Package ‘earth’

March 3, 2018

Version 4.6.1

Title Multivariate Adaptive Regression Splines

Maintainer Stephen Milborrow <milbo@sonic.net>

Depends R (>= 3.2.0), plotmo (>= 3.3.4), TeachingDemos (>= 2.10)

Suggests gam (>= 1.14-4), mgcv (>= 1.8-22), mda (>= 0.4-10), MASS (>= 7.3-47)

Description Build regression models using the techniques in Friedman's papers ``Fast MARS'' and ``Multivariate Adaptive Regression Splines'' <doi:10.1214/aos/1176347963>. (The term ``MARS'' is trademarked and thus not used in the name of the package.)

License GPL-3

URL http://www.milbo.users.sonic.net/earth

Repository CRAN

Date/Publication 2018-03-03 00:52:37 UTC

RoxygenNote 5.0.1

NeedsCompilation yes

R topics documented:

contr.earth.response 2
earth .. 3
earth.object .. 11
etitanic .. 16
evimp ... 18
format.earth 19
mars.to.earth 22
model.matrix.earth 23
Description

Contrasts function for factors in the earth response. For internal use by earth.

Usage

contr.earth.response(x, base, contrasts)

Arguments

- **x**: a factor
- **base**: unused
- **contrasts**: unused

Value

Returns a diagonal matrix. An example for a 3 level factor with levels A, B, and C:

```
A  B  C
A 1  0  0
B 0  1  0
C 0  0  1
```

Note

Earth uses this function internally. You shouldn’t need it. It is made publicly available only because it seems that is necessary for model.matrix.

See Also

contrasts
Title: Multivariate Adaptive Regression Splines

Description

Build a regression model using the techniques in Friedman’s papers "Multivariate Adaptive Regression Splines" and "Fast MARS".

See the package vignette “Notes on the earth package”.

Usage

```r
## S3 method for class 'formula'
earth(formula = stop("no 'formula' argument"), data = NULL,
      weights = NULL, wp = NULL, subset = NULL,
      na.action = na.fail,
      pmeth = c("backward", "none", "exhaustive", "forward", "seqrep", "cv"),
      keepxy = FALSE, trace = 0, glm = NULL, degree = 1, nprune = NULL,
      nfold=0, ncross=1, stratify=TRUE,
      varmod.method = "none", varmod.exponent = 1,
      varmod.conv = 1, varmod.clamp = .1, varmod.minspan = -3,
      Scale.y = (NCOL(y)==1), ...)

## Default S3 method:
earth(x = stop("no 'x' argument"), y = stop("no 'y' argument"),
      weights = NULL, wp = NULL, subset = NULL,
      na.action = na.fail,
      pmeth = c("backward", "none", "exhaustive", "forward", "seqrep", "cv"),
      keepxy = FALSE, trace = 0, glm = NULL, degree = 1, nprune = NULL,
      nk = min(200, max(20, 2 * ncol(x))) + 1,
      thresh = 0.001, minspan = 0, endspan = 0,
      newvar.penalty = 0, fast.k = 20, fast.beta = 1,
      linpreds = FALSE, allowed = NULL,
      nprune = NULL, Object = NULL,
      Scale.y = (NCOL(y)==1), Adjust.endspan = 2, Auto.linpreds = TRUE,
```
Arguments

To start off, look at the arguments `formula`, `data`, `x`, `y`, `nk`, `degree`, and `trace`. If the response is binary or a factor, consider using the `glm` argument. For cross validation, use the `nfold` argument. For prediction intervals, use the `varmod.method` argument.

Most users will find that the above arguments are all they need, plus in some cases `keepxy` and `nprune`. Unless you are a knowledgeable user, it’s best not subvert the standard algorithm by toying with tuning parameters such as `thresh`, `penalty`, and `endspan`.

Model formula.

`formula`
Data frame for `formula`.

`x`
Matrix or dataframe containing the independent variables.

`y`
Vector containing the response variable, or, in the case of multiple responses, a matrix or dataframe whose columns are the values for each response.

`subset`
Index vector specifying which cases to use, i.e., which rows in `x` to use. Default is `NULL`, meaning all.

`weights`
Case weights. Default is `NULL`, meaning no case weights. If specified, `weights` must have length equal to `nrow(x)` before applying `subset`. Zero weights are converted to a very small nonzero value.

`wp`
Response weights. Default is `NULL`, meaning no response weights. If specified, `wp` must have an element for each column of `y` (after `factors` in `y`, if any, have been expanded). Zero weights are converted to a very small nonzero value.

`na.action`
NA action. Default is `na.fail`, and only `na.fail` is supported.

`keepxy`
Default is `FALSE`. Set to `TRUE` to retain the following in the returned value: `x` and `y` (or `data`), `subset`, and `weights`. The function `update.earth` and friends will use these if present instead of searching for them in the environment at the time `update.earth` is invoked.

When the `nfold` argument is used with `keepxy=TRUE`, `earth` keeps more data and calls `predict.earth` multiple times to generate `cv.oof.rsq.tab` and `cv.infold.rsq.tab` (see the `cv` arguments in the “Value” section below). It therefore makes cross-validation significantly slower.

`trace`
Trace `earth`'s execution. Values:

0 (default) no tracing

.3 variance model (the `varmod.method` arg)

.5 cross validation (the `nfold` arg)

1 overview

2 forward pass

3 pruning

4 model mats summary, pruning details
earth

5 full model mats, internal details of operation

glm

NULL (default) or a list of arguments to pass on to \texttt{glm}. See the documentation of \texttt{glm} for a description of these arguments. See “Generalized linear models” in the vignette. Example:

\begin{verbatim}
earth(survived\textasciitilde., data=etitanic, degree=2, glm=list(family=binomial))
\end{verbatim}

The following arguments are for the forward pass.

degree

Maximum degree of interaction (Friedman’s \textit{mi}). Default is 1, meaning build an additive model (i.e., no interaction terms).

penalty

Generalized Cross Validation (GCV) penalty per knot. Default is if\texttt{(degree>1)} 3 else 2. Simulation studies suggest values in the range of about 2 to 4. The FAQ section in the vignette has some information on GCVs. Special values (for use by knowledgeable users): The value 0 penalizes only terms, not knots. The value -1 means no penalty, so GCV = RSS/n.

nk

Maximum number of model terms before pruning, i.e., the maximum number of terms created by the forward pass. Includes the intercept. The actual number of terms created by the forward pass will often be less than nk because of other stopping conditions. See “Termination conditions for the forward pass” in the vignette. The default is semi-automatically calculated from the number of predictors but may need adjusting.

thresh

Forward stepping threshold. Default is 0.001. This is one of the arguments used to decide when forward stepping should terminate: the forward pass terminates if adding a term changes RSq by less than thresh. See “Termination conditions for the forward pass” in the vignette.

minspan

Minimum number of observations between knots. (This increases resistance to runs of correlated noise in the input data.) The default \texttt{minspan=0} is treated specially and means calculate the \texttt{minspan} internally, as per Friedman’s MARS paper section 3.8 with \texttt{alpha} = 0.05. Set \texttt{trace>=2} to see the calculated value. Use \texttt{minspan=1} and \texttt{endspan=1} to consider all x values. Negative values of \texttt{minspan} specify the maximum number of knots per predictor. These will be equally spaced. For example, \texttt{minspan=-3} allows three evenly spaced knots for each predictor. As always, knots that fall in the endzones specified by \texttt{endspan} will be ignored.

endspan

Minimum number of observations before the first and after the final knot. The default \texttt{endspan=0} is treated specially and means calculate the \texttt{endspan} internally, as per the MARS paper equation 45 with \texttt{alpha} = 0.05. Set \texttt{trace>=2} to see the calculated value. Be wary of reducing \texttt{endspan}, especially if you plan to make predictions beyond or near the limits of the training data. Overfitting near the edges of training data is much more likely with a small \texttt{endspan}. The model’s RSq and GRSq won’t indicate when this overfitting is occurring. (A \texttt{plotmo} plot can help: look for sharp hinges at the edges of the data). See also the Adjust. \texttt{endspan} argument.

newvar.penalty

Penalty for adding a new variable in the forward pass (Friedman’s \textit{gamma}, equation 74 in the MARS paper). Default is 0, meaning no penalty for adding
a new variable. Useful non-zero values typically range from about 0.01 to 0.2 and sometimes higher — you will need to experiment.

