Package ‘eHDPrep’

June 5, 2023

Type Package

Title Quality Control and Semantic Enrichment of Datasets

Version 1.3.3

Maintainer Ian Overton <I.Overton@qub.ac.uk>

Description A tool for the preparation and enrichment of health datasets for analysis (Toner et al. (2023) <doi:10.1093/gigascience/giad030>). Provides functionality for assessing data quality and for improving the reliability and machine interpretability of a dataset. 'eHDPrep' also enables semantic enrichment of a dataset where metavariables are discovered from the relationships between input variables determined from user-provided ontologies.

License GPL-3

URL https://github.com/overton-group/eHDPrep

BugReports https://github.com/overton-group/eHDPrep/issues

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

Imports ggplot2 (>= 3.3.3), dplyr (>= 1.1.0), forcats (>= 0.5.0), stringr (>= 1.4.0), purrr (>= 0.3.4), tidyr (>= 1.1.2), kableExtra (>= 1.3.1), magrittr (>= 2.0.1), tibble (>= 3.0.5), scales (>= 1.1.1), dlang (>= 0.4.10), quanteda (>= 2.1.2), tm (>= 0.7-8), pheatmap (>= 1.0.12), igraph (>= 1.2.6), tidygraph (>= 1.2.0), readr (>= 1.4.0), readxl (>= 1.3.1), knitr (>= 1.31)

VignetteBuilder knitr

Depends R (>= 3.6.0)

Suggests testthat (>= 2.1.0), ggraph (>= 2.0.5)

Config/testthat/edition 3

NeedsCompilation no

Author Tom Toner [aut] (<https://orcid.org/0000-0001-8059-5822>), Ian Overton [aut, cre] (<https://orcid.org/0000-0003-1158-8527>)

Repository CRAN

Date/Publication 2023-06-05 18:20:12 UTC
R topics documented:

apply_quality_ctrl ... 3
assess_completeness .. 5
assess_quality .. 6
assume_var_classes .. 8
cellspec_lgl .. 9
compare_completeness .. 10
compare_info_content ... 11
compare_info_content_plt .. 12
completeness_heatmap ... 13
count_compare .. 15
discrete.mi .. 16
distant_neg_val ... 17
degree_tbl_to_graph ... 17
encode_as_num_mat ... 18
encode_binary_cats ... 19
encode_bin_cat_vec ... 20
encode_cats ... 21
encode_genotypes ... 22
encode_genotype_vec .. 23
encode_ordinals .. 23
entropy ... 24
exact.kde ... 25
example_data ... 26
example_edge_tbl .. 27
example_mapping_file .. 27
example_ontology .. 28
export_dataset ... 28
extract_freetext .. 29
identify_inconsistency ... 30
import_dataset ... 32
import_var_classes ... 33
information_content_contin .. 34
information_content_discrete ... 35
join_vars_to_ontol ... 35
max_catchNAs .. 36
mean_catchNAs .. 37
merge_cols ... 37
metavariable_agg .. 38
metavariable_info .. 40
metavariable_variable_descendants 42
min_catchNAs .. 43
mi_content_discrete ... 43
mod_track ... 44
node_IC_zhou ... 45
normalize ... 46
nums_to_NA ... 46
apply_quality_ctrl

Apply quality control measures to a dataset

Description

The primary high level function for quality control. Applies several quality control functions in sequence to input data frame (see Details for individual functions).

Usage

```r
apPLY_QUAlITY_CTRL(
  data,
  id_var,
  class_tbl,
  bin_cats = NULL,
  min_freq = 1,
  to_numeric_matrix = FALSE
)
```
apply_quality_ctrl

Arguments

data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g. from dbplyr or dplyr).
id_var An unquoted expression which corresponds to a variable (column) in data which identifies each row (sample).
class_tbl data frame such as the output tibble from assume_var_classes followed by import_var_classes.
bin_cats Optional named vector of user-defined values for binary values using binary_label_1 = binary_label_2 syntax (e.g. c("No" = "Yes") would assign level 1 to "No" and 2 to "Yes"). See encode_binary_cats for defaults. Applied to variables (columns) labelled "character" or "factor" in class_tbl.
min_freq Minimum frequency of occurrence extract_freetext will use to extract groups of proximal words in free-text from variables (columns) labelled "freetext" in class_tbl.
to_numeric_matrix Should QC'ed data be converted to a numeric matrix? Default: FALSE.

Details

The wrapped functions are applied in the following order:

1. Standardise missing values (strings_to_NA)
2. Encode binary categorical variables (columns) (encode_binary_cats)
3. Encode (specific) ordinal variables (columns) (encode_ordinals)
4. Encode genotype variables (encode_genotypes)
5. Extract information from free text variables (columns) (extract_freetext)
6. Encode non-binary categorical variables (columns) (encode_cats)
7. Encode output as numeric matrix (optional, encode_as_num_mat)

class_tbl is used to apply the above functions to the appropriate variables (columns).

Value

data with several QC measures applied.

See Also

Other high level functionality: assess_quality(), review_quality_ctrl(), semantic_enrichment()

Examples

data(example_data)
require(tibble)

create an example class_tbl object
note that diabetes_type is classes as ordinal and is not modified as its
levels are not pre-coded
tibble::tribble(~"var", ~"datatype",
 "patient_id", "id",
 "tumoursize", "numeric",
 "t_stage", "ordinal_tstage",
 "n_stage", "ordinal_nstage",
 "diabetes", "factor",
 "diabetes_type", "ordinal",
 "hypertension", "factor",
 "rural_urban", "factor",
 "marital_status", "factor",
 "SNP_a", "genotype",
 "SNP_b", "genotype",
 "free_text", "freetext") -> data_types

data_QC <- apply_quality_ctrl(example_data, patient_id, data_types,
 bin_cats =c("No" = "Yes", "rural" = "urban"), min_freq = 0.6)

assess_completeness(data, id_var, plot = TRUE)

Arguments

data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g. from dbplyr or dplyr).

id_var An unquoted expression which corresponds to a variable (column) in data which identifies each row (sample).

plot Should plots be rendered when function is run? (Default: TRUE)

Details

Returns a list of completeness assessments:

variable_completeness A tibble detailing completeness of variables (columns) (via variable_completeness).

row_completeness A tibble detailing completeness of rows (via row_completeness).

completeness_plot A plot of row and variable (column) completeness (via plot_completeness).

completeness_heatmap A clustered heatmap of cell completeness (via completeness_heatmap).

plot_completeness_heatmap A function which creates a clean canvas before plotting the completeness heatmap.
assess_quality

Assess quality of a dataset

Description

Provides information on the quality of a dataset. Assesses dataset's completeness, internal consistency, and entropy.

Usage

assess_quality(data, id_var, consis_tbl)

Arguments

data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g. from dbplyr or dtplyr).
id_var An unquoted expression which corresponds to a variable (column) in data which identifies each row (sample).
consis_tbl data frame or tibble containing information on internal consistency rules (see "Consistency Table Requirements" section)
assess_quality

Details

Wraps several quality assessment functions from eHDPrep and returns a nested list with the following structure:

completeness - A list of completeness assessments:
1. Tibble of variable (column) completeness (via variable_completeness)
2. Tibble of row (sample) completeness (via row_completeness)
3. Plot of row and variable completeness (via plot_completeness)
4. Completeness heatmap (via completeness_heatmap)
5. A function which creates a clean canvas before plotting the completeness heatmap.

internal_inconsistency - Tibble of internal inconsistencies, if any are present and if a consistency table is supplied (via identify_inconsistency).

vars_with_zero_entropy - Names of variables (columns) with zero entropy (via zero_entropy_variables)

Value

Nested list of quality measurements

Consistency Table Requirements

Table must have exactly five character columns. The columns should be ordered according to the list below which describes the values of each column:

1. First column name of data values that will be subject to consistency checking. String. Required.
2. Second column name of data values that will be subject to consistency checking. String. Required.
3. Logical test to compare columns one and two. One of: ">",">=","<","<=","==","!=". String. Optional if columns 4 and 5 have non-NA values.
4. Either a single character string or a colon-separated range of numbers which should only appear in column A. Optional if column 3 has a non-NA value.
5. Either a single character string or a colon-separated range of numbers which should only appear in column B given the value/range specified in column 4. Optional if column 3 has a non-NA value.

Each row should detail one test to make. Therefore, either column 3 or columns 4 and 5 must contain non-NA values.

See Also

Other high level functionality: apply_quality_ctrl(), review_quality_ctrl(), semantic_enrichment()
assume_var_classes

Assume variable classes in data

Examples

general example
data(example_data)
res <- assess_quality(example_data, patient_id)

example of internal consistency checks on more simple dataset
describing bean counts
require(tibble)

creating 'data':
beans <- tibble::tibble(red_beans = 1:15,
blue_beans = 1:15,
total_beans = 1:15*2,
red_bean_summary = c(rep("few_beans",9), rep("many_beans",6)))

creating 'consis_tbl'
bean_rules <- tibble::tribble(~varA, ~varB, ~lgl_test, ~varA_boundaries, ~varB_boundaries,
"red_beans", "blue_beans", "==", NA, NA,
"red_beans", "total_beans", "<=", NA, NA,
"red_beans", "red_bean_summary", NA, "1:9", "few_beans",
"red_beans", "red_bean_summary", NA, "10:15", "many_beans")

add some inconsistencies
beans[1, "red_bean_summary"] <- "many_beans"
beans[1, "red_beans"] <- 10

res <- assess_quality(beans, consis_tbl = bean_rules)

variable completeness table
res$completeness$variable_completeness

row completeness table
res$completeness$row_completeness

show completeness of rows and variables as a bar plot
res$completeness$completeness_plot

show dataset completeness in a clustered heatmap
res$completeness$plot_completeness_heatmap(res$completeness)

show any internal inconsistencies
res$internal_inconsistency

show any variables with zero entropy
res$vars_with_zero_entropy
Description

Classes/data types of data variables are assumed with this function and exported to a .csv file for amendment. Any incorrect classes can then be corrected and imported using `import_var_classes`.

