Package ‘eNetXplorer’

August 29, 2020

Type Package
Title Quantitative Exploration of Elastic Net Families for Generalized Linear Models
Version 1.1.2
Date 2020-08-25
Author Julian Candia and John S. Tsang
Maintainer Julian Candia <julian.candia@nih.gov>
Depends R (>= 2.10)
biocViews
Imports glmnet, stats, graphics, methods, grDevices, Matrix, progress, survival, survcov, timeROC, calibrate, RColorBrewer, gplots, expm
Suggests knitr, rmarkdown
VignetteBuilder knitr
License GPL-3
LazyData true
LazyLoad yes
NeedsCompilation no
Repository CRAN
Date/Publication 2020-08-29 20:40:02 UTC

R topics documented:

 eNetXplorer-package .. 2
 breastCancerSurv ... 3
 eNetXplorer .. 4
eNetXplorer-package

Description

Provides a quantitative toolkit to explore elastic net families and to uncover correlates contributing to prediction under a cross-validation framework. Fits linear, binomial (logistic), multinomial, and Cox regression models.

Details

Package: eNetXplorer
Type: Package
Version: 1.1.2
Date: 2020-08-25
License: GPL-3

This package provides a full pipeline of analysis: eNetXplorer takes in x, y data to generate a family of elastic net models over a range of alpha values; summary generates a summary of results in tabular format; plot provides a variety of plots to visualize results; summaryPDF generates a report in PDF format; export creates plain text output files for downstream processing; and mergeObj merges eNetXplorer objects with different alpha values.
breastCancerSurv

Author(s)

Julian Candia and John S. Tsang
Maintainer: Julian Candia <julian.candia@nih.gov>

References

See Also
eNetXplorer, summary, plot, summaryPDF, export, mergeObj.

Examples

data(QuickStartEx)
fit = eNetXplorer(x=QuickStartEx$predictor,y=QuickStartEx$response,
family="gaussian",n_run=20,n_perm_null=10,seed=111)
summary(fit)
plot(x=fit,plot.type="measuredVsOOB",alpha.index=4)
summaryPDF(x=fit,dest_dir=tempdir())
export(x=fit,dest_dir=tempdir())

breastCancerSurv gene signature for breast cancer survival

Description

Gene signature proposed by Desmedt et al associated with breast cancer survival. Microarray data from van’t Veer et al and van de Vijver et al. Dataset adapted from Schroeder et al.

Usage

data(breastCancerSurv)

Format

A numerical matrix of predictors is provided with subjects as rows and genes as columns. The response is a two-column matrix with survival time (in days) and status (0=censored, 1=dead).

Details

Desmedt et al proposed a gene signature associated with breast cancer clinical outcome that captures different biological processes: AURKA (proliferation), PLAU (tumor invasion/metastasis), STAT1 (immune response), VEGFA (angiogenesis), CASP3 (apoptosis), ESR1 (ER signaling) and ERBB2 (HER2 signaling). Microarray data was obtained from van’t Veer et al and van de Vijver et al. The dataset was adapted from Schroeder et al. Missing predictor data was imputed using the missForest package. Subjects with missing survival data were removed.
References

eNetXplorer generates family of elastic net models for different alphas

Description

Elastic net uses a mixing parameter alpha to tune the penalty term continuously from ridge (alpha=0) to lasso (alpha=1). eNetXplorer generates a family of elastic net models over different values of alpha for the quantitative exploration of the effects of shrinkage. For each alpha, the regularization parameter lambda is chosen by optimizing a quality (objective) function based on out-of-bag cross-validation predictions. Statistical significance of each model, as well as that of individual features within a model, is assigned by comparison to a set of null models generated by random permutations of the response. eNetXplorer fits linear (gaussian), logistic (binomial), multinomial, and Cox regression models.

Usage

eNetXplorer(x, y, family=c("gaussian","binomial","multinomial","cox"), alpha=seq(0,1,by=0.2), nlambda=100, nlambda.ext=NULL, seed=NULL, scaled=TRUE, n_fold=5, n_run=100, n_perm_null=25, save_obj=FALSE, dest_dir=getwd(), dest_dir_create=TRUE, dest_dir_create_recur=FALSE, dest_obj="eNet.Robj", savelambda_QF_full=FALSE, QF.FUN=NULL, QF_label=NULL, cor_method=c("pearson","kendall","spearman"), binom_method=c("accuracy","precision","recall","Fscore","specificity","auc"), multinom_method=c("avg accuracy","avg precision","avg recall","avg Fscore"), binom_pos=NULL, fscore_beta=NULL, fold_distrib_fail.max=100, cox_index=c("concordance","D-index"), logrank=FALSE, survAUC=FALSE, survAUC_time=NULL, ...)

Arguments

x
Input numerical matrix with instances as rows and features as columns. Instance and feature labels should be provided as row and column names, respectively. Can be in sparse matrix format (inherit from class "sparseMatrix" as in package Matrix). Cannot handle missing values.
y
Response variable. For family="gaussian", numerical vector. For family="binomial", factor with two levels. For family="multinomial", factor with two or more levels. For categorical families, if a vector is supplied, it will be coerced into a factor. For family="cox", matrix with columns named "time" and "status", where the latter is a binary indicator of event (1) or right-censoring (0).

family
Response type: "gaussian" (numerical), "binomial" (2-level factor), "multinomial" (factor with >=2 levels) or "cox" (survival time and censoring status).

alpha
Sequence of values for the mixing parameter penalty term in the elastic net family. Default is seq(0,1,by=0.2).

nlambda
Number of values for the regularization parameter lambda. Default is 100. Irrespective of nlambda, the range of lambda values is assigned by glmnet.

nlambda.ext
If set to a value larger than nlambda, this will be the number of values for lambda obtained by extending the range assigned by glmnet symmetrically while keeping the lambda density uniform in log scale. Default is NULL, which will not extend the range of lambda assigned by glmnet.

seed
Sets the pseudo-random number seed to enforce reproducibility. Default is NULL.

scaled
Z-score transformation of individual features across all instances. Default is TRUE.

n_fold
Number of cross-validation folds per run. lambda is chosen based on the maximization of a quality function on out-of-bag-instances averaged over all runs. Default is 5.

n_run
Number of runs (i.e. cross-validated model iterations); for each run, instances are randomly assigned to cross-validation folds. Default is 100.

n_perm_null
Number of random null-model permutations of the response per run. Default is 25.

save_obj
Logical to save the eNetXplorer object. Default is FALSE.

dest_dir
Destination directory. Default is the working directory.

dest_dir_create
Creates destination directory if it does not exist already. Default is TRUE.

dest_dir_create_recur
Creates destination directory recursively if it does not exist already. Default is FALSE.

dest_obj
Name for output eNetXplorer object.

save_lambda_QF_full
Full lambda vs QF information is included in the eNetXplorer object. Default is FALSE.