A word of explanation. With the default \texttt{newvar.penalty=0}, if two variables have nearly the same effect (e.g. they are collinear), at any step in the forward pass \texttt{earth} will arbitrarily select one or the other (depending on noise in the sample). Both variables can appear in the final model, complicating model interpretation. On the other hand with a non-zero \texttt{newvar.penalty}, the forward pass will be reluctant to add a new variable — it will rather try to use a variable already in the model, if that does not affect \texttt{RSq} too much. The resulting final model may be easier to interpret, if you are lucky. There will often be a small performance hit (a worse GCV).

\texttt{fast.k} Maximum number of parent terms considered at each step of the forward pass. (This speeds up the forward pass. See the Fast MARS paper section 3.0.) Default is 20. A value of 0 is treated specially (as being equivalent to infinity), meaning no Fast MARS. Typical values, apart from 0, are 20, 10, or 5.

In general, with a lower \texttt{fast.k} (say 5), \texttt{earth} is faster; with a higher \texttt{fast.k}, or with \texttt{fast.k} disabled (set to 0), \texttt{earth} builds a better model. However, because of random variation this general rule often doesn’t apply.

\texttt{fast.beta} Fast MARS ageing coefficient, as described in the Fast MARS paper section 3.1. Default is 1. A value of 0 sometimes gives better results.

\texttt{linpreds} Index vector specifying which predictors should enter linearly, as in \texttt{lm}. The default is \texttt{FALSE}, meaning all predictors enter in the standard MARS fashion, i.e., in hinge functions.

This does not say that a predictor \textit{must} enter the model; only that if it enters, it enters linearly. See “The \texttt{linpreds} argument” in the vignette.

A predictor’s index in \texttt{linpreds} is the column number in the input matrix \texttt{x} (after factors have been expanded).

\texttt{linpreds=TRUE} makes all predictors enter linearly (the \texttt{TRUE} gets recycled).

\texttt{linpreds} may also be a character vector e.g. \texttt{linpreds=c("wind", "vis").} Note: \texttt{grep} is used for matching. Thus "wind" will match all variables that have "wind" in their names. Use "wind$" to match only the variable named "wind".

\texttt{allowed} Function specifying which predictors can interact and how. Default is \texttt{NULL}, meaning all standard MARS terms are allowed.

During the forward pass, \texttt{earth} calls the \texttt{allowed} function before considering a term for inclusion; the term can go into the model only if the \texttt{allowed} function returns \texttt{TRUE}. See “The \texttt{allowed} argument” in the vignette.

The following arguments are for the pruning pass.

\texttt{pmethod} Pruning method. One of: \texttt{backward none exhaustive forward seqrep cv}. Default is \texttt{"backward"}.

Specify \texttt{pmethod="cv"} to use cross-validation to select the number of terms. This selects the number of terms that gives the maximum mean out-of-fold \texttt{RSq} on the fold models. Requires the \texttt{nfold} argument.

Use \texttt{"none"} to retain all the terms created by the forward pass.

If \texttt{y} has multiple columns, then only "backward" or "none" is allowed.

Pruning can take a while if "exhaustive" is chosen and the model is big (more
than about 30 terms). The current version of the {leaps} package used during pruning does not allow user interrupts (i.e., you have to kill your R session to interrupt; in Windows use the Task Manager or from the command line use `taskkill`).

`nprune` Maximum number of terms (including intercept) in the pruned model. Default is NULL, meaning all terms created by the forward pass (but typically not all terms will remain after pruning). Use this to enforce an upper bound on the model size (that is less than `nk`), or to reduce exhaustive search time with `pmethod="exhaustive"`.

The following arguments are for cross validation.

`nfold` Number of cross-validation folds. Default is 0, no cross validation. If greater than 1, `earth` first builds a standard model as usual with all the data. It then builds `nfold` cross-validated models, measuring R-Squared on the out-of-fold (left out) data each time. The final cross validation R-Squared (CVRsq) is the mean of these out-of-fold R-Squareds.

The above process of building `nfold` models is repeated `ncross` times (by default, once). Use `trace=.5` to trace cross-validation.

Further statistics are calculated if `keepxy=TRUE` or if a binomial or poisson model (specified with the `glm` argument). See “Cross validation” in the vignette.

`ncross` Only applies if `nfold>1`. Number of cross-validations. Each cross-validation has `nfold` folds. Default 1.

`stratify` Only applies if `nfold>1`. Default is `TRUE`. Stratify the cross-validation samples so that an approximately equal number of cases with a non-zero response occur in each cross validation subset. So if the response `y` is logical, the `TRUE`s will be spread evenly across folds. And if the response is a multilevel factor, there will be an approximately equal number of each factor level in each fold (because a multilevel factor response gets expanded to columns of zeros and ones, see “Factors” in the vignette). We say “approximately equal” because the number of occurrences of a factor level may not be exactly divisible by the number of folds.

The following arguments are for variance models.

`varmod.method` Construct a variance model. For details, see `varmod` and the vignette “Variance models in earth”. Use `trace=.3` to trace construction of the variance model.

This argument requires `nfold` and `ncross`. (We suggest at least `ncross=30` here to properly calculate the variance of the errors — although you can use a smaller value, say 3, for debugging.)

The `varmod.method` argument should be one of

- "none" Default. Don’t build a variance model.
- "const" Assume homoscedastic errors.
- "lm" Use 1m to estimate standard deviation as a function of the predicted response.
- "rlm" Use rlm.
- "earth" Use earth.
- "gam" Use gam. This will use either gam or the mgcv package, whichever is loaded.
"power" Estimate standard deviation as intercept + coef * predicted.response^exponent, where intercept, coef, and exponent will be estimated by nls. This is equivalent to varmod.method="lm" except that exponent is automatically estimated instead of being held at the value set by the varmod.exponent argument.

"power0" Same as "power" but no intercept (offset) term.

"x.lm", "x.rlm", "x.earth", "x.gam" Like the similarly named options above, but estimate standard deviation by regressing on the predictors x (instead of the predicted response). A current implementation restriction is that "x.gam" allows only models with one predictor (x must have only one column).

varmod.exponent

Power transform applied to the rhs before regressing the absolute residuals with the specified varmod.method. Default is 1.

For example, with varmod.method="lm", if you expect the standard deviance to increase linearly with the mean response, use varmod.exponent=1. If you expect the standard deviance to increase with the square root of the mean response, use varmod.exponent=.5 (where negative response values will be treated as 0, and you will get an error message if more than 20% of them are negative).

varmod.conv

Convergence criterion for the Iteratively Reweighted Least Squares used when creating the variance model. Iterations stop when the mean value of the coefficients of the residual model change by less than varmod.conv percent. Default is 1 percent. Negative values force the specified number of iterations, e.g. varmod.conv=-2 means iterate twice. Positive values are ignored for varmod="const" and also currently ignored for varmod="earth" (these are iterated just once, the same as using varmod.conv=-1).

varmod.clamp

The estimated standard deviation of the main model errors is forced to be at least a small positive value, which we call min.sd. This prevents negative or absurdly small estimated standard deviations. Clamping takes place in predict.varmod, which is called by predict.earth when estimating prediction intervals. The value of min.sd is determined when building the variance model as min.sd = varmod.clamp * mean(sd(training residuals)). The default varmod.clamp is 0.1.

varmod.minspan

Only applies when varmod.method="earth" or "x.earth". This is the minspan used in the internal call to earth when creating the variance model (not the main earth model). Default is -3, i.e., three evenly spaced knots per predictor. Residuals tend to be very noisy, and allowing only this small number of knots helps prevent overfitting.

The following arguments are for internal or advanced use.

object

Earth object to be updated, for use by update.earth.

Scale.y

Scale y internally in the forward pass for better numeric stability. This is invisible to the user, up to numerical differences. Scaling here means subtract the mean and divide by the standard deviation. Default is NCOL(y)==1, i.e., scale y unless y has multiple columns.

Adjust.endspan

In interaction terms, endspan gets multiplied by this value. This reduces the possibility of an overfitted interaction term supported by just a few cases on the boundary of the predictor space (as sometimes seen in our simulation studies).
The default is 2. Use Adjust.endspan=1 for compatibility with old versions of earth.

Auto.linpreds

Default is TRUE, which works as follows (see example):

At any step in the forward pass, if earth discovers that the best knot for the best predictor is at the predictor minimum (in the training data), then earth adds the predictor to the model as a linear “basis function” (with no hinge). Compare the following basis functions (printed in bold) for an example such predictor x:

- **Auto.linpreds**=TRUE (default): \(x \)
- **Auto.linpreds**=FALSE: \(\max(x=99, 0) \) where 99 is the minimum x in the training data.

Using **Auto.linpreds**=FALSE always forces a knot, even when the knot is at the minimum value of the variable. This ensures that the basis functions are always expressed as hinge functions (and will always be non-negative).