Usage

```r
assume_var_classes(data, out_file = NULL)
```

Arguments

- `data`: data frame
- `out_file`: file where variables and their assumed classes are stored for user verification.

Value

 Writes a .csv file containing the variables and their assumed data types / classes.

See Also

- `import_var_classes`

Examples

```r
# example below assumes incorrectly for several variables
tmp = tempfile(fileext = ".csv")
data(example_data)
assume_var_classes(example_data, tmp)
```

cellspec_lgl

Kable logical data highlighting

Description

Adds colour highlighting to cell values if they are encoded as logical values. Output should then be passed to knitr’s `kable` function.

Usage

```r
cellspec_lgl(.data, rg = FALSE)
```

Arguments

- `.data`: Table to be highlighted.
- `rg`: Should red and green be used for TRUE and FALSE values, respectively? If FALSE (default), colour-blind-friendly colours are applied.
Details

This is useful for identifying the encoding used in a value (e.g. the difference between the string "TRUE" and truth value of logic TRUE). This highlighting can also be useful when visually assessing cell values in a table. The colour naming format (HTML or LaTeX) is automatically detected. There are four cell types considered:

1. non-logical cells are coloured black)
2. TRUE cells are coloured red (default) or green if \(rg \) is TRUE
3. FALSE cells are coloured cyan (default) or red if \(rg \) is TRUE
4. NA cells are coloured gray

Note: When passed to `kable()`, the escape parameter should be `FALSE` for colours to be rendered correctly.

Value

Table with cell colours specified.

See Also

`kable cell_spec`

compare_completeness
Compare Completeness between Datasets

Description

Produces a density plot comparing the completeness of two datasets (\(tbl_a \) and \(tbl_b \)) for variables (if \(dim == 2 \), default) or row (if \(dim == 1 \)). The label used to identify the dataset’s density curve can be specified using \(tbl_a _lab \) and \(tbl_b _lab \).

Usage

```r
compare_completeness(tbl_a, tbl_b, dim = 2, tbl_a_lab = NULL, tbl_b_lab = NULL)
```

Arguments

- \(tbl_a \)
 - Data frame of the first data frame to compare.
- \(tbl_b \)
 - Data frame of the second data frame to compare.
- \(dim \)
 - Integer. Dimension to measure completeness on. 2 (Default) measures completeness by variable. 1 measures completeness by row.
- \(tbl_a _lab \)
 - String to be used to label \(tbl_a \) on the output plot.
- \(tbl_b _lab \)
 - String to be used to label \(tbl_b \) on the output plot.

Value

Plot showing densities of completeness across both datasets.
compare_info_content

See Also

Other measures of completeness: `assess_completeness()`, `completeness_heatmap()`, `plot_completeness()`, `row_completeness()`, `variable_completeness()`

Examples

```r
data(example_data)
compare_completeness(example_data, strings_to_NA(example_data), dim = 2, "raw", "cleaned")
```

compare_info_content Information Content Comparison Table

Description

Used to quantify the amount of information loss, if any, which has occurred in a merging procedure between two discrete variables.

Usage

```r
compare_info_content(input1, input2, composite)
```

Arguments

- `input1` Character vector. First variable to compare
- `input2` Character vector. Second variable to compare
- `composite` Character vector. Composite variable, resultant of merging `input1` and `input2`.

Details

The function requires the two discrete variables which have been merged (`input1` and `input2`) and the composite variable (output). For each input, information content is calculated using `information_content_discrete` along with each input’s mutual information content with the composite variable using `mi_content_discrete`. The function returns a table describing these measures.

If the mutual information content between an input variable and the composite variable is equal to the information content of the input variable, it is confirmed that all information in the input variable has been incorporated into the composite variable. However, if one or both input variables’ information content is not equal to their mutual information with the composite variables, information loss has occurred.

Value

Table containing information content for `input1` and `input2` and their mutual information content with `composite`.
See Also

compare_info_content_plt

Examples

```r
data(example_data)
require(dplyr)
require(magrittr)
example_data %>%
  mutate(diabetes_merged = coalesce(diabetes_type, diabetes)) %>%
  select(starts_with("diabetes")) ->
merged_data

compare_info_content(merged_data$diabetes,
                      merged_data$diabetes_type,
                      merged_data$diabetes_merged)
```

Description

This function requires the output from compare_info_content. It is used to visualise the amount of information loss, if any, which has occurred in a merging procedure between two discrete variables.

Usage

```r
compare_info_content_plt(compare_info_content_res)
```

Arguments

- `compare_info_content_res`
 Output from compare_info_content.

Details

If the mutual information content between an input variable and the composite variable is equal to the information content of the input variable, it is confirmed that all information in the input variable has been incorporated into the composite variable.

Value

Plot of measures calculated in compare_info_content.

See Also

compare_info_content
Examples

```r
data(example_data)
require(dplyr)
require(magrittr)
example_data %>%
  mutate(diabetes_merged = coalesce(diabetes_type, diabetes)) %>%
  select(starts_with("diabetes")) ->
merged_data

compare_info_content(merged_data$diabetes,
                     merged_data$diabetes_type,
                     merged_data$diabetes_merged) %>%
  compare_info_content_plt()
```

completeness_heatmap

Completeness Heatmap

Description

Produces a heatmap visualising completeness across a dataset.

Usage

```r
completeness_heatmap(
  data,
  id_var,
  annotation_tbl = NULL,
  method = 1,
  show_rownames = FALSE,
  ...)
```

Arguments

- **data**: Data frame to be analysed.
- **id_var**: Character constant of row identifier variable name.
- **annotation_tbl**: Data frame containing variable annotation data. Column 1 should contain variable names, column 2 should contain an annotation label.
- **method**: Integer between 1 and 3. Default: 1. See Details for more information.
- **show_rownames**: Boolean. Should rownames be shown. Default: False.
- **...**: Parameters to be passed to `pheatmap`.
Details

- Method 1: Missing values are numerically encoded with a highly negative number, numerically distant from all values in data, using `distant_neg_val`. Values in categorical variables are replaced with the number of unique values in the variable. Clustering uses these values. Cells are coloured by presence (yellow = missing; blue = present).
- Method 2: Same as Method 1 but cells are coloured by values used to cluster.
- Method 3: Values in data are encoded as Boolean values for clustering (present values = 1; missing values = 0). Cells are coloured by presence (yellow = missing; blue = present).

Value
completeness heatmap

Note
See examples of how to plot using `plot.new()`. This is to ensure a new plot is created for the heatmap.

References

See Also

pheatmap

Other measures of completeness: `assess_completeness()`, `compare_completeness()`, `plot_completeness()`, `row_completeness()`, `variable_completeness()`

Examples
data(example_data)

heatmap without variable category annotations:
hm <- completeness_heatmap(example_data, patient_id)
plot.new() # ensure new plot is created
hm

heatmap with variable category annotations:
create a dataframe containing variable annotations
tibble::tribble(~"var", ~"datatype",
"patient_id", "id",
"tumoursize", "numeric",
"t_stage", "ordinal_tstage",
"n_stage", "ordinal_nstage",
"diabetes", "factor",
"diabetes_type", "ordinal",
"hypertension", "factor",
"rural_urban", "factor",
"marital_status", "factor",
"SNP_a", "genotype",
"SNP_b", "genotype",
"free_text", "freetext") -> data_types

hm <- completeness_heatmap(example_data, patient_id, annotation_tbl = data_types)
plot.new() # ensure new plot is created
hm

count_compare

Compare unique values before and after data modification

Description

Performs comparison of variables before and after a change has been applied in order to allow manual inspection and review of modifications made during the dataset preparation process.

Usage

```r
count_compare(
  cols2compare,
  before_tbl = NULL,
  after_tbl = NULL,
  only_diff = FALSE,
  kableout = TRUE,
  caption = NULL,
  latex_wrap = FALSE
)
```

Arguments

- **cols2compare**: Variables to compare between tables.
- **before_tbl**: Data frame from before modification was made.
- **after_tbl**: Data frame from after modification was made.
- **only_diff**: Keep only rows which differ between the tables (good for variables with many unique values, such as numeric variables).
- **kableout**: Should output be a kable from knitr? If not, returns a tibble. (Default: TRUE)
- **caption**: Caption for kable’s caption parameter.
- **latex_wrap**: Should tables be aligned vertically rather than horizontally? Useful for wide table which would otherwise run off a page in LaTeX format.
discrete.mi

Details

The purpose of this function is to summarise individual alterations in a dataset and works best with categorical variables. The output contains two tables derived from the parameters before_tbl and after_tbl. Each table shows the unique combinations of values in variables specified in the parameter cols2compare if the variable is present. The tables are presented as two sub-tables and therefore share a single table caption. This caption is automatically generated describing the content of the two sub-tables when the parameter caption is not specified. The default output is a kable containing two sub-kables however if the parameter kableout is FALSE, a list containing the two tibbles are returned. This may preferable for further analysis on the tables’ contents.

Value

Returns list of two tibbles or a kable (see kableout argument), each tallying unique values in specified columns in each input table.

Examples

```r
# merge data as the example modification
everse_data_merged <- merge_cols(example_data, diabetes_type, diabetes, "diabetes_merged", rm_in_vars = TRUE)

# review the differences between the input and output of the variable merging step above:
count_compare(before_tbl = example_data,
              after_tbl = example_data_merged,
              cols2compare = c("diabetes", "diabetes_type", "diabetes_merged"),
              kableout = FALSE)
```

discrete.mi

Calculate mutual information of a matrix of discrete values

Description

Compute mutual information between all rows of a matrix containing discrete outcomes.