QF.FUN
User-defined quality (objective) function as maximization criterion to select lambda based on response vs out-of-bag predictions (see example below). If not set, family-specific default quality functions are used, as follows: for family="gaussian", default is correlation; for family="binomial", it is accuracy; for family="multinomial", it is average accuracy; for family="cox", it is the concordance index (default) or D-index (set by cox_index).

QF_label
Label for user-defined quality function, if QF.FUN is provided.
cor_method For family="gaussian", correlation method to be used in the default quality function cor.test. Default is "pearson".

binom_method For family="binomial", method to be used in the quality function. Default is "accuracy".

multinom_method For family="multinomial", method to be used in the quality function. Default is "avg accuracy".

binom_pos For family="binomial" and quality function methods other than the default ("accuracy"), this is the class to be considered positive. Default is the first level of the response factor.

fscore_beta For family="binomial" and quality function method "Fscore", or for family= "multinomial" and quality function method "avg Fscore", this is the beta factor to balance precision and recall. Default is 1.

fold_distrib.fail.max For categorical models, maximum number of failed attempts per run to have all classes represented in each in-bag fold. If this number is exceeded, the execution is halted; try again with larger n_fold, by removing/reasigning classes of small size, and/or with larger fold_distrib.fail.max. Default is 100.

cox_index For family="cox", index method to be used in the default quality function. Default is "concordance", alternative choice is "D-index".

logrank For family="cox", logical to generate cross-validated log-rank test p-values of low- vs high-risk groups, defined by the median of out-of-bag predicted risk. Default is FALSE.

survAUC For family="cox", logical to calculate area-under-curve (AUC) from cross-validated time-dependent ROC curves based on out-of-bag predicted risk. Default is FALSE.

survAUC_time For family="cox" (if survAUC=T), numerical vector with timepoints of interest; time must be in the same units as the response variable y.

... Accepts parameters from glmnet.control(...) to allow changes of factory default parameters in glmnet. If not explicitly set, it will use factory defaults.

Details

For each alpha, a set of nlambda values is obtained using the full data; if provided, nlambda.ext allows to extend the range of lambda values symmetrically while keeping its density uniform in log scale. Using these values of lambda, elastic net cross-validation models are generated for n_run random assignments of instances among n_fold folds; the best lambda is determined by the maximization of a quality (objective) function that compares out-of-bag predictions against the response. A variety of quality functions are implemented for each response type, namely: for gaussian models, correlation (different correlation methods available); for binomial models, accuracy, precision, recall, F-score, specificity, area-under-curve; for multinomial models, average accuracy, precision, recall, F-score; for Cox regression models, concordance, D-index (Schroeder et al). Some of these choices require additional parameters: binomial measures that are not invariant under class permutation (see Sokolova & Lapalme) require to specify which class is to be considered positive; F-score requires to specify the value of the beta factor to balance precision and recall (F-score equals precision for beta=0 and tends to recall in the large beta limit). Besides these built-in options, user-defined quality functions can be provided via QF.FUN. For each run, using the same assignment of
instances into folds, $n_{\text{perm_null}}$ null models are generated by shuffling the response. By using the quality function to compare the out-of-bag performance of the model to that of the null models, an empirical significance p-value is assigned to the model. Similar procedures allow to obtain p-values for individual features based on absolute coefficient magnitude and on the frequency of non-zero coefficients. A family of elastic net models is thus generated for multiple values of α spanning the range from ridge ($\alpha=0$) to lasso ($\alpha=1$). This function returns an \texttt{eNetXplorer} object on which summary, plotting and export functions in this package can be applied for further analysis. For details about the underlying elastic net models (Friedman et al; Zhou & Hastie), refer to the \texttt{glmnet} package and references therein. For more details about \texttt{eNetXplorer}, see Candia & Tsang.

For Cox regression models, setting logrank=T generates cross-validated log-rank test p-values of low- vs high-risk groups, which are defined by the median of out-of-bag predicted risk (Simon et al). Moreover, setting survAUC=T and providing a numerical vector survAUC_time with timepoints of interest generates the AUC from cross-validated time-dependent ROC curves based on out-of-bag predicted risk (Simon et al) using the \texttt{timeROC} package (Blanche et al).

\textbf{Value}

An object with S3 class "\texttt{eNetXplorer}".

- \texttt{predictor} Predictor matrix used for regression (in sparse matrix format).
- \texttt{response} Response variable used for regression.
- \texttt{family} Input parameter.
- \texttt{alpha} Input parameter.
- \texttt{nlambda} Input parameter.
- \texttt{nlambda.ext} Input parameter.
- \texttt{seed} Input parameter.
- \texttt{scaled} Input parameter.
- \texttt{n_fold} Input parameter.
- \texttt{n_run} Input parameter.
- \texttt{n_perm_null} Input parameter.
- \texttt{QF_label} Input parameter.
- \texttt{cor_method} Input parameter.
- \texttt{binom_method} Input parameter.
- \texttt{multinom_method} Input parameter.
- \texttt{binom_pos} Input parameter.
- \texttt{fscore_beta} Input parameter.
- \texttt{fold_distrib_fail_max} Input parameter.
- \texttt{cox_index} Input parameter.
- \texttt{logrank} Input parameter.
- \texttt{survAUC} Input parameter.
survAUC_time Input parameter.
survAUC_method Input parameter.
survAUC_lambda Input parameter.
survAUC_span Input parameter.
instance Instance labels.
feature Feature labels.
glmnet_params glmnet parameters used for regression.
best_lambda lambda values chosen by cross-validation.
model_QF_est Quality function values obtained by cross-validation.
QF_model_vs_null_pval P-value from model vs null comparison to assess statistical significance.
lambda_values List of lambda values used for each alpha.
lambda_QF_est List of quality function values obtained for each alpha.
predicted_values List of out-of-bag predicted values for each alpha; rows are instances and columns are median/mad predictions (for linear and Cox regression) or class predictions (for binomial and multinomial regression).