Note that **Auto.linpreds** affects only how the model behaves outside the training data. Thus predict.earth will make the same predictions from the training data, regardless of whether the earth model was built with **Auto.linpreds** set TRUE or FALSE (up to possible differences in the size of the model caused by different GCVs because of the different forms of the terms).

Force.weights

Default is FALSE. For testing the weights argument. Force use of the code for handling weights in the earth code, even if weights=NULL or all the weights are the same. This will not necessarily generate an identical model, primarily because the non-weighted code requires some tests for numerical stability that can sometimes affect knot selection.

Use.beta.cache

Default is TRUE. Using the “beta cache” takes a little more memory but is faster (by 20% and often much more for large models). The beta cache uses \(nk * nk * ncol(x) * \) sizeof(double) bytes. (The beta cache is an innovation in this implementation of MARS and does not appear in Friedman’s papers. It is not related to the fast.beta argument. Certain regression coefficients in the forward pass can be saved and re-used, thus saving recalculation time.)

Force.xtx.prune

Default is FALSE. This argument pertains to subset evaluation in the pruning pass. By default, if y has a single column then earth calls the leaps routines; if y has multiple columns then earth calls EvalSubsetsUsingXtx. The leaps routines are numerically more stable but do not support multiple responses (leaps is based on the QR decomposition and EvalSubsetsUsingXtx is based on the inverse of \(X'X \)). Setting **Force.xtx.prune**=TRUE forces use of EvalSubsetsUsingXtx, even if y has a single column.

Get.leverages

Default is TRUE unless the model has more than 100 thousand cases. The leverages are the diagonal hat values for the linear regression of y on bx. (The leverages are needed only for certain model checks, for example when plotres is called with versus=4).

Details: This argument was introduced to reduce peak memory usage. When \(n \gg p \), memory use peaks when earth is calculating the leverages.

Exhaustive.tol

Default 1e-10. Applies only when pmethd="exhaustive". If the reciprocal of the condition number of bx is less than Exhaustive.tol, earth forces pmethd="backward". See “XHAUST returned error code -999” in the vignette.

... Dots are passed on to earth.fit.
Value

An S3 model of class "earth". See earth.object for a complete description.

Author(s)

Stephen Milborrow, derived from mda::mars by Trevor Hastie and Robert Tibshirani.

The approach used for GLMs was motivated by work done by Jane Elith and John Leathwick (a representative paper is given below).

The evimp function uses ideas from Max Kuhn’s caret package https://CRAN.R-project.org/package=caret.

Parts of Thomas Lumley’s leaps package have been incorporated into earth, so earth can directly access Alan Miller’s Fortran functions without going through hidden functions in the leaps package.

References

The primary references are the Friedman papers. Readers may find the MARS section in Hastie, Tibshirani, and Friedman a more accessible introduction. The Wikipedia article is recommended for an elementary introduction. Faraway takes a hands-on approach, using the ozone data to compare mda::mars with other techniques. (If you use Faraway’s examples with earth instead of mars, use bx instead of x, and check out the book’s errata.) Friedman and Silverman is recommended background reading for the MARS paper. Earth’s pruning pass uses code from the leaps package which is based on techniques in Miller.

Faraway (2005) Extending the Linear Model with R http://www.maths.bath.ac.uk/~jjf23
http://projecteuclid.org/euclid.aos/1176347963
doi: 10.1214/aos/1176347963
https://statistics.stanford.edu/research/fast-mars
Wikipedia article on MARS http://en.wikipedia.org/wiki/Multivariate_adaptive_regression_splines
See Also

Start with `summary.earth`, `plot.earth`, `evimp`, and `plotmo`.

Please see the main package vignette “Notes on the earth package”. The vignette can also be downloaded from http://www.milbo.org/doc/earth-notes.pdf.

The vignette “Variance models in earth” is also included with the package. It describes how to build variance models and generate prediction intervals for `earth` models.

Examples

```r
earth.mod <- earth(Volume ~ ., data = trees)
plotmo(earth.mod)
summary(earth.mod, digits = 2, style = "pmax")
```

earth.object

An earth object

Description

The object returned by the `earth` function.

This is an S3 model of `class "earth"`. It is a list with the components listed below.

Term refers to a term created during the forward pass (each line of the output from `format.earth` is a term). Term number 1 is always the intercept.

Value

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rss</code></td>
<td>Residual sum-of-squares (RSS) of the model (summed over all responses, if <code>y</code> has multiple columns).</td>
</tr>
<tr>
<td><code>rsq</code></td>
<td>1-rss/tss. R-Squared of the model (calculated over all responses, and calculated using the <code>weights</code> argument if it was supplied). A measure of how well the model fits the training data. Note that <code>tss</code> is the total sum-of-squares, <code>sum((y - mean(y))^2)</code>.</td>
</tr>
<tr>
<td><code>gcv</code></td>
<td>Generalized Cross Validation (GCV) of the model (summed over all responses). The GCV is calculated using the <code>penalty</code> argument. For details of the GCV calculation, see equation 30 in Friedman’s MARS paper and <code>earth::get.gcv</code>.</td>
</tr>
<tr>
<td><code>grsq</code></td>
<td>1-gcv/gcv.null. An estimate of the predictive power of the model (calculated over all responses, and calculated using the <code>weights</code> argument if it was supplied). <code>gcv.null</code> is the GCV of an intercept-only model. See “Can GRSt be negative?” in the vignette.</td>
</tr>
<tr>
<td><code>bx</code></td>
<td>Matrix of basis functions applied to <code>x</code>. Each column corresponds to a selected term. Each row corresponds to a row in the input matrix <code>x</code>, after taking subset. See <code>model.matrix.earth</code> for an example of <code>bx</code> handling. Example <code>bx</code>:</td>
</tr>
</tbody>
</table>
Matrix with one row per MARS term, and with with ij-th element equal to

0 if predictor j is not in term i
-1 if an expression of the form h(const - xj) is in term i
1 if an expression of the form h(xj - const) is in term i
2 if predictor j should enter term i linearly (either because specified by the linpreds argument or because earth discovered that a knot was unnecessary).

This matrix includes all terms generated by the forward pass, including those not in selected.terms. Note that here the terms may not all be in pairs, because although the forward pass add terms as hinged pairs (so both sides of the hinge are available as building blocks for further terms), it also deletes linearly dependent terms before handing control to the pruning pass. Example dirs:

```
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Girth</td>
<td>Height</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Intercept)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>h(12.9-Girth)</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>h(Girth-12.9)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>h(Girth-12.9)*h(Height-76)</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
```

Matrix with ij-th element equal to the cut point for predictor j in term i. This matrix includes all terms generated by the forward pass, including those not in selected.terms. Note for programmers: the precedent is to use dirs for term names etc. and to only use cuts where cut information needed. Example cuts:

```
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Girth</td>
<td>Height</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Intercept)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>h(12.9-Girth)</td>
<td>12.9</td>
<td>0</td>
</tr>
<tr>
<td>h(Girth-12.9)</td>
<td>12.9</td>
<td>0</td>
</tr>
<tr>
<td>h(Girth-12.9)*h(Height-76)</td>
<td>12.9</td>
<td>76</td>
</tr>
</tbody>
</table>
```

A matrix specifying which terms appear in which pruning pass subsets. The row index of prune.terms is the model size. (The model size is the number of terms in the model. The intercept is counted as a term.) Each row is a vector of term numbers for the best model of that size. An element is 0 if the term is not in the model, thus prune.terms is a lower triangular matrix, with dimensions nprune x nprune. The model selected by the pruning pass is at row number length(selected.terms). Example prune.terms:

```
[1,] 1 0 0 0 0 0 0 #intercept-only model
[2,] 1 2 0 0 0 0 0 #best 2 term model uses terms 1,2
[3,] 1 2 4 0 0 0 0 #best 3 term model uses terms 1,2,4
[4,] 1 2 6 9 0 0 0 #and so on
```
selected.terms Vector of term numbers in the selected model. Can be used as a row index vector into `cuts` and `dirs`. The first element `selected.terms[1]` is always 1, the intercept.

fitted.values Fitted values. A matrix with dimensions `nrow(y) x ncol(y)` after factors in `y` have been expanded.

residuals Residuals. A matrix with dimensions `nrow(y) x ncol(y)` after factors in `y` have been expanded.

coefficients Regression coefficients. A matrix with dimensions `length(selected.terms) x ncol(y)` after factors in `y` have been expanded. Each column holds the least squares coefficients from regressing that column of `y` on `bx`. The first row holds the intercept coefficient(s).