Usage

discrete.mi(mat, progress.bar = FALSE)

Arguments

- `mat`: A matrix of discrete values
- `progress.bar`: Outputs status to terminal when set to 'text', or no status updates are output when set to FALSE.

Details

Note that only the lower triangle of the matrix is populated for speed, as the result is symmetric. Takes a matrix as input.
distant_neg_val

Value
A lower triangular matrix where element [i,j] contains the mutual information in bits between row i and row j of the input matrix

Author(s)
Alexander Lyulph Robert Lubbock, Ian Overton

distant_neg_val Find highly distant value for data frame

Description
Returns a numeric value which is distant from the values in data using the following equation:

\[
output = -2 \times (\max(data) - \min(data))
\]

Usage
distant_neg_val(data)

Arguments
data data frame.

Value
Numeric vector of length 1

edge_tbl_to_graph Convert edge table to tidygraph graph

Description
A edge table, as a data frame, is converted to a directed tidygraph tidygraph. Column 1 of the edge table is interpreted as a "from" column, Column 2 is interpreted as a "to" column, and any further columns are interpreted as attributes of the entity/node recorded in column 1. Incomplete cases are removed from the edge table (rows) to avoid redundancy

Usage
edge_tbl_to_graph(edge_tbl)

Arguments
edge_tbl data frame containing 'from' nodes in column 1 and 'to' nodes in column 2 so that all nodes go 'towards' the root node

Value

* tidygraph representation of the edge table

Examples

```r
# basic edge table
edge_tbl <- tibble::tribble(~from, ~to,
"Nstage", "TNM",
"Tstage", "TNM",
"Tumoursize", "property_of_tumour",
"Tstage", "property_of_tumour",
"property_of_tumour", "property_of_cancer",
"TNM", "property_of_cancer",
"property_of_cancer", "disease",
"disease", "root",
"root", NA)

graph <- edge_tbl_to_graph(edge_tbl)

graph

plot(graph)

# edge table with node attributes
## note that root node is included in final row to include its label
edge_tbl <- tibble::tribble(~from, ~to, ~label,
"Nstage", "TNM", "N stage",
"Tstage", "TNM", "T stage",
"Tumoursize", "property_of_tumour", "Tumour size",
"Tstage", "property_of_tumour", "T stage",
"property_of_tumour", "property_of_cancer", "Property of tumour",
"TNM", "property_of_cancer", "TNM",
"property_of_cancer", "disease", "Property of cancer",
"disease", "root", "Disease",
"root", NA, "Ontology Root")

graph <- edge_tbl_to_graph(edge_tbl)

graph

plot(graph)
```

encode_as_num_mat

* Convert data frame to numeric matrix

Description

Converts all columns to numeric and uses the row identifier column (*id_var*) as row names.
encode_binary_cats

Usage

```r
encode_as_num_mat(data, id_var)
```

Arguments

- `data`: A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g. from dbplyr or dtplyr).
- `id_var`: An unquoted expression which corresponds to a variable in `data` which identifies each row.

Value

Numeric matrix with `id_var` values as row names

Examples

```r
require(dplyr)
require(magrittr)
mtcars %>%
dplyr::as_tibble(rownames = "id") %>%
encode_as_num_mat(id)
```

encode_binary_cats

Encode categorical variables as binary factors

Description

In a data frame, converts binary categories to factors. Ordering of levels is standardised to: negative_finding, positive_finding. This embeds a standardised numeric relationship between the binary categories while preserving value labels.

Usage

```r
encode_binary_cats(data, ..., values = NULL)
```

Arguments

- `data`: A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g. from dbplyr or dtplyr).
- `...`: `<tidy-select>` One or more unquoted expressions separated by commas. Variable names can be used as if they were positions in the data frame, so expressions like `x:y` can be used to select a range of variables.
- `values`: Optional named vector of user-defined values for binary values using `binary_label_1 = binary_label_2` syntax (e.g. `c("No" = "Yes")` would assign level 1 to "No" and 2 to "Yes".).
Details

Binary categories to convert can be specified with a named character vector, specified in values. The syntax of the named vector is: negative_finding = positive_finding. If values is not provided, the default list will be used: "No"="Yes", "No/unknown" = "Yes", "no/unknown" = "Yes", "Non-user" = "User", "Never" = "Ever", "WT" = "MT".

Value

dataset with specified binary categories converted to factors.

Examples

use built-in values. Note: rural_urban is not modified
Note: diabetes is not modified because "missing" is interpreted as a third category.
strings_to_NA() should be applied first
encode_binary_cats(example_data, hypertension, rural_urban)

use custom values. Note: rural_urban is now modified as well.
encoded_data <- encode_binary_cats(example_data, hypertension, rural_urban, values = c("No"= "Yes", "rural" = "urban"))

to demonstrate the new numeric encoding:
dplyr::mutate(encoded_data, hypertension_num = as.numeric(hypertension), .keep = "used")
Value

Factor with false finding encoded as 1 and true finding encoded as 2. Alternatively, numeric vector if numeric_out parameter is TRUE.

encode_cats
Encode categorical variables using one-hot encoding.

Description

Variables specified in ... are replaced with new variables describing the presence of each unique category. Generated variable names have space characters replaced with "_" and commas are removed.

Usage

```
encode_cats(data, ...)
```

Arguments

data
A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g. from dbplyr or dplyr).

...
<tidy-select> One or more unquoted expressions separated by commas. Variable names can be used as if they were positions in the data frame, so expressions like x:y can be used to select a range of variables.

Value

Tibble with converted variables.

Examples

```
require(magrittr)
require(dplyr)

data(example_data)

# encode one variable
encode_cats(example_data, marital_status) %>%
  select(starts_with("marital_status"))

# encode multiple variables
encoded <- encode_cats(example_data, diabetes, marital_status)

select(encoded, starts_with("marital_status"))
# diabetes_type included below but was not modified:
select(encoded, starts_with("diabetes"))
```
Description

Standardises homozygous SNPs (e.g. recorded as "A") to two character form (e.g. "A/A") and orders heterozygous SNPs alphabetically (e.g. "GA" becomes "A/G"). The SNP values are then converted from a character vector to an ordered factor, ordered by observed allele frequency (in the supplied cohort). The most frequent allele is assigned level 1, the second most frequent value is assigned level 2, and the least frequent values is assigned level 3). This method embeds the numeric relationship between the allele frequencies while preserving value labels.

Usage

```r
encode_genotypes(data, ...)
```

Arguments

- `data` A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g. from dbplyr or dtplyr).
- `...` `<tidy-select>` One or more unquoted expressions separated by commas. Variable names can be used as if they were positions in the data frame, so expressions like `x:y` can be used to select a range of variables.

Value

'`data' with variables (...)' encoded as standardised genotypes

Examples

```r
data(example_data)
require(dplyr)
require(magrittr)

# one variable
encode_genotypes(example_data, SNP_a) %>%
  select(SNP_a)

# multiple variables
encode_genotypes(example_data, SNP_a, SNP_b) %>%
  select(SNP_a, SNP_b)

# using tidyselect helpers
encode_genotypes(example_data, dplyr::starts_with("SNP")) %>%
  select(starts_with("SNP"))
```
encode_genotype_vec

Encode a genotype/SNP vector

Description

Standardises homozygous SNP alleles (e.g. recorded as 'A') to two character form (e.g. 'A/A') and orders heterozygous SNP alleles alphabetically (e.g. "GA" becomes "A/G"). The SNP values are then converted from a character vector to an ordered factor, ordered by SNP allele frequency (e.g. most frequent SNP allele is 1, second most frequent value is 2, and least frequent values is 3). This method embeds the numeric relationship between the SNP allele frequencies while preserving value labels.

Usage

```r
encode_genotype_vec(x)
```

Arguments

- `x` input vector containing genotype data

Value

Ordered factor, ordered by allele frequency in variable

encode_ordinals

Encode ordinal variables

Description

Converts character or factor variables in the input data frame to ordered factors embedding numeric relationship between values while preserving value labels.

Usage

```r
encode_ordinals(data, ord_levels, ..., strict_levels = TRUE)
```

Arguments

- `data` A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g. from dbplyr or dtplyr).
- `ord_levels` character vector containing values in desired order (lowest to highest).
- `...` <tidy-select> One or more unquoted expressions separated by commas. Variable names can be used as if they were positions in the data frame, so expressions like x:y can be used to select a range of variables.
- `strict_levels` logical constant. If TRUE, variables in ... which contain values other than ord_levels (including NA) are not modified and a warning is given. If FALSE, values not in ord_levels are converted to NA.
entropy

Value
dataframe with specified variables encoded as ordered factors.

Examples
data(example_data)
require(dplyr)
require(magrittr)
encode_ordinals(example_data, ord_levels = c("N0","N1","N2"), n_stage)

Note: "unequivocal" is present in t_stage but not in 'ord_levels'.
with `strict_levels` TRUE, t_stage is unmodified and a warning message is given:
encode_ordinals(example_data,
 ord_levels = c("T1","T2","T3a", "T3b", "T4"), strict_levels = TRUE, t_stage) %>%
 select(t_stage)

with `strict_levels` FALSE, it is replaced with NA:
encode_ordinals(example_data,
 ord_levels = c("T1","T2","T3a", "T3b", "T4"), strict_levels = FALSE, t_stage) %>%
 select(t_stage)

entropy

Calculate Entropy of a Vector

Description
Calculates Shannon Entropy of a vector in bits (default) or natural units. Missing values are omitted from the calculation.

Usage
entropy(x, unit = c("bits"))

Arguments
x Input vector
unit Unit to measure entropy. Either "bits" (default) or "nats".

Value
Entropy of input variable

References
Examples

```r
# no entropy:
vec <- c(1,1,1,1,1,1)
entropy(vec)

# entropy
vec <- c(1,2,3,4,5,6)
entropy(vec)
```

exact.kde

Exact kernel density estimation

Description

Calculates KDE for a set of points exactly, rather than an approximation as per the density() core function.