feature_coef_wmean Mean of feature coefficients (over runs) weighted by non-zero frequency (over folds) in sparse matrix format, with features as rows and alpha values as columns. For multinomial regression, it is a list of matrices (one matrix for each class).

feature_coef_wsd Standard deviation of feature coefficients (over runs) weighted by non-zero frequency (over folds) in sparse matrix format, with features as rows and alpha values as columns. For multinomial regression, it is a list of matrices (one matrix for each class).

feature_freq_mean Mean of non-zero frequency in sparse matrix format, with features as rows and alpha values as columns. For multinomial regression, it is a list of matrices (one matrix for each class).

feature_freq_sd Standard deviation of non-zero frequency in sparse matrix format, with features as rows and alpha values as columns. For multinomial regression, it is a list of matrices (one matrix for each class).

null_feature_coef_wmean Analogous to feature_coef_wmean for null model permutations.
null_feature_coef_wsd Analogous to feature_coef_wsd for null model permutations.
null_feature_freq_mean Analogous to feature_freq_mean for null model permutations.
null_feature_freq_sd Analogous to feature_freq_sd for null model permutations.
feature_coef_model_vs_null_pval
P-value from model vs null comparison to assess statistical significance of mean non-zero feature coefficients in sparse matrix format, with features as rows and alpha values as columns. For multinomial regression, it is a list of matrices (one matrix for each class).

feature_freq_model_vs_null_pval
P-value from model vs null comparison to assess statistical significance of mean non-zero feature frequencies in sparse matrix format, with features as rows and alpha values as columns. For multinomial regression, it is a list of matrices (one matrix for each class).

logrank_pval
For Cox regression (if logrank=T), cross-validated log-rank test p-value of low-vs high-risk groups, defined by the median of out-of-bag predicted risk.

AUC_mean
For Cox regression (if survAUC=T), mean AUC from cross-validated time-dependent ROC curves based on out-of-bag predicted risk, with timepoints (given by survAUC_time) as rows and alpha values as columns.

AUC_sd
For Cox regression (if survAUC=T), standard deviation of AUC.

AUC_perc025
For Cox regression (if survAUC=T), 2.5th percentile of AUC.

AUC_perc500
For Cox regression (if survAUC=T), 50th percentile (median) of AUC.

AUC_perc975
For Cox regression (if survAUC=T), 97.5th percentile of AUC.

AUC_pval
For Cox regression (if survAUC=T), p-value of AUC from model vs null comparison to assess statistical significance.

Author(s)
Julian Candia and John S. Tsang
Maintainer: Julian Candia <julian.candia@nih.gov>

References

See Also

summary, plot, summaryPDF, export, mergeObj

Examples

Linear models (synthetic dataset comprised of 20 features and 75 instances):
data(QuickStartEx)
fit = eNetXplorer(x=QuickStartEx$predictor, y=QuickStartEx$response,
family="gaussian", n_run=20, n_perm_null=10, seed=111)

Custom QF provided (negative mean squared error)
data(QuickStartEx)
customQF = function(predicted,response){
 -mean((predicted-response)**2)
}
fit = eNetXplorer(x=QuickStartEx$predictor, y=QuickStartEx$response,
family="gaussian", n_run=20, n_perm_null=10, seed=111, QF.FUN=customQF, QF_label="MSE")

Linear models to predict numerical day-70 H1N1 serum titers based on
day-7 cell population frequencies:
data(H1N1_Flow)
fit = eNetXplorer(x=H1N1_Flow$predictor_day7, y=H1N1_Flow$response_numer[rownames(H1N1_Flow$predictor_day7)], family="gaussian", n_run=25, n_perm_null=15, seed=111)

Binomial models to predict acute myeloid (AML) vs acute lymphoblastic (ALL)
leukemias:
data(Leukemia_miR)
fit = eNetXplorer(x=Leuk_miR_filt$predictor, y=Leuk_miR_filt$response_binomial,
family="binomial", n_run=25, n_perm_null=15, seed=111)

Multinomial models to predict acute myeloid (AML), acute B-cell lymphoblastic # (B-ALL) and acute T-cell lymphoblastic (T-ALL) leukemias:
data(Leukemia_miR)
fit = eNetXplorer(x=Leuk_miR_filt$predictor, y=Leuk_miR_filt$response_multinomial,
family="multinomial", n_run=25, n_perm_null=15, seed=111)

Binomial models to predict B-ALL vs T-ALL:
data(Leukemia_miR)
fit = eNetXplorer(x=Leuk_miR_filt$predictor[Leuk_miR_filt$response_multinomial!="AML",],
y=Leuk_miR_filt$response_multinomial[Leuk_miR_filt$response_multinomial!="AML",]
family="binomial", n_run=25, n_perm_null=15, seed=111)

Cox regression models to predict survival based on 7-gene signature:
data(breastCancerSurv)
fit = eNetXplorer(x=breastCancerSurv$predictor, y=breastCancerSurv$response, family="cox", n_run=25, n_perm_null=15, seed=111)

generates plain text files from eNetXplorer object

Description

This function enables the extraction of three different levels of data (input, summary, and detailed output results) from an eNetXplorer object. Plain text data files are produced with tab- or comma-separated-value formats.

Usage

export(x, dest_dir=getwd(), dest_dir_create=TRUE, delim=c("tsv","csv"), input.data=TRUE, summary.data=TRUE, output.data=TRUE)

Arguments

- `x`: eNetXplorer object.
- `dest_dir`: Destination directory. Default is the working directory.
- `dest_dir_create`: Creates destination directory if it does not exist already. Default is TRUE.
- `delim`: Delimiter for the generated files, either tab-separated ("tsv") or comma-separated ("csv") values. Default is "tsv".
- `input.data`: Logical variable indicating whether to generate files containing input data (i.e. data fed into the models and model arguments). Default is TRUE.
- `summary.data`: Logical variable indicating whether to generate a file with summary results from the models. Default is TRUE.
- `output.data`: Logical variable indicating whether to generate files with detailed results from the models. Default is TRUE.