rss.per.response A vector of the RSS for each response. Length is the number of responses, i.e., `ncol(y)` after factors in `y` have been expanded. The `rss` component above is equal to `sum(rss.per.response)`.

rsq.per.response A vector of the R-Squared for each response (where R-Squared is calculated using the `weights` argument if it was supplied). Length is the number of responses.

gcv.per.response A vector of the GCV for each response. Length is the number of responses. The `gcv` component above is equal to `sum(gcv.per.response)`.

grsq.per.response A vector of the GRSq for each response (calculated using the `weights` argument if it was supplied). Length is the number of responses.

rss.per.subset A vector of the RSS for each model subset generated by the pruning pass. Length is `n.prune`. For multiple responses, the RSS is summed over all responses for each subset. The `rss` above is `rss.per.subset[length(selected.terms)]`. The RSS of an intercept-only model is `rss.per.subset[1]`.

gcv.per.subset A vector of the GCV for each model in `prune.terms`. Length is `n.prune`. For multiple responses, the GCV is summed over all responses for each subset. The `gcv` above is `gcv.per.subset[length(selected.terms)]`. The GCV of an intercept-only model is `gcv.per.subset[1]`.

leverages Diagonal of the hat matrix (from the linear regression of the response on `bx`).

penalty, nk, thresh Copies of the corresponding arguments to `earth`.

pmethod, nprune Copies of the corresponding arguments to `earth`.

weights, wp Copies of the corresponding arguments to `earth`.

termcond Reason the forward pass terminated (an integer).

call The call used to invoke `earth`.

terms Model frame terms. This component exists only if the model was built using `earth.formula`.

namesx Column names of `x`, generated internally by `earth` when necessary so each column of `x` has a name. Used, for example, by `predict.earth` to name columns if necessary.
names(x)
Original column names of x.

levels
Levels of y if y is a factor,
c(FALSE, TRUE) if y is logical,
Else NULL.

The following fields appear only if earth’s argument keepxy is TRUE.

x, y, data, subset
Copies of the corresponding arguments to earth. Only exist if keepxy=TRUE.

The following fields appear only if earth’s glm argument is used.

glm.list
List of GLM models. Each element is the value returned by earth’s internal call to glm for each response.
Thus if there is a single response (or a single binomial pair, see “Binomial pairs” in the vignette) this will be a one element list and you access the GLM model with earth.mod$glm.list[[1]].

glm.coefficients
GLM regression coefficients. Analogous to the coefficients field described above but for the GLM model(s). A matrix with dimensions length(selected.terms) x ncol(y) after factors in y have been expanded. Each column holds the coefficients from the GLM regression of that column of y on bx. This duplicates, for convenience, information buried in glm.list.

glm.bpairs
NULL unless there are paired binomial columns. A logical vector, derived internally by earth, or a copy the bpairs specified by the user in the glm list. See “Binomial pairs” in the vignette.

The following fields appear only if the nfold argument is greater than 1.

cv.list
List of earth models, one model for each fold (ncross * nfold models).
The fold models have two extra fields, icross (an integer from 1 to ncross) and ifold (an integer from 1 to nfold).
To save memory, lengthy fields in the fold models are removed unless you use keepxy=TRUE. The “lengthy fields” are $bx, $fitted.values, and $residuals.

cv.nterms
Vector of length ncross * nfold + 1. Number of MARS terms in the model generated at each cross-validation fold, with the final element being the mean of these.

cv.nvars
Vector of length ncross * nfold + 1. Number of predictors in the model generated at each cross-validation fold, with the final element being the mean of these.

cv.groups
Specifies which cases went into which folds. Matrix with two columns and number of rows equal to the the number of cases nrow(x) Elements of the first column specify the cross-validation number, 1:ncross. Elements of the second column specify the fold number, 1:nfold.

cv.rsq.tab
Matrix with ncross * nfold + 1 rows and nresponse+1 columns, where nresponse is the number of responses, i.e., ncol(y) after factors in y have been expanded. The first nresponse elements of a row are the cv.rsq’s on the out-of-fold data for each response of the model generated at that row’s fold.
(A cv.rsq is calculated from predictions on the out-of-fold data using the best model built from the in-fold data; where “best” means the model was selected using the in-fold GCV. The R-Squareds are calculated using the weights argument if it was supplied. The final column holds the row mean (a weighted mean if wp if specified)). The final row holds the column means. The values in this final row is the mean cv.rsq printed by summary.earth.

Example for a single response model (where the mean column is redundant but included for uniformity with multiple response models):

<table>
<thead>
<tr>
<th></th>
<th>y</th>
<th>mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>fold1</td>
<td>0.909</td>
<td>0.909</td>
</tr>
<tr>
<td>fold2</td>
<td>0.869</td>
<td>0.869</td>
</tr>
<tr>
<td>fold3</td>
<td>0.952</td>
<td>0.952</td>
</tr>
<tr>
<td>fold4</td>
<td>0.157</td>
<td>0.157</td>
</tr>
<tr>
<td>fold5</td>
<td>0.961</td>
<td>0.961</td>
</tr>
<tr>
<td>mean</td>
<td>0.769</td>
<td>0.769</td>
</tr>
</tbody>
</table>

Example for a multiple response model:

<table>
<thead>
<tr>
<th></th>
<th>y1</th>
<th>y2</th>
<th>y3</th>
<th>mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>fold1</td>
<td>0.951</td>
<td>0.944</td>
<td>0.937</td>
<td></td>
</tr>
<tr>
<td>fold2</td>
<td>0.970</td>
<td>0.970</td>
<td>0.968</td>
<td></td>
</tr>
<tr>
<td>fold3</td>
<td>0.940</td>
<td>0.942</td>
<td>0.932</td>
<td></td>
</tr>
<tr>
<td>fold4</td>
<td>0.929</td>
<td>0.925</td>
<td>0.920</td>
<td></td>
</tr>
<tr>
<td>fold5</td>
<td>0.987</td>
<td>0.979</td>
<td>0.971</td>
<td></td>
</tr>
<tr>
<td>mean</td>
<td>0.955</td>
<td>0.952</td>
<td>0.946</td>
<td></td>
</tr>
</tbody>
</table>

cv.class-rate.tab
Like cv.rsq.tab but is the classification rate at each fold i.e. the fraction of classes correctly predicted. Models with discrete response only. Calculated with thresh=.5 for binary responses. For responses with more than two levels, the final row is the overall classification rate. The other rows are the classification rates for each level (the level versus not-the-level), which are usually higher than the overall classification rate (predicting the level versus not-the-level is easier than correctly predicting one of many levels). The weights argument is ignored for all cross-validation stats except R-Squareds.

cv.maxerr.tab
Like cv.rsq.tab but is the MaxErr at each fold. This is the signed max absolute value at each fold. Results are aggregated for the final column and final row using the signed max absolute value. The *signed max absolute value* is defined as the maximum of the absolute difference between the predicted and observed response values, multiplied by -1 if the sign of that difference is negative.

cv.auc.tab
Like cv.rsq.tab but is the AUC at each fold. Binomial models only.

cv.cor.tab
Like cv.rsq.tab but is the cor at each fold. Poisson models only.

cv.deviance.tab
Like cv.rsq.tab but is the MeanDev at each fold. Binomial models only.

cv.calib.int.tab
Like cv.rsq.tab but is the CalibInt at each fold. Binomial models only.
The following field appears only if the `varmod.method` is specified.

varmod

An object of class "varmod". See the `varmod` help page for a description. Only appears if the `varmod.method` argument is used.

See Also

`earth`

etitanic

Titantic data with incomplete cases removed

Description

Titantic data with incomplete cases, passenger names, and other details removed.

Format

A data frame with 1046 observations on 6 variables.

- **pclass**: passenger class, unordered factor: 1st 2nd 3rd
- **survived**: integer: 0 or 1
- **sex**: unordered factor: male female
- **age**: age in years, min 0.167 max 80.0
- **sibsp**: number of siblings or spouses aboard, integer: 0...8
- **parch**: number of parents or children aboard, integer: 0...6

Source

This dataset is included in the earth package because it is a convenient vehicle for illustrating earth’s GLM and factor handling.

The dataset was compiled by Frank Harrell and Robert Dawson: http://biostat.mc.vanderbilt.
etitanic

edu/twiki/pub/Main/DataSets/titanic.html
See also:
http://biostat.mc.vanderbilt.edu/twiki/pub/Main/DataSets/titanic3info.txt.

For this version of the Titanic data, passenger details and incomplete cases were deleted and the
name changed to etitanic to minimize confusion with other versions ("e" because it is part of the
earth package).