Usage

```r
exact.kde(x, bw, output.domain = x, na.rm = FALSE)
```

Arguments

- `x` A numeric vector of values
- `bw` The bandwidth to use - either a single value, or a vector of values the same length as `x` if using adaptive bandwidth estimation (with each value giving the bandwidth at the corresponding data point).
- `output.domain` The domain of values over which to estimate the density. Defaults to `x`. To use the same domain of `x` values as R’s density, set to NULL.
- `na.rm` Remove missing values if TRUE

Details

Only tractable for around 10,000 data points or less - otherwise consider using the density() core function for a close approximation.

The density() core function approximation is normally a very good approximation, but some small values close to zero may become zero rather than just very small. This makes it less suitable for mutual information estimation.

Value

The exact kernel density estimate as a density object, compatible with R’s density function.

Author(s)

Alexander Lyulph Robert Lubbock, Ian Overton
Example data for eHDPrep

Description
A dataset containing synthetic example values to demonstrate functionality of 'eHDprep'

Usage
example_data

Format
A data frame with 1,000 rows and 10 variables:

- patient_id 1 to 1000, effectively row numbers
- tumoursize double. random values with a mean of 50 and SD of 20
- t_stage character. T stage random values
- n_stage character. N stage random values
- diabetes character. Patient diabetes category
- diabetes_type character. Patient diabetes type category
- hypertension character. Patient hypertension category
- rural_urban character. Patient domestic address category
- marital_status character. Patient marital status category
- SNP_a character. Single Nucleotide Polymorphism (SNP) of the patient
- SNP_b character. Another SNP of the patient
- free_text character. sentences from the 'stringr' package as an example of short free text variables

Source
synthetic
example_edge_tbl

Example ontology as an edge table for semantic enrichment

Description
A data frame describing semantic links (edges) between entities in ‘example_ontology’. Used to demonstrate semantic enrichment.

Usage
example_edge_tbl

Format
A data frame:

<table>
<thead>
<tr>
<th>from</th>
<th>character. Names of semantic concepts which have a directed relationship to concepts in ‘to’ column.</th>
</tr>
</thead>
<tbody>
<tr>
<td>to</td>
<td>character. Names of semantic concepts which have a directed relationship to concepts in ‘from’ column.</td>
</tr>
</tbody>
</table>

Details
Used in documentation and creation of ‘example_ontology’ in ‘eHDPrep’.

Source
synthetic

description

example_mapping_file

Example mapping file for semantic enrichment

Description
A data frame containing mappings between variables in ‘example_data’ and ‘example_onto’. Used to demonstrate semantic enrichment.

Usage
example_mapping_file

Format
A data frame:

<table>
<thead>
<tr>
<th>variable</th>
<th>character. names of variables in post-QC ‘example_data’.</th>
</tr>
</thead>
<tbody>
<tr>
<td>onto_entity</td>
<td>character. names of mapped entities in ‘example_ontology’.</td>
</tr>
</tbody>
</table>
export_dataset

Details
Maps variables in `example_data` to `example_ontology` in `eHDPrep`.

Source
synthetic

table

| example_ontology | Example ontology as a network graph for semantic enrichment |

Description
A small custom network graph to demonstrate semantic enrichment.

Usage
eexample_ontology

Format
tidygraph graph

Details
Contains semantic links of variables in `eHDPrep`’s `example_data` following quality control.

Source
synthetic

table

| export_dataset | Export data to delimited file |

Description
Save dataset in `.csv` or `.tsv` format. A wrapper function for `readr`’s `write_csv` and `write_tsv`.

Usage
export_dataset(x, file, format = "csv", ...)

Arguments

x	A data frame or tibble to write to disk.
file	File or connection to write to.
format	Character constant. "csv" (default) or "tsv"
...	parameters to pass to `write_csv` or `write_tsv`.
extract_freetext

Value
x saved to file in selected format

See Also

write_csv and write_tsv

Other import to/export from 'R' functions: import_dataset()

Examples

data(example_data)
tmp = tempfile(fileext = "csv")
export_dataset(example_data, tmp)

Description
Extracts information from specified free text variables (...) which occur in a minimum amount of rows (min_freq) and appends new variables to data.

Usage
extract_freetext(data, id_var, min_freq = 1, ...)

Arguments
data Data frame to append skipgram variables to.
id_var An unquoted expression which corresponds to a variable in data which identifies each row.
min_freq Minimum percentage frequency of skipgram occurrence to return. Default = 1.
...
Unquoted expressions of free text variable names from which to extract information.

Details
New variables report the presence of skipgrams (proximal words in the text) with a minimum frequency (min_freq, default = 1%).

Value
data with additional Boolean variables describing skipgrams in ...
identify_inconsistency

Identify inconsistencies in a dataset

Description

Tests pairs of variables for consistency between their values according to a table of rules or 'consistency table'.

Usage

```r
identify_inconsistency(data = NULL, consis_tbl = NULL, id_var = NULL)
```

Arguments

- `data`: data frame which will be checked for internal consistency
- `consis_tbl`: data frame or tibble containing information on internal consistency rules (see "Consistency Table Requirements" section)
- `id_var`: An unquoted expression which corresponds to a variable in data which identifies each row.

References

See Also

Principle underlying function: `tokens_ngrams`

Other free text functions: `skipgram_append()`, `skipgram_freq()`, `skipgram_identify()`

Examples

```r
data(example_data)
extract_freetext(example_data, patient_id, min_freq = 0.6, free_text)
```

```r
identify_inconsistency

Identify inconsistencies in a dataset

Tests pairs of variables for consistency between their values according to a table of rules or 'consistency table'.

Usage

```r
identify_inconsistency(data = NULL, consis_tbl = NULL, id_var = NULL)
```

Arguments

- `data`: data frame which will be checked for internal consistency
- `consis_tbl`: data frame or tibble containing information on internal consistency rules (see "Consistency Table Requirements" section)
- `id_var`: An unquoted expression which corresponds to a variable in data which identifies each row.
Details

Multiple types of checks for inconsistency are supported:

1. Comparing by logical operators (<, <=, ==, !=, >=, >)
2. Comparing permitted categories (e.g. cat1 in varA only if cat2 in varB)
3. Comparing permitted numeric ranges (e.g. 20-25 in varC only if 10-20 in varD)
4. Mixtures of 2 and 3 (e.g. cat1 in varA only if 20-25 in varC)

The consistency tests rely on such rules being specified in a separate data frame (consis_tbl; see section "Consistency Table Requirements").

Variable A is given higher priority than Variable B when A is a category. If A (as char) is not equal to the value in col 4, the check is not made. This is to account for one way dependencies (i.e. VarA is fruit, VarB is apple)

Value

tibble detailing any identified internal inconsistencies in data, if any are found. If no inconsistencies are found, data is returned invisibly.

Consistency Table Requirements

Table must have exactly five character columns. The columns should be ordered according to the list below which describes the values of each column:

1. First column name of data values that will be subject to consistency checking. String. Required.
2. Second column name of data values that will be subject to consistency checking. String. Required.
3. Logical test to compare columns one and two. One of: ">",">=","<","<=","==","!=". String. Optional if columns 4 and 5 have non-NA values.
4. Either a single character string or a colon-separated range of numbers which should only appear in column A. Optional if column 3 has a non-NA value.
5. Either a single character string or a colon-separated range of numbers which should only appear in column B given the value/range specified in column 4. Optional if column 3 has a non-NA value.

Each row should detail one test to make. Therefore, either column 3 or columns 4 and 5 must contain non-NA values.

See Also

Other internal consistency functions: validate_consistency_tbl()
Examples

```r
require(tibble)
example with synthetic dataset on number of bean counts
there is a lot going on in the function so a simple dataset aids this example
#
creating 'data':
beans <- tibble::tibble(red_beans = 1:15,
 blue_beans = 1:15,
 total_beans = 1:15*2,
 red_beans_summary = c(rep("few_beans",9), rep("many_beans",6)))
#
creating 'consis_tbl'
bean_rules <- tibble::tribble(~varA, ~varB, ~lgl_test, ~varA_boundaries, ~varB_boundaries,
 "red_beans", "blue_beans", ",==", NA, NA,
 "red_beans", "total_beans", ",<=", NA,NA,
 "red_beans", "red_beans_summary", NA, "1:9", "few_beans",
 "red_beans", "red_beans_summary", NA, "10:15", "many_beans")

identify_inconsistency(beans, bean_rules)
```

```r
creating some inconsistencies as examples
beans[1, "red_beans_summary"] <- "many_beans"
beans[1, "red_beans"] <- 10

identify_inconsistency(beans, bean_rules)
```

---

**import_dataset**

*Import data into 'R'*

**Description**

Imports a rectangular single table into R from a .xls, .xlsx, .csv, or .tsv file.

**Usage**

```r
import_dataset(file, format = "excel", ...)
```

**Arguments**

- `file` Character constant. Path to file.
- `format` Character constant. "excel" (default, for .xls or.xlsx files), .csv", or "tsv".
- `...` Parameters to pass to `read_excel`, `read_csv` or `read_tsv`

**Details**

First row is interpreted as column headers by default. For more details see `read_excel` (.xlsx/.xls), `read_csv` (.csv), or `read_tsv` (.tsv).
import_var_classes

Value
data as a tibble

See Also

read_excel for additional parameters for importing .xls or .xlsx files, read_csv for .csv files, read_tsv for .tsv files

Other import to/export from 'R' functions: export_dataset()

Examples

```r
Not run:
This code will not run as it requires an xlsx file
./dataset.xlsx should be replaced with path to user's dataset

excel
import_dataset(file = "/dataset.xlsx", format = "excel")
csv
import_dataset(file = "/dataset.csv", format = "csv")
tsv
import_dataset(file = "/dataset.tsv", format = "tsv")