Author(s)

Julian Candia and John S. Tsang
Maintainer: Julian Candia <julian.candia@nih.gov>

See Also

eNetXplorer
Examples

data(QuickStartEx)
fit = eNetXplorer(x=QuickStartEx$predictor,y=QuickStartEx$response,
family="gaussian",n_run=20,n_perm_null=10,seed=111)
export(x=fit,dest_dir=tempdir())

H1N1_Flow longitudinal cell population frequencies and titer response upon H1N1 vaccination

Description

Data from a cohort of healthy subjects vaccinated against influenza virus H1N1. Cell population frequencies from deep-phenotyping flow cytometry were determined longitudinally pre- (days -7, 0) and post-vaccination (days 1, 7, 70). The response is the adjusted maximum fold change (adjMFC) of serum titers at day 70 relative to baseline, as defined in Tsang et al.

Usage

data(H1N1_Flow)

Format

For each timepoint (days -7, 0, 1, 7, 70), a numerical matrix of predictors is provided with subjects as rows and cell populations as columns. Two versions of the serum titer response are given: response_numer as a numerical vector and response_class as a categorical vector discretized into low (0), intermediate (1) and high (2) response classes. A metadata file with cell population annotations is also provided.

Details

Cell populations were manually gated and expressed as percent of parent. Samples and cell populations were filtered independently for each timepoint. Samples filter: excluded if median of viable cells fraction across all 5 tubes was <0.7. Cell population filter: excluded if >80% of samples had <20 cells. Data adjustment: data were log10-transformed and pooled across all timepoints, then adjusted for age, gender and ethnicity effects. For more details, see Tsang et al.

References

Description

Data of human microRNA (miR) expression of 847 miRs from 80 acute myeloid (AML) and acute lymphoblastic (ALL) leukemia cell lines, 60 primary (patient) samples, and 50 normal control samples sorted by cell type (CD34+ HSPC, Granulocytes, Monocytes, T-cells and B-cells). Acute lymphoblastic leukemia samples are further classified by B-cell (B-ALL) and T-cell (T-ALL) subphenotypes.

Usage

```r
data(Leukemia_miR)
```

Details

Two dataset versions are provided: the full dataset `Leuk_miR_full` (190 samples x 847 miRs) and the filtered dataset `Leuk_miR_filt` (140 samples x 370 miRs). Data available at GEO under Accession Number GSE51908.

References

Leukemia_miR

microRNA expression of acute leukemia phenotypes

<table>
<thead>
<tr>
<th>Leukemia_miR</th>
<th>microRNA expression of acute leukemia phenotypes</th>
</tr>
</thead>
</table>

Description

Data of human microRNA (miR) expression of 847 miRs from 80 acute myeloid (AML) and acute lymphoblastic (ALL) leukemia cell lines, 60 primary (patient) samples, and 50 normal control samples sorted by cell type (CD34+ HSPC, Granulocytes, Monocytes, T-cells and B-cells). Acute lymphoblastic leukemia samples are further classified by B-cell (B-ALL) and T-cell (T-ALL) subphenotypes.

Format

The filtered dataset `Leuk_miR_filt` consists of a numerical matrix of predictors (with samples as rows and miRs as columns) and two categorical response vectors provided for binomial (AML, ALL) and multinomial (AML, B-ALL, T-ALL) classification.
Details

The filtered dataset `Leuk_miR_filt` is a subset of the full dataset `Leuk_miR_full`, which includes only miRs with median expression >1.2 across all samples. Only leukemia samples (cell lines and primary) were kept. Data available at GEO under Accession Number GSE51908.

References

Examples

```r
# Multinomial models to predict acute myeloid (AML), acute B-cell lymphoblastic
# (B-ALL) and acute T-cell lymphoblastic (T-ALL) leukemias:
data(Leukemia_miR)
fit = eNetXplorer(x=Leuk_miR_filt$predictor, y=Leuk_miR_filt$response_multinomial,
                  family="multinomial", n_run=25, n_perm_null=15, seed=111)
```

Description

Data of human microRNA (miR) expression of 847 miRs from 80 acute myeloid (AML) and acute lymphoblastic (ALL) leukemia cell lines, 60 primary (patient) samples, and 50 normal control samples sorted by cell type (CD34+ HSPC, Granulocytes, Monocytes, T-cells and B-cells). Acute lymphoblastic leukemia samples are further classified by B-cell (B-ALL) and T-cell (T-ALL) subphenotypes.

Format

The full dataset `Leuk_miR_full` consists of a numerical matrix of expression (with samples as rows and miRs as columns) and two data frames with sample and miR metadata.

Details

Data available at GEO under Accession Number GSE51908.
mergeObj

References

Examples

Multinomial models to predict acute myeloid (AML), acute B-cell lymphoblastic (B-ALL) and acute T-cell lymphoblastic (T-ALL) leukemias:
data(Leukemia_miR)
predictor = Leuk_miR_full$expression_matrix
rownames(predictor) = Leuk_miR_full$sample_metadata$sample
colnames(predictor) = Leuk_miR_full$miRNA_short
response = Leuk_miR_full$sample_metadata$sample_class
fit = eNetXplorer(x=predictor, y=response,
 family="multinomial", n_run=25, n_perm_null=15, seed=111)

mergeObj

merges eNetXplorer objects with different alphas

Description

Upon sequential or parallel execution of two or more eNetXplorer runs with different values of the mixing parameter alpha, and assuming the objects from those runs have been saved, this function creates a new eNetXplorer object that merges the alpha values. It currently supports linear (gaussian), logistic (binomial), and Cox regression models.

Usage

mergeObj(source_obj, source_dir=getwd(), dest_obj="eNet_merged.Robj", dest_dir=NULL)

Arguments

source_obj Vector with the names of two or more eNetXplorer objects.
source_dir Source directory. Default is the working directory.
dest_obj Name of the merged eNetXplorer object.
dest_dir Destination directory. If not specified, it will use source_dir as default.