Note that survived is an integer (it should arguably be a logical).

In this data the crew are conspicuous by their absence.

Contents of etitanic:

<table>
<thead>
<tr>
<th>pclass</th>
<th>survived</th>
<th>sex</th>
<th>age</th>
<th>sibsp</th>
<th>parch</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1st</td>
<td>1 female</td>
<td>29.000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1st</td>
<td>1 male</td>
<td>0.917</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1st</td>
<td>0 female</td>
<td>2.000</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1st</td>
<td>0 male</td>
<td>30.000</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>1st</td>
<td>0 female</td>
<td>25.000</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1309</td>
<td>3rd</td>
<td>0 male</td>
<td>29.000</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

How etitanic was built:

load("titanic3") # from Harrell's web site
discard name, ticket, fare, cabin, embarked, body, home.dest
etitanic <- titanic[,c(1,2,4,5,6,7)]
etitanic <- etitanic[!is.na(etitanic$age),]
save(etitanic, file="etitanic.rda")

References

Further details and analyses of the Titanic data may be found in:

F. Harrell (2001) *Regression Modeling Strategies with Applications to Linear Models, Logistic Re-
gression, and Survival Analysis* http://biostat.mc.vanderbilt.edu/twiki/bin/view/Main/RmS

See Also

earth
evimp

Estimate variable importances in an earth object

Description

Estimate variable importances in an earth object

Usage

evimp(object, trim=TRUE, sqrt.=TRUE)

Arguments

- **object**: An earth object.
- **trim**: If TRUE (default), delete rows in the returned matrix for variables that don’t appear in any subsets.
- **sqrt.**: Default is TRUE, meaning take the sqrt of the GCV and RSS importances before normalizing to 0 to 100. Taking the square root gives a better indication of relative importances because the raw importances are calculated using a sum of squares. Use FALSE to not take the square root.

Value

This function returns a matrix showing the relative importances of the variables in the model. There is a row for each variable. The row name is the variable name, but with ~unused appended if the variable does not appear in the final model.

The columns of the matrix are (not all of these are printed by print.evimp):

- **col**: Column index of the variable in the x argument to earth.
- **used**: 1 if the variable is used in the final model, else 0. Equivalently, 0 if the row name has an ~unused suffix.
- **nsubsets**: Variable importance using the "number of subsets" criterion. Is the number of subsets that include the variable (see "Three Criteria" in the chapter on evimp in the earth vignette “Notes on the earth package”).
- **gcv**: Variable importance using the GCV criterion (see "Three Criteria").
- **gcv.match**: 1, except is 0 where the rank using the gcv criterion differs from that using the nsubsets criterion. In other words, there is a 0 for values that increase as you go down the gcv column.
- **rss**: Variable importance using the RSS criterion (see "Three Criteria").
- **rss.match**: Like gcv.match but for the rss.

The rows are sorted on the nsubsets criterion. This means that values in the nsubsets column decrease as you go down the column (more accurately, they are non-increasing). The values in the gcv and rss columns are also non-increasing, except where the gcv or rss rank differs from the nsubsets ranking.
Note
There is a chapter on evimp in the earth package vignette “Notes on the earth package”.

Acknowledgment
Thanks to Max Kuhn for the original evimp code and for helpful discussions.

See Also
earth, plot.evimp

Examples

```r
data(ozone1)
earth.mod <- earth(O3 ~ ., data=ozone1, degree=2)
ev <- evimp(earth.mod, trim=FALSE)
plot(ev)
print(ev)
```

format.earth

Format earth objects

Description
Return a string representing an earth expression (summary.earth calls this function internally to display the terms of the earth model).

Usage

```
## S3 method for class 'earth'
format(x = stop("no 'x' argument"),
       style = "h", decomp = "anova", digits =getOption("digits"),
       use.names = TRUE, colon.char = ":", ...)
```

Arguments

- **x**: An earth object. This is the only required argument.
- **style**: Formatting style. One of
 - "h" (default) more compact
 - "pmax" for those who prefer it
 - "max" is the same as "pmax" but prints max rather than pmax
 - "C" C style expression with zero based indexing
 - "bf" basis function format
- **decomp**: One of
 - "anova" (default) order the terms using the "anova decomposition", i.e., in increasing order of interaction
 - "none" order the terms as created during the earth forward pass.
digits Number of significant digits. The default is `getOption(digits)`.

use.names One of

- TRUE (default), use variable names if available.
- FALSE use names of the form `x[,1]`.

colon.char Change colons in the returned string to `colon.char`. Default is ";:" (no change).

Specifying `colon.char"*"` can be useful in some contexts to change names of the form `x1:x2` to `x1*x2`.

... Unused, but provided for generic/method consistency.

Value

A character representation of the earth model.

If there are multiple responses, `format.earth` will return multiple strings.

If there are embedded GLM model(s), the strings for the GLM model(s) come after the strings for the standard earth model(s).

Note

The FAQ section in the package vignette gives precise details of the "anova" ordering.

Using `format.earth`, perhaps after hand editing the returned string, you can create an alternative to `predict.earth`. For example:

```r
as.func <- function(object, digits = 8, use.names = FALSE, ...)
  eval(parse(text=paste(
    "function(x)\n", 
    "if(is.vector(x))\n", 
    "  x <- matrix(x, nrow = 1, ncol = length(x))\n", 
    "  with(as.data.frame(x),\n", 
    "    format(object, digits = digits, use.names = use.names, style = "pmax", ...),\n", 
    "  )\n", 
    "})\n", 
    "sep = ":"))")

earth.mod <- earth(Volume ~ ., data = trees)
my.func <- as.func(earth.mod, use.names = FALSE)
my.func(c(10,80)) # returns 16.84
predict(earth.mod, c(10,80)) # returns 16.84
```

Note that with `pmax` the R expression generated by `format.earth` can handle multiple cases. Thus the expression is consistent with the way `predict` functions usually work in R — we can give `predict` multiple cases (i.e., multiple rows in the input matrix) and it will return a vector of predicted values.

The earth package also provides a function `format.lm`. It has arguments as follows `format.lm(x, digits=getOption("digits"), use.names=TRUE, colon.char=":")` (Strictly speaking, `format.lm` doesn't belong in the earth package.) Example:
lm.mod <- lm(Volume ~ Height*Girth, data = trees)
cat(format(lm.mod, colon.char="*"))) # yields:
69.4 # 1.30 * Height # 5.86 * Girth # 0.135 * Height*Girth

See Also
summary.earth, pmax.

Examples

earth.mod <- earth(Volume ~ ., data = trees)
cat(format(earth.mod)) # yields:
37.9 # 3.92 * h(16-Girth) # 7.4 * h(Girth-16) # 0.484 * h(Height-75)
cat(format(earth.mod, style="pmax")) # yields:
37.9 # 3.92 * pmax(0, 16 - Girth) # 7.4 * pmax(0, Girth - 16) # 0.484 * pmax(0, Height - 75)
cat(format(earth.mod, style="C")) # yields (note zero based indexing):
37.927 # 3.9187 * max(0, 16 - x[0]) # 7.4011 * max(0, x[0] - 16) # 0.48411 * max(0, x[1] - 75)
cat(format(earth.mod, style="bf")) # yields:
37.9 # 3.92 * bf1 # 7.4 * bf2 # 0.484 * bf3 # bf1 h(16-Girth) # bf2 h(Girth-16) # bf3 h(Height-75)
Convert a mars object from the mda package to an earth object

Description
Convert a mars object from the mda package to an earth object

Usage
mars.to.earth(object, trace=TRUE)

Arguments
object A mars object, created using mars in the mda package.
trace If TRUE (default) print a summary of the conversion.

Value
The value is the same format as that returned by earth but with skeletal versions of rss.per.subset, gcv.per.subset, and prune.terms.

You can fully initialize these components by calling update.earth after mars.to.earth, but if you do this selected.terms may change. However with pmethod="backward" a change is unlikely — selected.terms would change only if GCVs are so close that numerical errors have an effect.

Note
Differences between mars and earth objects
Perhaps the most notable difference between mars and earth objects is that mars returns the MARS basis matrix in a field called "x" whereas earth returns "bx" with only the selected terms. Also, earth returns "dirs" rather than "factors", and in earth this matrix can have entries of value 2 for linear predictors.
For details of other differences between mars and earth objects, see the comments in the source code of mars.to.earth.

Weights
The w argument is silently ignored by mars.
mars normalizes wp to (euclidean) length 1; earth normalizes wp to length equal to the number of responses, i.e., the number of columns in y. This change was made so an all ones wp (or in fact any all constant wp) is equivalent to using no wp.
If the original call to mars used the wp argument, mars.to.earth will run update.earth to force consistency. This could modify the model, so a warning is issued.

