2, 5))
```

check_packages

Check which packages are installed

Description

Check which packages are installed

Usage

```r
check_packages(...)
```

Arguments

... A set of package names

Examples

```r
check_packages("SCORPIUS", "dynutils")
check_packages(c("princurve", "mlr", "tidyverse"))
```

dynutils

Common functionality for the dynverse packages

Description

Provides common functionality for the dynverse packages. dynverse is created to support the development, execution, and benchmarking of trajectory inference methods. For more information, check out dynverse.org.
Manipulation of lists

- `add_class()`: Add a class to an object
- `extend_with()`: Extend list with more data

Calculations

- `calculate_distance()`: Calculate pairwise distances between two (sparse) matrices
- `calculate_similarity()`: Calculate pairwise similarities between two (sparse) matrices
- `calculate_mean()`: Calculate a (weighted) mean between vectors or a list of vectors; supports the arithmetic, geometric and harmonic mean
- `project_to_segments()`: Project a set of points to to set of segments

Manipulation of matrices

- `expand_matrix()`: Add rows and columns to a matrix

Scaling of matrices and vectors

- `scale_uniform()`: Rescale data to have a certain center and max range
- `scale_minmax()`: Rescale data to a [0, 1] range
- `scale_quantile()`: Cut off outer quantiles and rescale to a [0, 1] range

Manipulation of functions

- `inherit_default_params()`: Have one function inherit the default parameters from other functions

Manipulation of packages

- `check_packages()`: Easily checking whether certain packages are installed
- `install_packages()`: Install packages taking into account the remotes of another

Manipulation of vectors

- `random_time_string()`: Generates a string very likely to be unique

Tibble helpers

- `list_as_tibble()`: Convert a list of lists to a tibble whilst retaining class information
- `tibble_as_list()`: Convert a tibble back to a list of lists whilst retaining class information
- `extract_row_to_list()`: Extracts one row from a tibble and converts it to a list
- `mapdf()`: Apply a function to each row of a data frame

File helpers

- `safe_tempdir()`: Create an empty temporary directory and return its path
euclidean_distance

Assertion helpers

- %all_in%(): Check whether a vector are all elements of another vector
- %has_names%(): Check whether an object has certain names
- is_single_numeric(): Check whether a value is a single numeric
- is_bounded(): Check whether a value within a certain interval

Package helpers

- recent_news(): Print the most recent news (assumes NEWS.md file as specified by news())

These functions will be removed soon

description

Use calculate_distance() instead.

Usage

euclidean_distance(x, y = NULL)
correlation_distance(x, y = NULL)

Arguments

x A numeric matrix, dense or sparse.
y (Optional) a numeric matrix, dense or sparse, with nrow(x) == nrow(y).

description

Expand a matrix with given rownames and colnames

Usage

expand_matrix(mat, rownames = NULL, colnames = NULL, fill = 0)

Arguments

mat The matrix to expand
rownames The desired rownames
colnames The desired colnames
fill With what to fill missing data

Examples

```r
x <- matrix(runif(12), ncol = 4, dimnames = list(c("a", "c", "d"), c("D", "F", "H", "I")))
extend_matrix(x, letters[1:5], LETTERS[1:10], fill = 0)
```

describe

Extend an object

Usage

```r
extend_with(object, .class_name, ...)
```

Arguments

- `object`: A list
- `.class_name`: A class name to add
- `...`: Extra information in the list

Examples

```r
library(purrr)
l <- list(important_number = 42) %>% add_class("my_list")
l %>% extend_with(
  .class_name = "improved_list",
  url = "https://github.com/dynverse/dynverse"
)
l
```  

extract_row_to_list

Extracts one row from a tibble and converts it to a list

Description

Extracts one row from a tibble and converts it to a list

Usage

```r
extract_row_to_list(tib, row_id)
```

Arguments

- `tib`: the tibble
- `row_id`: the index of the row to be selected, or alternatively an expression which will be evaluated to such an index
has_names

Value

the corresponding row from the tibble as a list

See Also

list_as_tibble tibble_as_list mapdf

Examples

library(tibble)

tib <- tibble(
 a = c(1, 2),
 b = list(log10, sqrt),
 c = c("parrot", "quest"),
 .object_class = list(c("myobject", "list"), c("yourobject", "list"))
)

extract_row_to_list(tib, 2)
extract_row_to_list(tib, which(a == 1))

has_names Check whether an object has certain names

Description

Check whether an object has certain names

Usage

has_names(x, which)

x %has_names% which

Arguments

x object to test
which name

Examples

Not run:
library(assertthat)
li <- list(a = 1, b = 2)

assert_that(li %has_names% "a")
TRUE
assert_that(li %has_names% "c")
Error: li is missing 1 name from "c": "c"

assert_that(li %has_names% letters)
Error: li is missing 24 names from letters: "c", "d", "e", ...

End(Not run)

inherit_default_params

Inherit default parameters from a list of super functions

Description

Inherit default parameters from a list of super functions

Usage