Author(s)

Julian Candia and John S. Tsang
Maintainer: Julian Candia <julian.candia@nih.gov>
plot

generates plots from eNetXplorer object

Description

This function is a wrapper for a variety of plots, namely:

- **summary**: model performance across alpha (to assess the relative performance among different member models in the elastic net family, as well as in relation to permutation null models);
- **lambdaVsQF**: given alpha, quality function across lambda (to examine the selection of the optimal penalty parameter);
- **measuredVsOOB**: (for gaussian and categorical models) given alpha, response vs out-of-bag predictions across instances (to assess individual instances, examine outliers, etc);
- **contingency**: (for categorical models) given alpha, response vs out-of-bag predictions across classes;
- **featureCaterpillar**: given alpha, caterpillar plot of feature statistics compared to permutation null models (with statistical significance annotations for individual features);
- **featureHeatmap**: heatmap of feature statistics across alpha (including statistical significance annotations for individual features);
- **KaplanMeier**: (for Cox regression models) given alpha, Kaplan-Meier plot of survival probability as a function of time (where the cohort is partitioned in two or more groups based on predicted risk); and
- **survROC**: (for Cox regression models) given alpha, time-dependent ROC plot(s) based on predicted risk at the specified timepoints of interest.
Usage

```r
## S3 method for class 'eNetXplorer'
plot(x, plot.type=c("summary","lambdaVsQF","measuredVsOOB","contingency",
"featureCaterpillar","featureHeatmap","KaplanMeier","survROC"), alpha.index,
stat=c("freq","coef"), ...)```

**Arguments**

- `x`: eNetXplorer object.
- `plot.type`: Type of plot to be produced. Available plots are "summary", "lambdaVsQF", "measuredVsOOB" (gaussian and categorical models only), "contingency" (categorical models only), "featureCaterpillar", "featureHeatmap", "KaplanMeier" (Cox models only) and "survROC" (Cox models only).
- `alpha.index`: Integer indices to select alpha values. Default is `1:length(alpha)`
- `stat`: Feature statistic: "freq" for nonzero frequency, "coef" for mean nonzero coefficient. Used for plot types "featureHeatmap" and "featureCaterpillar", ignored otherwise.
- `...`: Additional plotting parameters.

**Author(s)**

Julian Candia and John S. Tsang
Maintainer: Julian Candia <julian.candia@nih.gov>

**See Also**

- `eNetXplorer`, `plotSummary`, `plotLambdaVsQF`, `plotMeasuredVsOOB`, `plotContingency`, `plotFeatureCaterpillar`, `plotFeatureHeatmap`, `plotKaplanMeier`, `plotSurvROC`

**Examples**

```r
data(QuickStartEx)
fit = eNetXplorer(x=QuickStartEx$predictor, y=QuickStartEx$response, family="gaussian", n_run=20, n_perm_null=10, seed=111)
plot(x=fit,plot.type="summary")
plot(x=fit,plot.type="lambdaVsQF",alpha.index=2)
plot(x=fit,plot.type="measuredVsOOB",alpha.index=c(1,3,5))
plot(x=fit,plot.type="featureCaterpillar",stat="coef")
plot(x=fit,plot.type="featureHeatmap",stat="freq")```
plotContingency generates plot of response vs out-of-bag predictions across classes

Description

For categorical models, this function generates a graphical representation of the true vs predicted contingency matrix across classes for a given alpha.

Usage

plotContingency(x, alpha.index=NULL, xlab="class (true)", ylab="class (predicted)", cex.lab=0.95, main=NULL, col.main="black", cex.main=0.85, cex.axis=1, symbol.size.inches=0.5, bg.color="steelblue2", fg.color=NULL, margin=0.2, frequency.label=TRUE, frequency.label.cex=1, frequency.label.offset=0, ...)

Arguments

x eNetXplorer object.
alpha.index Integer indices to select alpha values. Default is 1:length(alpha)
xlab Custom x-axis label.
ylab Custom y-axis label.
cex.lab Axis label size.
main Custom title.
col.main Title color.
cex.main Title size.
cex.axis Axis size.
symbol.size.inches Symbol size.
bg.color Symbol color.
fg.color Color of symbol background.
margin Margin size to accommodate symbols.
frequency.label Logical to display class frequency labels. Default is TRUE.
frequency.label.cex Size of class frequency labels.
frequency.label.offset Offset of class frequency labels.
... Additional plotting parameters.

Author(s)

Julian Candia and John S. Tsang
Maintainer: Julian Candia <julian.candia@nih.gov>
plotFeatureCaterpillar

See Also

eNetXplorer, plot

Examples

```r
data(QuickStartEx)
binarized = rep("low", length(QuickStartEx$response))
binarized[QuickStartEx$response>median(QuickStartEx$response)] = "high"
fit = eNetXplorer(x=QuickStartEx$predictor, y=binarized, family="binomial", n_run=20,
n_perm_null=10, seed=111)
plot(x=fit, plot.type="contingency")
plotContingency(x=fit, alpha.index=6)
```

plotFeatureCaterpillar

generates caterpillar plot of feature statistics

Description

Given alpha, this function generates a caterpillar plot of feature statistics compared to permutation null models, which includes statistical significance annotations for individual features. By default, features are selected (and ordered top-down) by statistical significance; options are provided to customize feature selection and display.

Usage

```r
plotFeatureCaterpillar(x, alpha.index=NULL, stat=c("freq","coef"),
feature.all=FALSE, feature.pval.thres=NULL, feature.set=NULL, feature.top.n=25,
signif.code=TRUE, xlab=NULL, ylab=NULL, main=NULL, col.main="black",
cex.main=0.85, line=1.5, subtitle=NULL, col.subtitle="darkgray",
line.subtitle=0.5, cex.subtitle=0.55, cexRow=NULL, cex.lab=0.95, legend=TRUE, ...)
```

Arguments

- **x** eNetXplorer object.
- **alpha.index** Integer indices to select alpha values. Default is 1:length(alpha)
- **stat** Feature statistic: "freq" for nonzero frequency, "coef" for mean nonzero coefficient.
- **feature.all** (Feature selection argument 1) Logical to show all features. Default is FALSE.
- **feature.pval.thres** (Feature selection argument 2) P-value threshold to select features. Default is NULL.
plotFeatureCaterpillar

feature.set (Feature selection argument 3) Character vector of feature names to display. Default is NULL.
feature.top.n (Feature selection argument 4) Number of top features (ordered by p-value) to display. Default is 25.
signif.code Logical to display significance annotations. Default is TRUE.
xlab Label for x axis.
ylab Label for y axis.
main Custom title.
col.main Title color.
cex.main Title size.
line Title location.
subtitle Custom subtitle.
col.subtitle Subtitle color.
line.subtitle Subtitle location.
cex.subtitle Subtitle size.
cexRow Size of row labels.
cex.lab Axis label size.
legend Logical to display legend. Default is TRUE.
... Additional plotting parameters.