See Also
earth, mars
Examples

```r
if(require(mda)) {
  mars.mod <- mars(trees[, -3], trees[, 3])
  earth.mod <- mars.to.earth(mars.mod)
  # the standard earth functions can now be used
  # note the reconstructed call in the summary
  summary(earth.mod, digits = 2)
}
```

model.matrix.earth
Get the earth basis matrix

Description

Get the basis matrix of an `earth` model.

Usage

```r
## S3 method for class 'earth'
model.matrix(object = stop("no 'object' argument"),
              x = NULL, subset = NULL, which.terms = NULL,
              trace = 0,
              ..., 
              Env = parent.frame(),
              Callers.name = "model.matrix.earth")
```

Arguments

- `object` An `earth` model. This is the only required argument.
- `x`
 Default is `NULL`, meaning use the original data used to build the `earth` model (after taking the original subset, if any).
 Else `x` can be a data frame, a matrix, or a vector with length equal to a multiple of the number of columns of the original input matrix `x`. (There is some leniency here. For example, column names aren’t necessary if `x` has the same number of predictors originally used to build the `earth` model.)
- `subset` Which rows to use in `x`. Default is `NULL`, meaning use all of `x`.
- `which.terms` Which terms to use. Default is `NULL`, meaning all terms in the `earth` model (i.e. the terms in `object$selected.terms`).
- `trace` Default 0. Set to non-zero to see which data `model.matrix.earth` is using.
- `...` Unused, but provided for generic/method consistency.
- `Env` For internal use.
- `Callers.name` For internal use (used by `earth` in trace messages).
Value

A basis matrix bx of the same form returned by `earth`. The format of bx is described in `earth.object`. If x, subset, and which.terms are all NULL (the default), this function returns the model’s bx. In this case, it is perhaps easier to simply use `object$bx`.

The matrix bx can be used as the input matrix to `lm` or `glm`, as shown below in the example. In fact, that is what earth does internally after the pruning pass — it calls `lm.fit`, and additionally `glm` if earth’s glm argument is used.

See Also

`earth`

Examples

data(trees)
earth.mod <- earth(Volume ~ ., data = trees)
summary(earth.mod, decomp = "none") # "none" to print terms in same order as lm.mod below

bx <- model.matrix(earth.mod) # equivalent to bx <- earth.mod$bx
lm.mod <- lm(trees$Volume ~ bx[,-1]) # -1 to drop intercept
summary(lm.mod) # yields same coeffs as above summary
displayed t values are not meaningful

ozone1

Ozone readings in Los Angeles with incomplete cases removed

Description

Ozone readings in Los Angeles, with incomplete cases removed.

Format

A data frame with 330 observations on 10 variables.

- 03: daily maximum of the hourly average ozone concentrations in Upland, CA
- vh: 500 millibar pressure height, measured at the Vandenberg air force base
- wind: wind speed in mph at LAX airport
- humidity: humidity in percent at LAX
- temp: Sandburg Air Force Base temperature in degrees Fahrenheit
- ibh: temperature inversion base height in feet
- dpq: pressure gradient from LAX to Daggert in mm Hg
- ibt: inversion base temperature at LAX in degrees Fahrenheit
- vis: visibility at LAX in miles
- doy: day of the year
Source

This dataset was copied from library(hfaraway) and the name changed to ozone1 to prevent a name clash. The data were originally made available by Leo Breiman who was a consultant on a project where the data were generated. Example analyses using these data may be found in Faraway and in Hastie and Tibshirani.

```r
> ozone1
  O3  vh wind humidity temp ibh dpg ibt vis doy
1  3 5710  4  28  40 2693 -25  87 250  33
2  5 5700  3  37  45 590 -24 128 100  34
3  5 5760  3  51  54 1450 25 139  60  35
... 338 1 5550  4  85  39 5000 8  44 100 390
```

References

Faraway (2005) *Extending the Linear Model with R* http://www.maths.bath.ac.uk/~jjf23

See Also

earth
airquality a different set of ozone data

plot.earth

Plot an earth object

Description

Plot an earth object. By default the plot shows model selection, cumulative distribution of the residuals, residuals versus fitted values, and the residual QQ plot.

This function calls plotres internally. The first arguments are identical to plotres.

Usage

```r
## S3 method for class 'earth'
plot(x = stop("no 'x' argument"),

# the following are identical to plotres arguments

which = 1:4, info = FALSE, versus = 1, standardize = FALSE, delever = FALSE,
level = 0, id.n = 3, labels.id = NULL, smooth.col = 2, grid.col = 0,
jitter = 0, do.par = NULL, caption = NULL,
trace = 0, npoints = 3000, center = TRUE, type = NULL, nresponse = NA,
```
the following are earth specific

col.cv = "lightblue", col.grsq = 1, col.rsq = 2, col.infold.rsq = 0,
col.mean.infold.rsq = 0, col.mean.oof.rsq = "palevioletred",
col.npreds = if(is.null(object$cv.oof.rsq.tab)) 1 else 0, col.oof.labs = 0,
col.oof.rsq = "mistyrose2", col.oof.vline = col.mean.oof.rsq,
col.pch.cv.rsq = 0, col.pch.max.oof.rsq = 0, col.vline = col.grsq,
col.vseg = 0, lty.grsq = 1, lty.npreds = 2, lty.rsq = 5, lty.vline = "12",
legend.pos = NULL, ...)

earth_plotmodsel(# for internal use by plotres
x, col.rsq = 2, col.grsq = 1, col.infold.rsq = 0,
col.mean.infold.rsq = 0, col.mean.oof.rsq = "palevioletred",
col.npreds = NULL, col.oof.labs = 0, col.oof.rsq = "mistyrose2",
col.oof.vline = col.mean.oof.rsq, col.pch.cv.rsq = 0,
col.pch.max.oof.rsq = 0, col.vline = col.grsq, col.vseg = 0,
lty.grsq = 1, lty.npreds = 2, lty.rsq = 5, lty.vline = "12",
legend.pos=NULL, add = FALSE, jitter = 0,
max.nterms = length(object$rss.per.subset),
max.npreds=max(1,get.nused.preds.per.subset(object$dirs,object$prune.terms)),
...

Arguments

x An earth object. This is the only required argument. (It is called "x" for consistency with the generic plot.)

which, info, versus
These arguments are identical to plotres. Please see the help page for plotres.
standardize, delever, level

id.n, labels.id, smooth.col

grid.col, jitter

do.par, caption, trace

npoints, center

type, nresponse

col.cv Default "lightblue". Color of cross validation line in the residuals plot. This is the residual of the mean out-fold-predicted value.

The following arguments are for the model selection plot.
col.grsq Default 1. Color of GRSq line in the Model Selection plot. Use 0 for no GRSq line.

col.rsq Default 2. Color of the RSq line in the Model Selection plot. Use 0 for no RSq line.

col.infold.rsq Color of in-fold RSq lines for each fold in the Model Selection plot. Applies only if nfold and keepxy were used in the original call to earth. Default is 0, lines not plotted.

col.mean.infold.rsq Color of mean in-fold RSq for each number of terms in the Model Selection plot. Default is 0, line not plotted. Applies only if nfold and keepxy were used in the original call to earth.

col.mean.oof.rsq Default "palevioletred". Color of mean out-of-fold RSq for each number of terms in the Model Selection plot. Applies only if nfold and keepxy were used in the original call to earth. Use 0 to not plot this line.

col.npreds Color of the "number of predictors" plot in the Model Selection plot. The default displays the number of predictors unless the oof.rsq's are displayed. Use 0 for no "number of predictors" plot.

col.oof.labs Color of fold number labels on the oof.rsq lines. Default is 0, no labels.

col.oof.rsq Color of out-of-fold RSq lines for each fold in the Model Selection plot. Applies only if nfold and keepxy were used in the original call to earth. Default is "mistyrose2", a pale pink. Use 0 to not plot these lines. May be a vector of colors, which will be recycled if necessary.

col.oof.vline Color of vertical line at the maximum oof.rsq in the Model Selection plot. Default is col.mean.oof.rsq.

col.pch.cv.rsq Color of point plotted on the oof.rsq line to indicate the cv.rsq for that fold (i.e., it is plotted at the number of terms selected by the in-fold GCV). Default is 0, point not plotted.

col.pch.max.oof.rsq Color of point plotted on the oof.rsq line to indicate the maximum oof.rsq for that fold. Default is 0, point not plotted.

col.vline Color of the vertical line at selected model in the Model Selection plot. Default is col.grsq. This will be at the maximum GRSq unless pmethod="none". Use 0 for no vertical line.

col.vseg Default is 0. Color of triangular marker at top of vertical line for best GRSQ.

lty.grsq Line type of GRSq line in the Model Selection plot. Default is 1

lty.npreds Line type of the "number of predictors" plot in the Model Selection plot. Default is 2.

lty.rsq Line type of RSq line in the Model Selection plot. Default is 5.

lty.vline Line type of vertical line at selected model in the Model Selection plot. Default is "12".

legend.pos Position of the legend in the Model Selection plot. Default is NULL meaning automatic. Use legend.pos=NA or 0 for no legend.
add, max.nterms, max.npreds

earth_plotmodsel arguments for internal use by plotres.