```r
inherit_default_params(super_functions, fun)
```

Arguments

- `super_functions`
 A list of super functions of which `fun` needs to inherit the default parameters
- `fun`
 The function whose default parameters need to be overridden

Value

Function `fun`, but with the default parameters of the `super_functions`

Examples

```r
fun1 <- function(a = 10, b = 7) runif(a, -b, b)
fun2 <- function(c = 9) 2^c

fun3 <- inherit_default_params(
  super = list(fun1, fun2),
  fun = function(a, b, c) {
    list(x = fun1(a, b), y = fun2(c))
  }
)

fun3
```
install_packages

Check package availability

Description

If the session is interactive, prompt the user whether to install the packages.

Usage

```r
install_packages(..., try_install = interactive())
```

Arguments

- `...`
 - The names of the packages to be checked
- `try_install`
 - Whether running interactively, which will prompt the user before installation

Examples

```r
## Not run:
install_packages("SCORPIUS")

## End(Not run)
```

is_bounded

Check whether a value within a certain interval

Description

Check whether a value within a certain interval

Usage

```r
is_bounded(
  x,
  lower_bound = -Inf,
  lower_closed = FALSE,
  upper_bound = Inf,
  upper_closed = FALSE
)
```

Arguments

- `x`
 - A value to be tested
- `lower_bound`
 - The lower bound
- `lower_closed`
 - Whether the lower bound is closed
- `upper_bound`
 - The upper bound
- `upper_closed`
 - Whether the upper bound is closed
is_single_numeric

Check whether a value is a single numeric

is_single_numeric(x)

Arguments

x A value to be tested

Examples

Not run:
library(assertthat)
assert_that(is_single_numeric(1))
TRUE

assert_that(is_single_numeric(Inf))
TRUE
is_sparse

Check if an object is a sparse matrix

Description
Check if an object is a sparse matrix

Usage
is_sparse(x)

Arguments
x An object to test

Examples
is_sparse(matrix(1:10)) # FALSE
is_sparse(Matrix::rsparsematrix(100, 200, .01)) # TRUE

list_as_tibble Convert a list of lists to a tibble

Description
Convert a list of lists to a tibble

Usage
list_as_tibble(list_of_rows)
Arguments

list_of_rows The list to be converted to a tibble

Value

A tibble with the same number of rows as there were elements in list_of_rows

See Also

tibble_as_list extract_row_to_list mapdf

Examples

library(purrr)

li <- list(
 list(a = 1, b = log10, c = "parrot") %>% add_class("myobject"),
 list(a = 2, b = sqrt, c = "quest") %>% add_class("yourobject")
)

tib <- list_as_tibble(li)

tib
Arguments

.x A data.frame, data_frame, or tibble.
.f A function or formula. If a function, the first argument will be the row as a list. If a formula, e.g. ~.$a, the . is a placeholder for the row as a list.
... Additional arguments passed on to the mapped function.

Details

• mapdf() always returns a list.
• mapdf_lgl(), mapdf_int(), mapdf_dbl() and mapdf_chr() return vectors of the corresponding type (or die trying).
• mapdf_dfr() and mapdf_dfc() return data frames created by row-binding and column-binding respectively. They require dplyr to be installed.
• mapdf_lat() returns a tibble by transforming outputted lists to a tibble using list.as.tibble.
• walkdf() calls .f for its side-effect and returns the input .x.

Examples

library(dplyr)

```
tib <- tibble(
  a = c(1, 2),
  b = list(log10, sqrt),
  c = c("parrot", "quest"),
  .object_class = list(c("myobject", "list"), c("yourobject", "list"))
)
```

map over the rows using a function
```
tib %>% mapdf(class)
```

or use an anonymous function
```
tib %>% mapdf(function(row) paste0(row$b(row$a), ",", row$c))
```

or a formula
```
tib %>% mapdf(~.$b)
```

there are many more variations available
see ?mapdf for more info
```
tib %>% mapdf_lgl(~.$a > 1)
```
```
tib %>% mapdf_chr(~ paste0("-", .c, ",-"))
```
```
tib %>% mapdf_int(~ nchar(.c))
```
```
tib %>% mapdf_dbl(~.$a * 1.234)
```

```
**project_to_segments**  
*Project a set of points to a set of segments*

**Description**

Finds the projection index for a matrix of points \( x \), when projected onto a set of segments defined by \( \text{segment}\_\text{start} \) and \( \text{segment}\_\text{end} \).