Details

Feature selection criteria are hierarchical based on arguments 1 through 4 (see argument description above), with argument 1 at the top of the hierarchy. E.g. if feature.all is explicitly set to TRUE, it will take precedence over any other feature selection argument. By default, the top 25 features are displayed, ordered top-down by significance based on the given value of alpha.

Author(s)

Julian Candia and John S. Tsang
Maintainer: Julian Candia <julian.candia@nih.gov>

See Also

eNetXplorer.plot

Examples

data(QuickStartEx)
fit = eNetXplorer(x=QuickStartEx$predictor, y=QuickStartEx$response, family="gaussian", n_run=20, n_perm_null=10, seed=111)
plot(x=fit,plot.type="featureCaterpillar",stat="coef")
plotFeatureCaterpillar(x=fit,alpha.index=3,stat="coef",main="custom title")
Description

This function generates a heatmap plot of feature statistics across alpha, which includes statistical significance annotations for individual features. By default, features are selected (and ordered top-down) by statistical significance based on a given value of alpha; options are provided to customize feature selection and display.

Usage

plotFeatureHeatmap(x, alpha.index=NULL, stat=c("freq","coef"), feature.all=FALSE, feature.pval.thres=NULL, feature.set=NULL, feature.top.n=25, signif.code=TRUE, xlab=NULL, ylab=NULL, main=NULL, col.main="black", cex.main=0.95, line=1, col=NULL, breaks=NULL, scale="none", Rowv=FALSE, Colv=FALSE, na.color=NULL, cexRow=0.75, srtRow=0, cexCol=0.75, srtCol=45, margins=c(5, 5), key=TRUE, key.title=NA, dendogram="none", trace="none", note.col.freq="black", note.col.coef="white", noteex=1, subtitle1=NULL, col.subtitle1="black", line.subtitle1=-1, cex.subtitle1=0.65, subtitle2=NULL, col.subtitle2="darkgray", line.subtitle2=-2, cex.subtitle2=0.55, ...)

Arguments

x eNetXplorer object.
alpha.index Integer indices to select alpha values. Default is 1:length(alpha)
stat Feature statistic: "freq" for nonzero frequency, "coef" for mean nonzero coefficient.
feature.all (Feature selection argument 1) Logical to show all features. Default is FALSE.
feature.pval.thres (Feature selection argument 2) P-value threshold to select features. Default is NULL.
feature.set (Feature selection argument 3) Character vector of feature names to display. Default is NULL.
feature.top.n (Feature selection argument 4) Number of top features (ordered by p-value) to display. Default is 25.
signif.code Logical to display statistical significance annotations. Default is TRUE.
xlab Label for x axis.
ylab Label for y axis.
main Custom title.
col.main Title color.
cex.main Title size.
line Title location.
col Heatmap color vector. Length must be one less than number of breaks.
breaks Color breaks vector. Default number of breaks is 10.
scale Logical to scale the data for heatmap in either the row or column direction. Default is "none".
Rowv Logical to reorder rows by hierarchical clustering. Default is FALSE.
Colv Logical to reorder columns by hierarchical clustering. Default is FALSE.
na.color Color to use for missing values.
cexRow Size of row labels.
srtRow Angle of row labels, in degrees from horizontal.
cexCol Size of column labels.
srtCol Angle of column labels, in degrees from horizontal.
margins Numeric vector of length 2 containing the margins for column and row names, respectively.
key Logical to display key. Default is TRUE.
key.title Main title of the color key.
dendogram To draw dendograms. Default is "none".
trace To display trace lines. Default is "none".
notecol.freq Color of statistical significance annotations for feature frequency heatmaps.
notecol.coef Color of statistical significance annotations for feature coefficient heatmaps.
notecex Size of significance annotations.
subtitle1 Custom subtitle 1.
col.subtitle1 Color of subtitle 1.
line.subtitle1 Position of subtitle 1.
cex.subtitle1 Size of subtitle 1.
subtitle2 Custom subtitle 2.
col.subtitle2 Color of subtitle 2.
line.subtitle2 Position of subtitle 2.
cex.subtitle2 Size of subtitle 2.
... Additional plotting parameters.

Details

Feature selection criteria are hierarchical based on arguments 1 through 4 (see argument description above), with argument 1 at the top of the hierarchy. E.g. if feature.all is explicitly set to TRUE, it will take precedence over any other feature selection argument. By default, the top 25 features are displayed, ordered top-down by significance based on the given value of alpha.

Author(s)

Julian Candia and John S. Tsang
Maintainer: Julian Candia <julian.candia@nih.gov>
plotKaplanMeier

See Also
eNetXplorer, plot

Examples

```r
data(QuickStartEx)
fit = eNetXplorer(x=QuickStartEx$predictor,y=QuickStartEx$response,
family="gaussian",n_run=20,n_perm_null=10,seed=111)
plot(x=fit,plot.type="featureHeatmap",stat="freq")
plotFeatureHeatmap(x=fit,alpha.index=3,stat="freq",main="custom title")
```

Description

For Cox regression models, this function generates a Kaplan-Meier plot of survival probability as a function of time for a given alpha. The default behavior is to partition the cohort in two groups by the predicted risk median, but custom partitions in two or more groups (specified by a vector of predicted risk percentiles) are also possible. In the former case, provided that the eNetXplorer object was generated with the `logrank=TRUE` argument, the corresponding cross-validated log-rank test p-value is displayed in the default title.