... Please see `plotres` for the details on the dots arguments.

The `ylim` argument is treated specially in the model selection plot: `ymin` equal to -1 means use the smallest GRSq or RSq value, excluding the intercept, and `ymax` equal -1 means use the largest GRSq or RSq value.

Note

For details on interpreting the graphs, please see the earth package vignettes “Notes on the earth package” and “Variance models in earth”.

Note that cross-validation data will not be displayed unless both `nfold` and `keepxy` were used in the original call to `earth`.

`earth_plotmodsel` is provided for use by `plotres`.

See Also

`earth, plot.earth.models, plotd, plotmo`

Examples

```r
data(ozone1)
earth.mod <- earth(O3 ~ ., data = ozone1, degree = 2)
plot(earth.mod)
```

plot.earth.models

`Compare earth models by plotting them.`

Description

Compare `earth` models by plotting them.

Usage

```r
## S3 method for class 'earth.models'
plot(x = stop("no 'x' argument"), which = c(1:2),
caption = "", jitter = 0,
col.grsq = discrete.plot.cols(length(objects)), lty.grsq = 1,
col.rsq = 0, lty.rsq = 5,
col.vline = col.grsq, lty.vline = "12",
col.npreds = 0, lty.npreds = 2,
legend.text = NULL, do.par = NULL, trace = 0,
...)
```
Arguments

- **x**: A list of one or more `earth` objects, or a single `earth` object. This is the only required argument. (This argument is called 'x' for consistency with the generic `plot`.)

- **which**: Which plots to plot: 1 model, 2 cumulative distribution of residuals. Default is 1:2, meaning both.

- **caption**: Overall caption. Values:
 - "string" string
 - "" (default) no caption
 - `NULL` generate a caption from the `$call` component of the `earth` objects.

- **jitter**: Jitter applied to GRSq and RSq values to minimize over-plotting. Default is 0, meaning no jitter. A typical useful value is 0.01.

For the col arguments below, 0 means do not plot the corresponding graph element. You can use vectors of colors.

- **col.grsq**: Vector of colors for the GRSq plot. The default is `discrete.plot.cols(length(x))` which is vector of distinguishable colors, the first three of which are also distinguishable on a monochrome printer. You can examine the colors using `earth::discrete.plot.cols()`.

- **lty.grsq**: Line type for the GRSq plot. Default is 1.

- **col.rsq**: Vector of colors for the RSq plot. Default is 0, meaning no RSq plot.

- **lty.rsq**: Line type for the RSq plot. Default is 5.

- **col.vline**: A vertical line is drawn for each object to show which model size was chosen for that object. The color of the line is `col.vline`. Default is `col.grsq`.

- **lty.vline**: Line type of vertical lines (a vertical line is drawn to show the selected model for each object). Can be a vector. Default is 3.

- **col.npreds**: Vector of colors for the "number of predictors" plot within the model selection plot. Default is 0, meaning no "number of predictors" plot. The special value `NULL` means borrow `col.grsq` (or `col.rsq` if `col.grsq` is `NULL`).

- **lty.npreds**: Line type of the "number of predictors" plot (in the Model Selection plot). Default is 2.

Note

This function ignores GLM and cross-validation components of the earth model, if any.

See Also

`earth`, `plot.earth`, `plot.earth.models`, `plotd`, `plotmo`
Examples

data(ozone1)
a1 <- earth(03 ~ ., data = ozone1, degree = 2)
a2 <- earth(03 ~ .-wind, data = ozone1, degree = 2)
a3 <- earth(03 ~ .-humidity, data = ozone1, degree = 2)
plot.earth.models(list(a1,a2,a3), ylim=c(.65,.85))

plot.evimp

Plot an evimp object (created by the evimp function)

Description

Plot an evimp object.

Usage

S3 method for class 'evimp'
plot(x = stop("no 'x' argument"),
 cex.var = 1,
 type.nsubsets = "1", col.nsubsets = "black", lty.nsubsets = 1,
 type.gcv = "1", col.gcv = 2, lty.gcv = 1,
 type.rss = "1", col.rss = "gray60", lty.rss = 1,
 cex.legend = 1, x.legend = nrow(x), y.legend = x[1,"nsubsets"],
 rh.col = 1, do.par = TRUE, ...)

Arguments

x
An evimp object.
cex.var
Cex for variable names. Default is 1. Make smaller (say 0.8) if you have lots of variables.
type.nsubsets
Plot type for nsubsets graph. Default is "1". Use "n" for none, "b" looks good too.
col.nsubsets
Color of nsubsets line. Default is "black".
lty.nsubsets
Line type of nsubsets line. Default is 1.
type.gcv, col.gcv, lty.gcv
As above but for the gcv plot
type.rss, col.rss, lty.rss
As above but for the rss plot
cex.legend
Cex for legend strings. Default is 1. Make smaller (say 0.8) if you want a smaller legend.
x.legend
x position of legend. Use 0 for no legend.
y.legend
y position of legend.
rh.col
Color of right hand axis label. Use rh.col=0 for no label, a workaround for when the label is mispositioned.
do.par Call par() for global settings as appropriate. Default is TRUE, which sets oma=c(bottom.margin,0,0,3), cex=cex.var.
Set to FALSE if you want to append figures to an existing plot.

Extra arguments passed to plotting functions.

See Also
earth, evimp, plot.earth.models, plotmo

Examples

data(ozone1)
earth.mod <- earth(O3 ~ ., data=ozone1, degree=2)
ev <- evimp(earth.mod)
plot(ev)
print(ev)

plot.varmod

Plot a variance model (created by calling earth with the varmod argument)

Description
Plot a variance model (a varmod object).
Typically you call this function for a variance model embedded in an earth model.

Usage

S3 method for class 'varmod'
plot(x = stop("no 'x' argument"), which = 1:4,
do.par = NULL, info=FALSE,
cex = NULL, caption = NULL,
line.col = 2, min.sd.col = line.col,
trace = 0, ...)

Arguments

x A varmod object. Typically this is embedded in a parent earth object, and so you invoke this function with plot(earth.mod$varmod). The varmod.method argument must have been specified when building the earth model.

which Which plots to plot. Default is 1:4 meaning all. The term parent below refers to the earth model in which the varmod is embedded.
1) fitted vs parent fitted
2) fitted vs parent first predictor
3) residuals vs fitted
4) model selection graph (only when varmod.method="earth" or "x.earth").
do.plotd

Please see plotres

Plot some additional information, including lowess fits in the first two plots.

Character expansion.

Default is NULL, meaning automatically generate an overall caption.

Color of lines in the plots. Default is red.

Color of the min.sd dotted horizontal line. Default is line.col. Use 0 to not plot this line.

Similar to plotres

Note

The horizontal red dotted line in the first two plots shows the value of min.sd. See earth's varmod.clamp argument.

See Also

varmod

Examples

data(ozone1)

set.seed(1) # optional, for cross validation reproducibility

note: should really use ncross=30 below but for a quick demo we don't

earth.mod <- earth(O3~temp, data=ozone1, nfold=10, ncross=3, varmod.method="lm")

plot(earth.mod$varmod) # plot the embedded variance model (this calls plot.varmod)

plotd

Plot the distribution of predictions for each class

Description

Draw a plot of the distribution of the predicted values for each class. Can be used for earth models, but also for models built by lm, glm, lda, etc.

Usage

plotd(object, hist = FALSE, type = NULL, nresponse = NULL, dichot = FALSE,
trace = FALSE, xlim = NULL, ylim = NULL, jitter = FALSE, main=NULL,
xlab = "Predicted Value", ylab = if(hist) "Count" else "Density",
lty = 1, col = c("gray70", 1, "lightblue", "brown", "pink", 2, 3, 4),
fill = if(hist) col[1] else 0,
breaks = "Sturges", labels = FALSE,
Arguments

To start off, look at the arguments `object`, `hist`, `type`.