**Usage**

\[
\text{project_to_segments}(x, \text{segment}\_\text{start}, \text{segment}\_\text{end})
\]

**Arguments**

- \( x \)  
a matrix of data points.
- \( \text{segment}\_\text{start} \)  
a matrix of segment start points.
- \( \text{segment}\_\text{end} \)  
a matrix of segment end points.

**Value**

A list with components

- \( x\_\text{proj} \)  
a matrix of projections of \( x \) onto the given segments.
- \( \text{segment} \)  
the index of the segment a point is projected on
- \( \text{progression} \)  
the progression of a projection along its segment
- \( \text{distance} \)  
the distance from each point in \( x \) to its projection in \( x\_\text{proj} \)

**Examples**

\[
x <- \text{matrix(rnorm(50, 0, .5), ncol = 2)}
\text{segfrom} <- \text{matrix(c(0, 1, 0, -1, 1, 0, -1, 0), ncol = 2, byrow = TRUE)}
\text{segto} <- \text{segfrom / 10}
\text{fit} <- \text{project_to_segments(x, segfrom, segto)}
\]

\[
\text{str(fit)} \# \text{examine output}
\]
**random_time_string**

Generate random string

**Description**

Generate a random string with first the current time, together with a random number

**Usage**

```r
random_time_string(name = NULL)
```

**Arguments**

- `name`: Optional string to be added in the random_time_string

**Examples**

```r
random_time_string("test")
```

---

**read_h5**

Read/write R objects to a H5 file.

**Description**

Read/write R objects to a H5 file.

**Usage**

```r
read_h5(path)
read_h5_(file_h5)
write_h5(x, path)
write_h5_(x, file_h5, path)
```

**Arguments**

- `path`: Path to read from/write to.
- `file_h5`: A H5 file to read from/write to.
- `x`: R object to write.
recent_news  

Print the most recent news

Description

Print the most recent news

Usage

recent_news(path = NULL, package = detect_package_name(path = path), n = 2)

Arguments

- **path**: The path of the description in which the package resides
- **package**: The package name
- **n**: Number of recent news to print

safe_tempdir  

Create an empty temporary directory and return its path

Description

Create an empty temporary directory and return its path

Usage

safe_tempdir(subfolder)

Arguments

- **subfolder**: Name of a subfolder to be created

Examples

```r
Not run:
safe_tempdir("samson")
"/tmp/Rtmp8xCGJe/file339a13bec763/samson"

End(Not run)
```
**scale_minmax**

Rescale data to a $[0, 1]$ range

**Description**

Rescale data to a $[0, 1]$ range

**Usage**

scale_minmax(x)

**Arguments**

x  
A numeric vector, matrix or data frame.

**Value**

The centered, scaled matrix or vector. The numeric centering and scalings used are returned as attributes.

**Examples**

```r
Generate a matrix from a normal distribution
with a large standard deviation, centered at c(5, 5)
x <- matrix(rnorm(200*2, sd = 10, mean = 5), ncol = 2)
Minmax scale the data
x_scaled <- scale_minmax(x)
Plot rescaled data
plot(x_scaled)
Show ranges of each column
apply(x_scaled, 2, range)
```

**scale_quantile**

Cut off outer quantiles and rescale to a $[0, 1]$ range

**Description**

Cut off outer quantiles and rescale to a $[0, 1]$ range

**Usage**

scale_quantile(x, outlier_cutoff = 0.05)
Arguments

x  A numeric vector, matrix or data frame.
outlier_cutoff  The quantile cutoff for outliers (default 0.05).

Value

The centered, scaled matrix or vector. The numeric centering and scalings used are returned as attributes.

Examples

## Generate a matrix from a normal distribution
## with a large standard deviation, centered at c(5, 5)
x <- matrix(rnorm(200*2, sd = 10, mean = 5), ncol = 2)

## Scale the dataset between [0,1]
x_scaled <- scale_quantile(x)

## Plot rescaled data
plot(x_scaled)

## Show ranges of each column
apply(x_scaled, 2, range)

scale_uniform

Rescale data to have a certain center and max range.

Description

scale_uniform uniformly scales a given matrix such that the returned space is centered on center, and each column was scaled equally such that the range of each column is at most max_range.