End(Not run)
```

---

import_var_classes Import corrected variable classes

Description

Reads in output of assume_var_classes, ensures all specified datatypes are one of ("id", "numeric", "double", "integer", "character", "factor", "ordinal", "genotype", "freetext", "logical") as required for high level 'eHDPrep' functions.

Usage

```r
import_var_classes(file = "/datatypes.csv")
```

Arguments

- **file** character string. Path to output of assume_var_classes which should be manually verified outside of R and corrected where any data type is incorrect.

Value
data frame containing the data type values of variables, as described in file
information_content_contin

*Calculate Information Content (Continuous Variable)*

**Description**

Calculates information content of a continuous (numeric) vector in bits (default) or natural units. Missing values are omitted from the calculation.

**Usage**

`information_content_contin(x, unit = c("bits"))`

**Arguments**

- `x` Input vector
- `unit` Unit to measure entropy. Either "bits" (default) of "nats".

**Value**

Information content of input variable

**Examples**

```r
data(example_data)
information_content_contin(example_data$tumoursize)
```
**information_content_discrete**

*Calculate Information Content (Discrete Variable)*

**Description**

Calculates information content of a discrete (categorical or ordinal) vector in bits (default) or natural units. Missing values are omitted from the calculation.

**Usage**

```r
information_content_discrete(x, unit = c("bits"))
```

**Arguments**

- `x` Input vector
- `unit` Unit to measure entropy. Either "bits" (default) or "nats".

**Value**

Information content of input variable

**Examples**

```r
data(example_data)
information_content_discrete(example_data$marital_status)
```

**join_vars_to_ontol**

*Join Mapping Table to Ontology Network Graph*

**Description**

This function creates new nodes representing dataset variables and joins them to an input ontology network using a mapping file. Prior to joining, the information content of all nodes is calculated using `node_IC_zhou`.

**Usage**

```r
join_vars_to_ontol(ontol_graph, var2entity_tbl, mode = "in", root, k = 0.5)
```
Arguments

- **ontol_graph**: Graph containing the chosen ontology. Must be in `tidygraph` format or coercible to this format.
- **var2entity_tbl**: Edge table containing dataset variable names in first column and entities in ontologies to which they are mapped in the second column.
- **mode**: Character constant specifying the directionality of the edges. One of "in" or "out".
- **root**: Name of root node identifier in column 1 to calculate node depth from.
- **k**: Numeric value to adjust the weight of the two items of information content equation (relative number of hyponyms/descendants and relative node depth). Default = 0.5

Details

- The user-defined mappings between variables in a dataset and entities/terms in an ontology are provided in an edge table (`var2entity_tbl`).
- A node attribute column, `node_category` is generated to describe if a node is one of "Dataset Variable", "Annotation", or "Annotation Ancestor".

Value

A `tidygraph` resulting from the joining of `var2entity_tbl` and `ontol_graph`.

See Also

- `node_IC_zhou`
- Other semantic enrichment functions: `metavariable_agg()`, `metavariable_info()`, `metavariable_variable_descendants()`

Examples

```r
data(example_ontology)
join_vars_to_ontol(example_ontology, example_mapping_file, root = "root", mode = "in")
```

---

### max_catchNAs

**Find maximum of vector safely**

Description

This low-level function is deployed as part of the semantic enrichment process. Calculates maximum of values in numeric vector (ignoring NAs). If all values in input vector are `NA`, returns `NA` (rather than `-Inf`).

Usage

```r
max_catchNAs(x)
```
**mean_catchNAs**

**Arguments**
- x numeric vector

**Value**
- maximum value of x

---

**merge_cols**

**Description**
Merges two columns in a single data frame. The merging draws on the functionality of 'dplyr''s `coalesce` where missing values from one vector are replaced by corresponding values in a second variable. The name of the merged variable is specified in `merge_var_name`. `primary_var` and `secondary_var` can be removed with `rm_in_vars`. Variables must be combinable (i.e. not a combination of numeric and character).

**Usage**
```r
merge_cols(
 data,
 primary_var,
 secondary_var,
 merge_var_name = NULL,
 rm_in_vars = FALSE
)
```
metavariable_agg

Aggregate Data by Metavariable

Description

Variables in a numeric data frame are aggregated into metavariables via their most informative common ancestors identified in an ontological graph object (see metavariable_info). Metavariables are appended to the data frame.

Usage

metavariable_agg(graph, data, label_attr = "name", normalize_vals = TRUE)
Arguments

**graph**  
Graph containing ontological and dataset nodes. Must be in tidygraph format or coercible to this format. Must have been processed using metavariable_info.

**data**  
Numeric data frame or matrix containing variables which are also in graph.

**label_attr**  
Node attribute containing labels used for column names when creating metavariable aggregations. Default: "name"

**normalize_vals**  
Should values be normalized before aggregation? Default: TRUE

Details

Metavariables are created from the aggregation of data variables via their most informative common ancestor (expected to have been calculated in metavariable_info). Metavariables are labelled using the syntax: MV_[label_attr]_[Aggregation function]. The data variables are aggregated row-wise by their maximum, minimum, mean, sum, and product. Metavariables with zero entropy (no information) are not appended to the data. See examples for where this function should be applied in the semantic enrichment workflow.

Value

Data with semantic aggregations derived from common ontological ancestry (metavariables) appended as new columns, each prefixed with "MV_" and suffixed by their aggregation function (e.g. "_SUM").

Note

A warning may be shown regarding the '.add' argument being deprecated, this is believed to be an issue with tidygraph which may be resolved in a future release: <https://github.com/thomasp85/tidygraph/issues/131>. Another warning may be shown regarding the 'neimode' argument being deprecated, this is believed to be an issue with tidygraph which may be resolved in a future release: <https://github.com/thomasp85/tidygraph/issues/156>. These warning messages are not believed to have an effect on the functionality of 'eHDPrep'.

See Also

Other semantic enrichment functions: join_vars_to_ontol(), metavariable_info(), metavariable_variable_descendants()
"diabetes_merged", "character",
"hypertension", "factor",
"rural_urban", "factor",
"marital_status", "factor",
"SNP_a", "genotype",
"SNP_b", "genotype",
"free_text", "freetext") -> data_types

# create post-QC data
example_data %>%
  merge_cols(diabetes_type, diabetes, "diabetes_merged", rm_in_vars = TRUE) %>%
  apply_quality_ctrl(patient_id, data_types,
    bin_cats = c("No" = "Yes", "rural" = "urban"),
    to_numeric_matrix = TRUE) %>%
  suppressMessages() -> post_qc_data

# minimal example on first four coloums of example data:
dplyr::slice(example_ontology, 1:7, 24) %>%
  join_vars_to_ontol(example_mapping_file[1:3,], root = "root") %>%
  metavariable_info() %>%
  metavariable_agg(post_qc_data[1:10,1:4]) -> res
# see Note section of documentation for information on possible warnings.

# summary of result:
tibble::glimpse(res)

# full example:
example_ontology %>%
  join_vars_to_ontol(example_mapping_file, root = "root") %>%
  metavariable_info() %>%
  metavariable_agg(post_qc_data) -> res
# see Note section of documentation for information on possible warnings.

# summary of result:
tibble::glimpse(res)

---

**metavariable_info**

*Compute Metavariable Information*

**Description**

Calculates attributes for each node in a graph object pertaining to their suitability and rank as metavariables; primarily if they are the most informative common ancestor (see *node_IC_zhou*) of a set of nodes representing a dataset variable.

**Usage**

```
metavariable_info(graph, mode = "in", IC_threshold = 0)
```
Arguments

- **graph**: Graph containing ontological and dataset nodes. Must be in tidygraph format or coercible to this format.

- **mode**: Character constant specifying the directionality of the edges. One of: "in" or "out".

- **IC_threshold**: Metavariates with IC less than this value will be omitted from output. Default = 0 (no omission).

Details

The added attributes are:

- **min_dist_to_var**: Integer. The minimum distance of an ontology node in the graph to a node representing a dataset variable.

- **is_metavariable**: Logical. If the node has at least two descendants in the graph which represent dataset variables.

- **variable_descendants**: List. The names of variables of which a node is an ancestor.

- **variable_set**: Integer. An identifier for the unique set of descendants in the graph which represent dataset variables. The assigned number corresponds to the order in which a unique set was identified when scanning through the node table.

- **highest_IC**: Logical. If the node possesses the highest information content of all other nodes which are common ancestors of the same variable set. Information content is expected to have been calculated in **join_vars_to_ontol**.

Value

A modified graph object with additional node attributes pertaining to their status as a metavariable.

See Also

- **node_IC_zhou**

Other semantic enrichment functions: **join_vars_to_ontol**, **metavariable_agg**, **metavariable_variable_descendants**

Examples

```r
data(example_ontology)
require(magrittr)
example_ontology %>%
 join_vars_to_ontol(example_mapping_file, root = "root") -> joined_ontol

metavariable_info(joined_ontol)
```
metavariable_variable_descendants

Extract metavariables’ descendant variables

Description

Formats the output of metavariable_info for easier interpretation of each metavariable’s descendant variables

Usage

metavariable_variable_descendants(metavariable_info_output)

Arguments

metavariable_info_output
Output tibble of metavariable_info

Details

Not part of the standard semantic enrichment pipeline as this function just produces a simplified version of the output of metavariable_info.

The output of metavariable_info is converted to a tibble, filtered to only include metavariables with highest information content for the variable set. The tibble has three columns describing a metavariable, its information content, and its descendant variables.

Value

A tibble describing each metavariable, its information content, and its descendant variables

See Also

node_IC_zhou

Other semantic enrichment functions: join_vars_to_ontol(), metavariable_agg(), metavariable_info()

Examples

data(example_ontology)
require(magrittr)
example_ontology %>%
  join_vars_to_ontol(example_mapping_file, root = "root") -> joined_ontol

mv_info <- metavariable_info(joined_ontol)
metavariable_variable_descendants(mv_info)
**min_catchNAs**

*Find minimum of vector safely*

**Description**

This low-level function is deployed as part of the semantic enrichment process. Calculates minimum of values in numeric vector (ignoring NAs). If all values in numeric vector are `NA`, returns `NA` (rather than `Inf`).

**Usage**

`min_catchNAs(x)`

**Arguments**

- **x**
  - numeric vector

**Value**

- minimum value of `x`

---

**mi_content_discrete**

*Calculate Mutual Information Content*

**Description**

Calculates mutual information content between two variables in bits. Missing values are omitted from the calculation.

**Usage**

`mi_content_discrete(x, y)`

**Arguments**

- **x**
  - First variable
- **y**
  - Second variable

**Value**

- Mutual information content of `x` and `y`

**Examples**