Usage

```r
plotKaplanMeier(x, alpha.index=NULL, xlab="Time", ylab="Probability of Survival", cex.lab=1, main=NULL, col.main="black", cex.main=0.95, conf.int=TRUE, breaks_ptiles=NULL, risk.col=NULL, legend=TRUE, legend.cex=0.75, ...)```

**Arguments**

- `x` eNetXplorer object (must be family="cox").
- `alpha.index` Integer indices to select alpha values. Default is `1:length(alpha)`
- `xlab` Custom x-axis label.
- `ylab` Custom y-axis label.
- `cex.lab` Axis label size.
- `main` Custom title.
- `col.main` Title color.
- `cex.main` Title size.
- `conf.int` Logical to display 95% confidence intervals. Default is `TRUE`.
- `breaks_ptiles` Vector of predicted risk percentiles for custom partitions.
- `risk.col` Color for risk groups.
- `legend` Logical to display legend. Default is `TRUE`.
- `legend.cex` Legend text size.

---
plotLambdaVsQF

breaks_ptiles  Vector of percentiles (in 0-1 range) to partition the cohort based on predicted risk. Default is 0.5.
risk.col  Vector of colors to display the predicted risk-based subcohorts.
legend  Logical to display legend. Default is TRUE.
legend.cex  Legend size.
...  Additional plotting parameters.

Author(s)
Julian Candia and John S. Tsang
Maintainer: Julian Candia <julian.candia@nih.gov>

See Also
eNetXplorer, plot

Examples

data(breastCancerSurv)
fit = eNetXplorer(x=breastCancerSurv$predictor, y=breastCancerSurv$response, family="cox",
n_run=25, n_perm_null=15, seed=111, logrank=TRUE)
plot(x=fit, plot.type="KaplanMeier")
plotKaplanMeier(x=fit, alpha.index=6, conf.int=FALSE, breaks_ptiles=c(0.333,0.667))

---
plotLambdaVsQF  generates plot of quality function across lambda

Description

Given alpha, this function generates a plot of the quality (objective) function across lambda, which is useful to examine how was the "best lambda" value selected.

Usage

plotLambdaVsQF(x, alpha.index=NULL, xlab="lambda",
 ylab="QF (response vs out-of-bag predicted)", cex.lab=0.95, main=NULL,
col.main="black", cex.main=0.95, log="x", type="b", ...)

Arguments

x  eNetXplorer object.
alpha.index  Integer indices to select alpha values. Default is 1:length(alpha)
xlab  Custom x-axis label.
ylab  Custom y-axis label.
By definition, the "best lambda" value for a given alpha is the one that maximizes the quality function (QF) over the range of lambda values considered. Therefore, QF vs lambda distributions with sharp, narrow, well-defined peaks provide more confidence in the selection of the optimal lambda value than those with less-defined peaks. Sometimes, and particularly for the ridge (alpha=0) solutions, QF is observed to increase or decrease monotonically with lambda over its entire range, causing a boundary lambda value to be selected; we conservatively recommend to disregard alpha-models generated under such circumstances. If interested in investigating further, we suggest to re-run those alpha-models by extending the default range of lambda values (via the argument nlambda.ext) or its density (via the argument nlambda). On occasion, the range of lambda values is effectively limited by convergence issues of the underlying glmnet model; in such scenario, we recommend to increment the maximum allowed number of iterations (via the argument mxit, which is passed on to glmnet.control) or to limit the complexity of the model (e.g. by filtering and reducing the number of features fed into eNetXplorer).

Author(s)
Julian Candia and John S. Tsang
Maintainer: Julian Candia <julian.candia@nih.gov>

See Also
eNetXplorer, plot

Examples

```r
data(QuickStartEx)
fit = eNetXplorer(x=QuickStartEx$predictor,y=QuickStartEx$response,
 family="gaussian",n_run=20,n_perm_null=10,seed=111)
plot(x=fit,plot.type="lambdaVsQF")
plotLambdaVsQF(x=fit,main="custom title",col.main="red")
```
**Description**

Given alpha, this function generates plots of response vs out-of-bag predictions across instances, which can be used to assess individual instances, examine outliers, etc. For linear regression models, it generates a response vs out-of-bag prediction scatterplot; it also displays the best linear fit and its 95% confidence level region. For categorical models, it generates a boxplot across classes showing the frequency of out-of-bag correct predictions.

**Usage**