Usage

scale_uniform(x, center = 0, max_range = 1)

Arguments

x  A numeric vector matrix or data frame.
center  The new center point of the data.
max_range  The maximum range of each column.

Value

The centered, scaled matrix. The numeric centering and scalings used are returned as attributes.
Examples

```r
Generate a matrix from a normal distribution
with a large standard deviation, centered at c(5, 5)
x <- matrix(rnorm(200*2, sd = 10, mean = 5), ncol = 2)

Center the dataset at c(0, 0) with a minimum of c(-.5, -.5) and a maximum of c(.5, .5)
x_scaled <- scale_uniform(x, center = 0, max_range = 1)

Plot rescaled data
plot(x_scaled)

Show ranges of each column
apply(x_scaled, 2, range)
```

---

`switch_devel`  
*Switching of development stage within the dynverse*

**Description**

Switching of development stage within the dynverse

**Usage**

```r
switch_devel(file = "DESCRIPTION", desc = desc::desc(file = file))
switch_master(file = "DESCRIPTION", desc = desc::desc(file = file))
switch_cran(file = "DESCRIPTION", desc = desc::desc(file = file))
```

**Arguments**

- `file` The description file, defaults to `DESCRIPTION`
- `desc` The read in description using the `desc` package

---

`test_h5_installation`  
*Tests whether hdf5 is correctly installed and can load/write data*

**Description**

Tests whether hdf5 is correctly installed and can load/write data

**Usage**

```r
test_h5_installation(detailed = FALSE)
get_h5_test_data()
```
Arguments
detailed Whether to do a detailed check

---

tibble_as_list Convert a tibble to a list of lists

Description
Convert a tibble to a list of lists

Usage
tibble_as_list(tib)

Arguments
tib A tibble

Value
A list with the same number of lists as there were rows in tib

See Also
list_as_tibble extract_row_to_list mapdf

Examples
library(tibble)

```r
tib <- tibble(
a = c(1, 2),
b = list(log10, sqrt),
c = c("parrot", "quest"),
.object_class = list(c("myobject", "list"), c("yourobject", "list"))
)
li <- tibble_as_list(tib)
li
```
Index

%all_in% (all_in), 3
%has_names% (has_names), 11
%all_in% (), 9
%has_names% (), 9

add_class, 2
add_class(), 8
all_in, 3
apply_minmax_scale, 4
apply_quantile_scale, 4
apply_uniform_scale, 5

calculate_arithmetic_mean
  (calculate_mean), 6
calculate_distance, 5
calculate_distance(), 8, 9
calculate_geometric_mean
  (calculate_mean), 6
calculate_harmonic_mean
  (calculate_mean), 6
calculate_mean, 6
calculate_mean(), 8
calculate_similarity
  (calculate_distance), 5
calculate_similarity(), 8
check_packages, 7
check_packages(), 8
correlation_distance
  (euclidean_distance), 9
dynutils, 7
euclidean_distance, 9
expand_matrix, 9
expand_matrix(), 8
extend_with, 10
extend_with(), 8
extract_row_to_list, 10
extract_row_to_list(), 8
get_h5_test_data
  (test_h5_installation), 23
has_names, 11
inherit_default_params, 12
inherit_default_params(), 8
install_packages, 13
install_packages(), 8
is_bounded, 13
is_bounded(), 9
is_single_numeric, 14
is_single_numeric(), 9
is_sparse, 15
list_as_tibble, 15, 17
list_as_tibble(), 8
list_distance_methods
  (calculate_distance), 5
list_similarity_methods
  (calculate_distance), 5
map(), 16
mapdf, 16
mapdf(), 8
mapdf_chr (mapdf), 16
mapdf_dbl (mapdf), 16
mapdf_dfc (mapdf), 16
mapdf_dfr (mapdf), 16
mapdf_int (mapdf), 16
mapdf_lat (mapdf), 16
mapdf_lgl (mapdf), 16
news(), 9
project_to_segments, 18
project_to_segments(), 8
random_time_string, 19
random_time_string(), 8
read_h5, 19
read_h5_(read_h5), 19
recent_news, 20
recent_news(), 9

safe_tempdir, 20
safe_tempdir(), 8
scale_minmax, 21
scale_minmax(), 8
scale_quantile, 21
scale_quantile(), 8
scale_uniform, 22
scale_uniform(), 8
switch_cran(switch_devel), 23
switch_devel, 23
switch_master(switch_devel), 23

test_h5_installation, 23
tibble_as_list, 24
tibble_as_list(), 8

walkdf(mapdf), 16
write_h5(read_h5), 19
write_h5_(read_h5), 19