```r
data(example_data)
mi_content_discrete(example_data$diabetes, example_data$diabetes_type)
```
mod_track

Descriptive

This function produces a table where each row represents a value in a variable which is present in the cleaned dataset and which has been modified. The identifier, original and modified value, modification type, and variable names in the original and modified datasets are recorded.

Usage

mod_track(before_tbl, after_tbl, id_var, plot = FALSE, vars2compare)

Arguments

before_tbl Data frame from before modifications were made.
after_tbl Data frame from after modifications were made.
id_var An unquoted expression which corresponds to a variable in both before_tbl and after_tbl which identifies each row. Required.
plot Should a plot be returned instead of a table of results? Default: FALSE.
vars2compare Character vectors of variable names to compare.

Value

Table containing row-level modification records or plot summarising modifications.

Examples

# merge data as the example modification
require(magrittr)

# example with one modification type (removal)
# return table
mod_track(example_data, strings_to_NA(example_data), patient_id)

# return plot
mod_track(example_data, strings_to_NA(example_data), patient_id, plot = TRUE)

# example with multiple modification types (removal, substitution and addition)
example_data %>%
  strings_to_NA() %>%
  merge_cols(diabetes_type, diabetes) ->
  modded_data

# return table
mod_track(example_data, modded_data, patient_id, vars2compare = c("t_stage", "diabetes_type_diabetes_merged" = "diabetes", "diabetes_type_diabetes_merged" ...)
Description

Computes the information content for each node in a directed graph according to the equation developed by Zhou et al. (2008).

Usage

node_IC_zhou(graph, mode = "in", root, k = 0.5)

Arguments

graph  tidygraph directed graph.
mode    Character constant specifying the directionality of the edges. One of "in" or "out".
root    name of root node identifier in column 1 to calculate node depth from.
k       numeric value to adjust the weight of the two items of information content equation (relative number of hyponyms/ancestors and relative node depth). Default = 0.5

Value

tidygraph with additional node attribute "information_content"

Note

For use in semantic enrichment, this should be applied before joining an ontology with nodes representing data variables (i.e. before applying `join_vars_to_ontol`).

References


Examples

data(example_ontology)
node_IC_zhou(example_ontology, mode = "in", root = "root")
**normalize**  
*Min max normalization*

**Description**
Normalizes values in x to be between 0 and 1 using min-max normalization.

**Usage**
`normalize(x, na.rm = TRUE)`

**Arguments**
- **x**: numeric vector
- **na.rm**: a logical indicating whether missing values should be removed. Default = TRUE.

**Value**
normalised x

---

**nums_to_NA**  
*Replace numeric values in numeric columns with NA*

**Description**
Replaces specified numbers in numeric columns with NA.

**Usage**
`nums_to_NA(data, ..., nums_to_replace = NULL)`

**Arguments**
- **data**: A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g. from dbplyr or dtplyr).
- **...**: `<tidy-select>` One or more unquoted expressions separated by commas. Variable names can be used as if they were positions in the data frame, so expressions like `x:y` can be used to select a range of variables.
- **nums_to_replace**: numeric vector of values to be replaced with NA. Case is ignored.

**Details**
Columns to process can be specified in ... or the function will be applied to all numeric columns.
Value

data with specified values replaced with NA

Examples

data(example_data)

# replace all 1, 2, and 3 from tumoursize and patient_id with NA.
nums_to_NA(data = example_data, tumoursize, patient_id, nums_to_replace = c(1,2,3))

---

**onehot_vec**

*One hot encode a vector*

Description

Uses one-hot encoding to convert nominal vectors to a tibble containing variables for each of the unique values in input vector.

Usage

onehot_vec(x, prefix)

Arguments

x non-numeric vector
prefix prefix to append to output variable names

Value

tibble

---

**ordinal_label_levels**

*Extract labels and levels of ordinal variables in a dataset*

Description

This function enables preservation of the text labels for ordinal variables in a dataset in preparation for conversion to a numeric matrix. A table is produced which retains the mappings between the text labels and the numerical labels for future reference.

Usage

ordinal_label_levels(data, out_path = NULL)
Arguments

- data: data frame with ordinal variables with labels and levels to be extracted.
- out_path: Optional string. Path to write output to. If not supplied, R object will be returned.

Value

Tibble of text label and (numerical) level mappings

Examples

```r
require(magrittr) # for %>%

create an example class_tbl object
note that diabetes_type is classed as ordinal yet is not modified as its
levels are not pre-coded. It should instead be encoded with encode_ordinals().
tibble::tribble(~"var", ~"datatype",
"patient_id", "id",
"tumoursize", "numeric",
"t_stage", "ordinal_tstage",
"n_stage", "ordinal_nstage",
"diabetes", "factor",
"diabetes_type", "ordinal",
"hypertension", "factor",
"rural_urban", "factor",
"marital_status", "factor",
"SNP_a", "genotype",
"SNP_b", "genotype",
"free_text", "freetext") -> data_types

show unique values for t_stage in pre-QC example_data
unique(example_data$t_stage)

apply quality control to example_data
apply_quality_ctrl(example_data, patient_id, data_types,
bin_cats =c("No" = "Yes", "rural" = "urban"), min_freq = 0.6) %>%
ordinal_label_levels -> res

examine the labels and levels of t_stage in post-QC example_data
dplyr::filter(res, variable == "t_stage")
```

plot_completeness  

Plot Completeness of a Dataset

Description

Generates a bar plot of percentage completeness for one or both data frame dimensions (rows/columns).
**prod_catchNAs**

Find product of vector safely

**Description**

This low-level function is deployed as part of the semantic enrichment process. Calculates product of values in numeric vector (ignoring NAs). If all values in numeric vector are NA, returns NA (rather than Inf).

**Usage**

```r
prod_catchNAs(x)
```

**Arguments**

- `x` numeric vector

**Value**

product of `x`

---

**Usage**

```r
plot_completeness(data, id_var, plot = c("variables", "rows"))
```

**Arguments**

- `data` Data frame in tidy format (see [https://tidyr.tidyverse.org/](https://tidyr.tidyverse.org/)).
- `id_var` Row identifier variable name.
- `plot` Character vector containing one or both of `variables` and `rows`.

**Value**

Completeness bar plot.

**See Also**

Other measures of completeness: `assess_completeness()`, `compare_completeness()`, `completeness_heatmap()`, `row_completeness()`, `variable_completeness()`

**Examples**

```r
data(example_data)
plot_completeness(example_data, patient_id, "variables")
```
report_varMods

Track changes to dataset variables

Description

Reports if variables have been added, removed, or are preserved between two data frames. Intended to be used to review quality control / data preparation.

Usage

report_varMods(before_tbl = NULL, after_tbl = NULL)

Arguments

before_tbl  Data frame from before modifications were made.
after_tbl   Data frame from after modifications were made.

Value

Tibble containing two columns. ‘variable’ contains name of each variable. ‘presence’ contains the presence of the variable in after_tbl.

Examples

example_data_merged <- merge_cols(example_data, diabetes_type, diabetes, "diabetes_merged", rm_in_vars = TRUE)

report_varMods(example_data, example_data_merged)

review_quality_ctrl

Review Quality Control

Description

Provides information on modifications made to a dataset at both variable (column) and value (sample) levels, designed for review of quality control measures.

Usage

review_quality_ctrl(before_tbl, after_tbl, id_var)

Arguments

before_tbl  Data frame from before modifications were made.
after_tbl   Data frame from after modifications were made.
id_var      An unquoted expression which corresponds to a variable in both before_tbl and after_tbl which identifies each row. Required.
Details

Modifications are identified by comparing the original and modified dataset.
QC review functions are applied in the following order:

1. Variable-level modifications (report_var_mods)
2. Value-level modifications (mod_track)
3. Value-level modifications (plot) (mod_track)

A list containing each of these functions’ outputs is returned.

Value

List containing data for review of quality control

See Also

Other high level functionality: apply_quality_ctrl(), assess_quality(), semantic_enrichment()

Examples

data(example_data)
require(tibble)
tibble::tribble(~"var", ~"datatype",
"patient_id", "id",
"tumoursize", "numeric",
"t_stage", "ordinal_tstage",
"n_stage", "ordinal_nstage",
"diabetes", "factor",
"diabetes_type", "ordinal",
"hypertension", "factor",
"rural_urban", "factor",
"marital_status", "factor",
"SNP_a", "genotype",
"SNP_b", "genotype",
"free_text", "freetext") -> data_types

# create QC'ed dataset
post_QC_example_data <- apply_quality_ctrl(example_data, patient_id, data_types, bin_cats =c("No" = "Yes", "rural" = "urban"), min_freq = 0.6)

# review QC
QC_review <- review_quality_ctrl(before_tbl = example_data, after_tbl = post_QC_example_data, id_var = patient_id)
# view variable level changes
QC_review$variable_level_changes

# view value level changes
QC_review$value_level_changes

# view value level changes as a plot
QC_review$value_level_changes_plt

---

**row_completeness**  
*Calculate Row Completeness in a Data Frame*

**Description**  
Calculates the completeness of each row/observation in a data frame.

**Usage**  
```
row_completeness(data, id_var)
```

**Arguments**  
- `data`  
  Data frame.
- `id_var`  
  Row identifier variable.

**Details**  
Row completeness is measured by comparing the number of *NA* to non-*NA* values. Returns the count of *NA* as well as the percentage of *NA* values and the percentage completeness.

**Value**  
Tibble detailing completeness statistics for each row in input data.

**See Also**  
Other measures of completeness: `assess_completeness()`, `compare_completeness()`, `completeness_heatmap()`, `plot_completeness()`, `variable_completeness()`

**Examples**  
```
data(example_data)
row_completeness(example_data, patient_id)
```
**Semantic enrichment**

**Description**

Enriches a dataset with additional (meta-)variables derived from the semantic commonalities between variables (columns).

**Usage**