```r
plotMeasuredVsOOB(x, alpha.index=NULL, xlab=NULL, ylab=NULL, cex.lab=0.95, main=NULL, col.main="black", cex.main=0.85, instance.label=TRUE, instance.label.cex=NULL, instance.label.offset=NULL, instance.label.added.margin=NULL, col=NULL, box.wex=NULL, box.range=NULL, box.col=NULL, transparency=NULL, jitter=NULL, cex.pt=NULL, class.color=NULL, ...)
```

**Arguments**

- `x` eNetXplorer object.
- `alpha.index` Integer indices to select alpha values. Default is `1:length(alpha)`.
- `xlab` Custom x-axis label.
- `ylab` Custom y-axis label.
- `cex.lab` Axis label size.
- `main` Custom title.
- `col.main` Title color.
- `cex.main` Title size.
- `instance.label` Logical to display instance labels. Default is `TRUE`.
- `instance.label.cex` Size of instance labels.
- `instance.label.offset` Offset of instance labels.
- `instance.label.added.margin` (linear regression only) Margin size to accommodate instance label display.
- `col` (linear regression only) Symbol color.
- `box.wex` (categorical models only) Boxplot boxwex parameter. Default is 0.5.
- `box.range` (categorical models only) Boxplot range parameter. Default is 0.
- `box.col` (categorical models only) Boxplot col parameter. Default is white.
- `transparency` (categorical models only) Symbol transparency. Default is 70.
- `jitter` (categorical models only) Symbol jitter. Default is 0.25.
- `cex.pt` (categorical models only) Symbol size. Default is 1.7
- `class.color` (categorical models only) Vector of class colors. Default is the default palette.
- `...` Additional plotting parameters.
plotSummary

generates summary plots of model performance across alpha

Description
This function generates summary plots to display the performance of all models in the elastic net family. Two measures are used: 1) mean quality function of response vs out-of-bag predictions, and 2) model vs null p-values. Taken together, these plots enable visual assessments of the relative performance among different member models in the elastic net family, as well as in relation to permutation null models.

Usage
plotSummary(x, show.pval.ref=TRUE, main=NULL, col.main="black", cex.main=0.95, line=1, ...)

Arguments
x eNetXplorer object.
show.pval.ref Logical to display reference lines of significance (if within range of model vs null p-values). Default is TRUE.
plotSurvROC
generates time-dependent ROC plots from Cox predicted risks

Description
For Cox regression models, this function generates time-dependent ROC plot(s) (true positive rate vs false positive rate) for a given alpha at the timepoint(s) provided based on median predicted risk. Provided that the eNetXplorer object was generated with survAUC=T, the cross-validated median AUC and 95% CI are shown in the default title. For more details, see Heagerty et al and package survivalROC.

Usage
```r
plotSurvROC(x, alpha.index=NULL, survAUC_time,
 xlab="False positive rate (1 - Specificity)",
 ylab="True positive rate (Sensitivity)", cex.lab=1, main=NULL, col.main="black",
 cex.main=0.95, status0="censored", status1="events", ...)
```

Author(s)
Julian Candia and John S. Tsang
Maintainer: Julian Candia <julian.candia@nih.gov>

See Also
eNetXplorer, plot

Examples
```r
data(QuickStartEx)
fit = eNetXplorer(x=QuickStartEx$predictor,y=QuickStartEx$response,
 family="gaussian",n_run=20,n_perm_null=10,seed=111)
plot(x=fit, plot.type="summary")
plotSummary(x=fit,show.pval.ref=FALSE)
```
Arguments

- **x**: eNetXplorer object (must be family="cox").
- **alpha.index**: Integer indices to select alpha values. Default is 1:length(alpha).
- **survAUC_time**: Timepoint(s) of interest. Must be in the same time units as the survival time provided to build the eNetXplorer object.
- **xlab**: Custom x-axis label.
- **ylab**: Custom y-axis label.
- **cex.lab**: Axis label size.
- **main**: Custom title.
- **col.main**: Title color.
- **cex.main**: Title size.
- **status0**: Title label for censoring ("status"=0).
- **status1**: Title label for events ("status"=1).
- **...**: Additional parameters.

Author(s)

Julian Candia and John S. Tsang
Maintainer: Julian Candia <julian.candia@nih.gov>

References


See Also

eNetXplorer.plot

Examples

data(breastCancerSurv)
fit = eNetXplorer(x=breastCancerSurv$predictor, y=breastCancerSurv$response, family="cox", n_run=25, n_perm_null=15, seed=111, survAUC=TRUE, survAUC_time=c(1,5)*365)
plot(x=fit, plot.type="survROC", survAUC_time=c(1,5)*365, status0="censored", status1="deaths")
**QuickStartEx**

*synthetic dataset*

**Description**

75 instances with 20 predictors and a numerical response to be used as a quick start example.

**Usage**

```r
data(QuickStartEx)
```

**Format**

A numerical matrix of predictors is provided with instances as rows and predictors as columns. A numerical response is provided as a quick start example for linear regression models; it can be easily discretized to serve as example for binary and multinomial models as well.

**summary**

*generates list of model statistics*

**Description**

This function generates a standard list of model statistics. For each alpha, it contains the best value of lambda (obtained by maximizing a quality function over out-of-bag instances), the corresponding maximum value of the quality function, and the model significance (p-value based on comparison to permutation null models).

**Usage**

```r
S3 method for class 'eNetXplorer'
summary(object, ...)
```

**Arguments**

- `object`: eNetXplorer object.
- `...`: Additional parameters.

**Value**

- `alpha`: Vector of alpha values.
- `best_lambda`: Best lambda obtained by maximization of the quality function.
- `model_QF_est`: Maximum of the quality function.
- `QF_model_vs_null_pval`: P-value from model vs null comparison to assess statistical significance.
summaryPDF

Author(s)
Julian Candia and John S. Tsang
Maintainer: Julian Candia <julian.candia@nih.gov>

See Also
eNetXplorer

Examples

```r
data(QuickStartEx)
fit = eNetXplorer(x=QuickStartEx$predictor,y=QuickStartEx$response,
 family="gaussian",n_run=20,n_perm_null=10,seed=111)
summary(fit)
```

summaryPDF  
---
generates PDF report with summary of main results
---

Description

This function generates a PDF report that contains a plot of model performance across the alpha range, followed by plots showing detailed results for each value of alpha.

Usage

```r
summaryPDF(x, dest_dir=getwd(), dest_dir_create=TRUE, dest_file="eNetSummary.pdf")
```

Arguments

- `x` eNetXplorer object.
- `dest_dir` Destination directory. Default is the working directory.
- `dest_dir_create` Creates destination directory if it does not exist already. Default is TRUE.
- `dest_file` Name for output PDF file.

Author(s)
Julian Candia and John S. Tsang
Maintainer: Julian Candia <julian.candia@nih.gov>

See Also
eNetXplorer.plot
Examples

data(QuickStartEx)
fit = eNetXplorer(x=QuickStartEx$predictor,y=QuickStartEx$response,
family="gaussian",n_run=20,n_perm_null=10,seed=111)
summaryPDF(x=fit,dest_dir=tempdir())
Index

* datasets
  breastCancerSurv, 3
  H1N1_Flow, 12
  Leuk_miR_filt, 13
  Leuk_miR_full, 14
  Leukemia_miR, 13
  QuickStartEx, 30

* package
  eNetXplorer-package, 2
  export, 2, 3, 10, 11
  H1N1_Flow, 12
  Leuk_miR_filt, 13
  Leuk_miR_full, 14
  Leukemia_miR, 13
  mergeObj, 2, 3, 10, 15
  plot, 2, 3, 10, 16, 19, 20, 23–25, 27–29, 31
  plotContingency, 17, 18
  plotFeatureCaterpillar, 17, 19
  plotFeatureHeatmap, 17, 21
  plotKaplanMeier, 17, 23
  plotLambdaVsQF, 17, 24
  plotMeasuredVsOOB, 17, 26
  plotSummary, 17, 27
  plotSurvROC, 17, 28
  QuickStartEx, 30
  summary, 2, 3, 10, 30
  summaryPDF, 2, 3, 10, 31