```r
semantic_enrichment(
 data,
 ontology,
 mapping_file,
 mode = "in",
 root,
 label_attr = "name",
 ...
)
```

**Arguments**

- **data** Required. Numeric data frame or matrix containing variables present in the mapping file.
- **ontology** Required. One of:
  - Path to ontology edge table in .csv format (String)
  - Edge table in data frame format
  - Graph containing the chosen ontology - must be in tidygraph format or coercible to this format.
- **mapping_file** Required. Path to csv file or data frame containing mapping information. Should contain two columns only. The first column should contain column names, present in the data frame. The second column should contain the name of entities present in the ontology object.
- **mode** Character constant specifying the directionality of the edges. One of: "in" or "out".
- **root** Required. Name of root node identifier in column 1 to calculate node depth from.
- **label_attr** Node attribute containing labels used for column names when creating metavariable aggregations. Default: "name"
- ... additional arguments to pass to `read_csv` when reading `mapping_file`.
Details

Semantic enrichment generates meta-variables from the aggregation of data variables (columns) via their most informative common ancestor. Meta-variables are labelled using the syntax: MV_[label_attr]_[Aggregation function]. The data variables are aggregated row-wise by their maximum, minimum, mean, sum, and product. Meta-variables with zero entropy (no information) are not appended to the data. See the "Semantic Enrichment" section in the vignette of `eHDPrep` for more information:
vignette("Introduction_to_eHDPrep", package = "eHDPrep")

Value

Semantically enriched dataset

Note

A warning may be shown regarding the `.add` argument being deprecated, this is believed to be an issue with `tidygraph` which may be resolved in a future release: <https://github.com/thomasp85/tidygraph/issues/131>. Another warning may be shown regarding the `neimode` argument being deprecated, this is believed to be an issue with `tidygraph` which may be resolved in a future release: <https://github.com/thomasp85/tidygraph/issues/156>. These warning messages are not believed to have an effect on the functionality of `eHDPrep`.

See Also

Other high level functionality: `apply_quality_ctrl()`, `assess_quality()`, `review_quality_ctrl()`

Examples

```r
require(magrittr)
require(dplyr)
data(example_ontology)
data(example_mapping_file)
data(example_data)
#
define datatypes
tibble::tribble(~"var", ~"datatype",
"patient_id", "id",
"tumoursize", "numeric",
"t_stage", "ordinal_tstage",
"n_stage", "ordinal_nstage",
"diabetes_merged", "character",
"hypertension", "factor",
"rural_urban", "factor",
"marital_status", "factor",
"SNP_a", "genotype",
"SNP_b", "genotype",
"free_text", "freetext") -> data_types

create post-QC data
example_data %>%
 merge_cols(diabetes_type, diabetes, "diabetes_merged", rm_in_vars = TRUE) %>%
 apply_quality_ctrl(patient_id, data_types,
 bin_cats =c("No" = "Yes", "rural" = "urban"),
```
# minimal example on first four columns of example data:
semantic_enrichment(post_qc_data[1:10,1:4],
dplyr::slice(example_ontology, 1:7,24),
example_mapping_file[1:3,], root = "root") -> res
# see Note section of documentation for information on possible warnings.

# summary of result:
tibble::glimpse(res)

# full example:
res <- semantic_enrichment(post_qc_data, example_ontology,
example_mapping_file, root = "root")
# see Note section of documentation for information on possible warnings.

## skipgram_append

### Append Skipgram Presence Variables to Dataset

**Description**

Adds new variables to data which report the presence of skipgrams (either those specified in skipgrams2append or, if not specified, skipgrams with a minimum frequency (min_freq, default = 1)).

**Usage**

```r
skipgram_append(skipgram_tokens, skipgrams2append, data, id_var, min_freq = 1)
```

**Arguments**

- `skipgram_tokens`: Output of `skipgram_identify`.
- `skipgrams2append`: Which skipgrams in `skipgram_tokens` to append to dataset.
- `data`: Data frame to append skipgram variables to.
- `id_var`: An unquoted expression which corresponds to a variable in `data` which identifies each row.
- `min_freq`: Minimum percentage frequency of skipgram occurrence to return. Default = 1.

**Value**

Data with additional variables describing presence of skipgrams.
References


See Also

Principle underlying function: tokens_ngrams

Other free text functions: extract_freetext(), skipgram_freq(), skipgram_identify()

Examples

```r
data(example_data)
identify skipgrams
toks_m <- skipgram_identify(x = example_data$free_text,
 ids = example_data$patient_id,
 max_interrupt_words = 5)
add skipgrams by minimum frequency
skipgram_append(toks_m,
 id_var = patient_id,
 min_freq = 0.6,
 data = example_data)
add specific skipgrams
skipgram_append(toks_m,
 id_var = patient_id,
 skipgrams2append = c("sixteen_week", "bad_strain"),
 data = example_data)
```

skipgram_freq

Report Skipgram Frequency

Description

Measures the frequency of skipgrams (non-contiguous words in free text), reported in a tibble. Frequency is reported as both counts and percentages.

Usage

```r
skipgram_freq(skipgram_tokens, min_freq = 1)
```
Arguments

skipgram_tokens  
Output of `skipgram_identify`.

min_freq  
Minimum skipgram percentage frequency of occurrence to retain. Default = 1.

Value

Data frame containing frequency of skipgrams in absolute count and relative to the length of input variable.

References


See Also

Principle underlying function: `tokens_ngrams`

Other free text functions: `extract_freetext()`, `skipgram_append()`, `skipgram_identify()`

Examples

```r
data(example_data)

toks_m <- skipgram_identify(x = example_data$free_text,
 ids = example_data$patient_id,
 max_interrupt_words = 5)

skipgram_freq(toks_m, min_freq = 0.5)
```

---

**skipgram_identify**  
*Identify Neighbouring Words (Skipgrams) in a free-text vector*

**Description**

Identifies words which appear near each other in the free-text variable (var), referred to as "Skipgrams". Supported languages for stop words and stemming are danish, dutch, english, finnish, french, german, hungarian, italian, norwegian, portuguese, russian, spanish, and swedish.
skipgram_identify

Usage

```r
skipgram_identify(
 x,
 ids,
 num_of_words = 2,
 max_interrupt_words = 2,
 words_to_rm = NULL,
 lan = "english"
)
```

Arguments

- **x**: Free-text character vector to query.
- **ids**: Character vector containing IDs for each element of `var`.
- **num_of_words**: Number of words to consider for each returned skipgram. Default = 2.
- **max_interrupt_words**: Maximum number of words which can interrupt proximal words. Default = 2.
- **words_to_rm**: Character vector of words which should not be considered.
- **lan**: Language of `var`. Default: english.

Value

Tibble containing skipgrams as variables and patient values as rows.

References


See Also

- Principle underlying function: `tokens_ngrams`
- Other free text functions: `extract_freetext()`, `skipgram_append()`, `skipgram_freq()`
strings_to_NA

Examples

data(example_data)
skipgram_identify(x = example_data$free_text,
                   ids = example_data$patient_id,
                   max_interrupt_words = 5)

strings_to_NA

Replace values in non-numeric columns with NA

Description

Replaces specified or pre-defined strings in non-numeric columns with NA.

Usage

strings_to_NA(data, ..., strings_to_replace = NULL)

Arguments

data

A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g. from dbplyr or dtplyr).

...<tidy-select>

One or more unquoted expressions separated by commas. Variable names can be used as if they were positions in the data frame, so expressions like x:y can be used to select a range of variables.

strings_to_replace

character vector of values to be replaced with NA.

Details

Columns to process can be specified in custom arguments (...) or will be applied to all non-numeric columns. Default strings which will be replaced with NA are as follows: "Undetermined", "unknown", "missing", "fail", "fail / unknown", "equivocal", "equivocal / unknown", "#". String search is made using grepl and supports regex so metacharacters (\ | ( ) [ ] { } ^ $ * + ? $) should be escaped with a "\" prefix. Matches are case sensitive by default but can ignore case with the parameter: ignore.case = TRUE in ...).

Value

data with specified values replaced with NA.

Examples

data(example_data)

# original unique values in diabetes column:
unique(example_data$diabetes)

# Using default values
res <- strings_to_NA(example_data)
validate_consistency_tbl

Validate internal consistency table

Description

Runs a series of checks on a table of internal consistency rules (see Consistency Table Requirements) in preparation for `identify_inconsistency`.

Usage

`validate_consistency_tbl(data, consis_tbl)`

Arguments

data: data frame which will be checked for internal consistency
consis_tbl: data frame or tibble containing information on internal consistency rules (see “Consistency Table Requirements” section)

sum_catchNAs

Sum vector safely for semantic enrichment

Description

Sums values in x (ignoring NAs). If all values in x are NA, returns NA (rather than 0),

Usage

`sum_catchNAs(x)`

Arguments

x: numeric vector

Value

Sum of x
**validate_consistency_tbl**

**Value**

Error message or successful validation message is printed. The dataset is returned invisibly.

**Consistency Table Requirements**

Table must have exactly five character columns. The columns should be ordered according to the list below which describes the values of each column:

1. First column name of data values that will be subject to consistency checking. String. Required.
2. Second column name of data values that will be subject to consistency checking. String. Required.
3. Logical test to compare columns one and two. One of: ">",">=","<","<=","==","!=". String. Optional if columns 4 and 5 have non-NA values.
4. Either a single character string or a colon-separated range of numbers which should only appear in column A. Optional if column 3 has a non-NA value.
5. Either a single character string or a colon-separated range of numbers which should only appear in column B given the value/range specified in column 4. Optional if column 3 has a non-NA value.

Each row should detail one test to make. Therefore, either column 3 or columns 4 and 5 must contain non-NA values.

**See Also**

Other internal consistency functions: `identify_inconsistency()`

**Examples**

```r
require(tibble)
example with synthetic dataset on number of bean counters
there is a lot going on in the function so a simple dataset aids this example
#
creating 'data':
beans <- tibble::tibble(red_beans = 1:15,
blue_beans = 1:15,
total_beans = 1:15*2,
red_bean_summary = c(rep("few_beans",9), rep("many_beans",6)))
#
creating 'consis_tbl'
bean_rules <- tibble::tribble(~varA, ~varB, ~lgl_test, ~varA_boundaries, ~varB_boundaries,
"red_beans", "blue_beans", "==", NA, NA,
"red_beans", "total_beans", "<="", NA, NA,
"red_beans", "red_bean_summary", NA, "1:9", "few_beans",
"red_beans", "red_bean_summary", NA, "10:15", "many_beans")

validate_consistency_tbl(beans, bean_rules)
```
validate_mapping_tbl  Validate mapping table for semantic enrichment

Description
Applies tests to a mapping table to ensure it is valid for use with the data frame and ontological graph, in preparation for semantic enrichment.

Usage
validate_mapping_tbl(mapping_tbl, data, ontol_graph)

Arguments
- mapping_tbl: data frame. Contains two columns. First column contains variable names of a primary dataset. Second column contains entities in an ontological graph to which the primary dataset’s variable names are mapped.
- data: data frame. Primary dataset which contains variable names referred to in first column of the mapping table.
- ontol_graph: ontological graph which contains entity names/IDs referred to in second column of the mapping table.

Value
Any warnings and the mapping table returned invisibly.

validate_ontol_nw  Validate ontology network for semantic enrichment

Description
Performs tests on a graph object in preparation for semantic enrichment.

Usage
validate_ontol_nw(graph)

Arguments
- graph: graph object to validate.
variable.bw.kde

Details

The tests are:

1. Is graph coercible to tidygraph format?
2. Is graph directed?
3. Does graph contains one component (is one ontology)?

Value

input graph or validation errors

variable.bw.kde \hspace{1cm} \textit{Variable bandwidth Kernel Density Estimation}

Description

Calculates variable bandwidth KDE using Abramson’s two stage estimator.

Usage

variable.bw.kde(x, output.domain = x, na.rm = FALSE, adjust.factor = 0.5)

Arguments

- \textbf{x} \hspace{1cm} \text{A numeric vector of values for estimating density}
- \textbf{output.domain} \hspace{1cm} \text{The domain of values over which to estimate the density. Defaults to x. To use the same domain of x values as R’s density, set to NULL.}
- \textbf{na.rm} \hspace{1cm} \text{Remove missing values if TRUE}
- \textbf{adjust.factor} \hspace{1cm} \text{A scaling factor (exponent) applied to the variable bandwidth calculation. Larger factors result in greater deviation from the fixed bandwidth (a value of 0 gives the fixed bandwidth case).}

Details

Bandwidth is first calculated using Silverman’s estimator, then refined in a second stage to allow local bandwidth variations in the data based on the initial estimate.

Value

The kernel density estimate as a density object, compatible with R’s density function.

Author(s)

Alexander Lyulph Robert Lubbock, Ian Overton
References


variable_completeness  Calculate Variable Completeness in a Data Frame

Description

Calculates the completeness of each variable in a data frame.

Usage

variable_completeness(data)

Arguments

- data: Data frame.

Details

This is achieved by comparing the number of NA to non-NA values. Returns the count of NA as well as the percentage of NA values and the percentage completeness.

Value

Tibble detailing completeness statistics for each variable.

See Also

Other measures of completeness: assess_completeness(), compare_completeness(), completeness_heatmap(), plot_completeness(), row_completeness()

Examples

```r
data(example_data)
variable_completeness(example_data)
```
variable_entropy

Calculate Entropy of Each Variable in Data Frame

Description

Calculates Shannon entropy of all variables in a data frame in bits (default) or natural units. Missing values are omitted from the calculation.

Usage

variable_entropy(data, unit = "bits")

Arguments

data          Data Frame to compute on
unit          Unit to measure entropy. Either "bits" (default) or "nats".

Value

Named numeric vector containing entropy values

References


Examples

a <- matrix(c(c(1,1,1,1,1,1, 1,2,3,4,5,6)),ncol = 2, dimnames = list(seq(1,6), c("no_entropy","entropy")))
variable_entropy(as.data.frame(a))

warn_missing_dots

Missing dots warning

Description

Internal function. Warns if dots (...) argument have not been supplied

Usage

warn_missing_dots(test)

Arguments

test          expression to test.
zero_entropy_variables

Identify variables with zero entropy

Description
Calculates Shannon entropy of variables in a data frame in bits (default) or natural units. Missing values are omitted from the calculation. Names of variables with zero entropy are returned.

Usage
zero_entropy_variables(data, unit = "bits")

Arguments
data          Data Frame to compute on
unit          Unit to measure entropy. Either "bits" (default) or "nats".

Value
Character vector of variable names with zero entropy

References

Examples
data(example_data)
zero_entropy_variables(example_data)
Index

* datasets
  example_data, 26
  example_edge_tbl, 27
  example_mapping_file, 27
  example_ontology, 28
* free text functions
  extract_freetext, 29
  skipgram_append, 55
  skipgram_freq, 56
  skipgram_identify, 57
* high level functionality
  apply_quality_ctrl, 3
  assess_quality, 6
  review_quality_ctrl, 50
  semantic_enrichment, 53
* import to/export from 'R' functions
  export_dataset, 28
  import_dataset, 32
* internal consistency functions
  identify_inconsistency, 30
  validate_consistency_tbl, 60
* measures of completeness
  assess_completeness, 5
  compare_completeness, 10
  completeness_heatmap, 13
  plot_completeness, 48
  row_completeness, 52
  variable_completeness, 64
* networks
  discrete.mi, 16
* semantic enrichment functions
  join_vars_to_ontol, 35
  metavariable_agg, 38
  metavariable_info, 40
  metavariable_variable_descendants, 42

apply_quality_ctrl, 3, 7, 51, 54
assess_completeness, 5, 11, 14, 49, 52, 64
assess_quality, 4, 6, 51, 54
assume_var_classes, 4, 8, 33, 34
cell_spec, 10
cellspec_lgl, 9
coalesce, 37, 38
compare_completeness, 6, 10, 14, 49, 52, 64
compare_info_content, 11, 12
compare_info_content_plot, 12, 12
completeness_heatmap, 5–7, 11, 13, 49, 52, 64
count_compare, 15
discrete.mi, 16
distant_neg_val, 14, 17
distinct_edge_tbl_to_graph, 17
encode_as_num_graph, 17
encode_bin_cat_vec, 20
encode_binary_cats, 4, 19
encode_cats, 4, 21
encode_genotype_vec, 23
encode_genotypes, 4, 22
encode_ordinals, 4, 23
entropy, 24
exact.kde, 25
evaluate_dataset, 26
evaluate_edge_tbl, 27
evaluate_mapping_file, 27
evaluate_ontology, 28
export_dataset, 28, 33
extract_freetext, 4, 29, 56–58
grepl, 59
identify_inconsistency, 7, 30, 60, 61
import_dataset, 29, 32
import_var_classes, 4, 9, 33
information_content_contin, 34
information_content_discrete, 11, 35
join_vars_to_ontol, 35, 39, 41, 42, 45
kable, 10
max_catchNAs, 36
mean_catchNAs, 37
merge_cols, 37
metavariable_agg, 36, 38, 39, 40, 42
metavariable_info, 36, 38, 39, 40, 42
metavariable_variable_descendants, 36, 39, 41, 42
mi_content_discrete, 11, 43
min_catchNAs, 43
mod_track, 44, 51
node_IC_zhou, 35, 40–42, 45
normalize, 46
nums_to_NA, 46
onehot_vec, 47
ordinal_label_levels, 47
pheatmap, 13, 14
plot_completeness, 5–7, 11, 14, 48, 52, 64
prod_catchNAs, 49
read_csv, 32, 33, 53
read_excel, 32, 33
read_tsv, 32, 33
regex, 59
report_var.mods, 50, 51
review_quality_ctrl, 4, 7, 50, 54
row_completeness, 5–7, 11, 14, 49, 52, 64
semantic_enrichment, 4, 7, 51, 53
skipgram_append, 30, 55, 57, 58
skipgram_freq, 30, 56, 56, 58
skipgram_identify, 30, 55–57, 57
strings_to_NA, 4, 59
sum_catchNAs, 60
tidygraph, 17, 18, 36, 39, 41, 45, 53, 63
tokens_ngrams, 30, 56–58
validate_consistency_tbl, 31, 60
validate_mapping_tbl, 62
validate_ontol_nw, 62
variable.bw.kde, 63
variable_completeness, 5–7, 11, 14, 49, 52, 64
variable_entropy, 65
warn_missing_dots, 65
write_csv, 28, 29
write_tsv, 28, 29
zero_entropy_variables, 7, 66