For predict methods with multiple column responses, see the `nresponse` argument.

For factor responses with more than two levels, see the `dichot` argument.

Model object. Typically a model which predicts a class or a class discriminant.

`object` FALSE (default) to call `density` internally.
TRUE to call `hist` internally.

type Type parameter passed to `predict`. For allowed values see the predict method for your object (such as `predict.earth`). By default, `plotd` tries to automatically select a suitable value for the model in question. (This is "response" for all objects except `rpart` models, where "vector" is used. The choices will often be inappropriate.) Typically you would set `hist=TRUE` when `type="class"`.

`nresponse` Which column to use when `predict` returns multiple columns. This can be a column index or column name (which may be abbreviated; partial matching is used). The default is `NULL`, meaning use all columns of the predicted response.

`dichot` Dichotimise the predicted response. This argument is ignored except for models where the observed response is a factor with more than two levels and the predicted response is a numeric vector. The default `FALSE` separates the response into a group for each factor. With `dichot=TRUE` the response is separated into just two groups: the first level of the factor versus the remaining levels.

`trace` Default `FALSE`. Use `TRUE` or 1 to trace `plotd` — useful to see how `plotd` partitions the predicted response into classes. Use 2 for more details.

`xlim` Limits of the x axis. The default `NULL` means determine these limits automatically, else specify `c(xmin,xmax)`.

`ylim` Limits of the y axis. The default `NULL` means determine these limits automatically, else specify `c(ymin,ymax)`.

`jitter` Jitter the histograms or densities horizontally to minimize overplotting. Default `FALSE`. Specify `TRUE` to automatically calculate the jitter, else specify a numeric jitter value.

`main` Main title. Values:
"string" string
"" no title
`NULL` (default) generate a title from the call.

`xlab` x axis label. Default is "Predicted Value".

`ylab` y axis label. Default is if(hist) "Count" else "Density".

```r
kernel = "gaussian", adjust = 1, zero.line = FALSE,
legend = TRUE, legend.names = NULL, legend.pos = NULL,
cex.legend = .8, legend.bg = "white", legend.extra = FALSE,
vline.col = 0, vline.thresh = .5, vline.lty = 1, vline.lwd = 1,
err.thresh = vline.thresh, err.col = 0, err.border = 0, err.lwd = 1,
xaxt = "s", yaxt = "s", xaxis.cex = 1, sd.thresh = 0.01, ...)
```
plotd

lty
Per class line types for the plotted lines. Default is 1 (which gets recycled for all lines).

col
Per class line colors. The first few colors of the default are intended to be easily distinguishable on both color displays and monochrome printers.

fill
Fill color for the plot for the first class. For hist=FALSE, the default is 0, i.e., no fill. For hist=TRUE, the default is the first element in the col argument.

breaks
Passed to hist. Only used if hist=TRUE. Default is "Sturges". When type="class", setting breaks to a low number can be used to widen the histogram bars

labels
TRUE to draw counts on the hist plot. Only used if hist=TRUE. Default is FALSE.

kernel
Passed to density. Only used if hist=FALSE. Default is "gaussian".

adjust
Passed to density. Only used if hist=FALSE. Default is 1.

zero.line
Passed to plot.density. Only used if hist=FALSE. Default is FALSE.

legend
TRUE (default) to draw a legend, else FALSE.

legend.names
Class names in legend. The default NULL means determine these automatically.

legend.pos
Position of the legend. The default NULL means position the legend automatically, else specify c(x,y).

cex.legend
cex for legend. Default is .8.

legend.bg
bg color for legend. Default is "white".

legend.extra
Show (in the legend) the number of occurrences of each class. Default is FALSE.

vline.thresh
Horizontal position of optional vertical line. Default is 0.5. The vertical line is intended to indicate class separation. If you use this, don’t forget to set vline.col.

vline.col
Color of vertical line. Default is 0, meaning no vertical line.

vline.lty
Line type of vertical line. Default is 1.

vline.lwd
Line width of vertical line. Default is 1.

err.thresh
x axis value specifying the error shading threshold. See err.col. Default is vline.thresh.

err.col
Specify up to three colors to shade the "error areas" of the density plot. The default is 0, meaning no error shading. This argument is ignored unless hist=FALSE. If there are more than two classes, err.col uses only the first two. This argument is best explained by running an example:

data(etitanic)
earth.mod <- earth(survived ~ ., data=etitanic)
plotd(earth.mod, vline.col=1, err.col=c(2,3,4))

The three areas are (i) the error area to the left of the threshold, (ii) the error area to the right of the threshold, and, (iii) the reducible error area. If less than three values are specified, plotd re-uses values in a sensible manner. Use values of 0 to skip areas. Disjoint regions are not handled well by the current implementation.

err.border
Borders around the error shading. Default is 0, meaning no borders, else specify up to three colors.
plotd

err.lwd Line widths of borders of the error shading. Default is 1, else specify up to three line widths.

xaxt Default is "s". Use xaxt="n" for no x axis.

yaxt Default is "s". Use yaxt="n" for no y axis.

xaxis.cex Only used if hist=TRUE and type="class". Specify size of class labels drawn on the x axis. Default is 1.

sd.thresh Minimum acceptable standard deviation for a density. Default is 0.01. Densities with a standard deviation less than sd.thresh will not be plotted (a warning will be issued and the legend will say "not plotted").

... Extra arguments passed to the predict method for the object.

Note

This function calls predict with the data originally used to build the model, and with the type specified above. It then separates the predicted values into classes, where the class for each predicted value is determined by the class of the observed response. Finally, it calls density (or hist if hist=TRUE) for each class-specific set of values, and plots the results.

This function estimates distributions with the density and hist functions, and also calls plot.density and plot.histogram. For an overview see Venables and Ripley MASS section 5.6.

Partitioning the response into classes

Considerable effort is made to partition the predicted response into classes in a sensible way. This is not always possible for multiple column responses and the nresponse argument should be used where necessary. The partitioning details depend on the types and numbers of columns in the observed and predicted responses. These in turn depend on the model object and the type argument.

Use the trace argument to see how plotd partitions the response for your model.

Degenerate densities

A message such as

Warning: standard deviation of "male" density is 0, density is degenerate?

means that the density for that class will not be plotted (the legend will say "not plotted").

Set sd.thresh=0 to get rid of this check, but be aware that histograms (and sometimes x axis labels) for degenerate densities will be misleading.

Using plotd for various models

This function is included in the earth package but can also be used with other models.

Example with glm:

```r
library(earth); data(etitanic)
glm.model <- glm(sex ~ ., data=etitanic, family=binomial)
plotd(glm.model)
```

Example with lm:

```r
library(earth); data(etitanic)
lm.model <- lm(as.numeric(sex) ~ ., data=etitanic)
plotd(lm.model)
```
Using `plotd` with `lda` or `qda`

The `plotd` function has special handling for `lda` (and `qda`) objects. For such objects, the `type` argument can take one of the following values:

- "response" (default) linear discriminant
- "ld" same as "response"
- "class" predicted classes
- "posterior" posterior probabilities

Example:

```r
library(MASS); library(earth); data(etonian)
lda.model <- lda(sex ~ ., data=etonian)
plot(lda.model) # linear discriminant by default
plotd(lda.model, type="class", hist=TRUE, labels=TRUE)
```

This handling of `type` is handled internally by `plotd` and `type` is not passed to `predict.lda` (type is used merely to select fields in the list returned by `predict.lda`). The type names can be abbreviated down to a single character.

For objects created with `lda.matrix` (as opposed to `lda.formula`), `plotd` blindly assumes that the grouping argument was the second argument.

`plotd` does not yet support objects created with `lda.data.frame`.

For `lda` responses with more than two factor levels, use the `nresponse` argument to select a column in the predicted response. Thus with the default `type=NULL`, (which gets automatically converted by `plotd` to `type="response"`), use `nresponse=1` to select just the first linear discriminant. The default `nresponse=NULL` selects all columns, which is typically not what you want for `lda` models.

Example:

```r
library(MASS); library(earth);
set.seed(1)       # optional, for reproducibility
example(lda)     # creates a model called "z"
plot(z, dimen=1) # invokes plot.lda from the MASS package
plotd(z, nresponse=1, hist=1) # equivalent using plotd
    # nresponse=1 selects first linear discr.
```

The `dichot=TRUE` argument is also useful for `lda` responses with more than two factor levels.

TODO

Handle degenerate densities in a more useful way.

Add `freq` argument for `hist`.

See Also

- `density`, `plot.density`
- `hist`, `plot.histogram`
- `earth`, `plot.earth`
Examples

```r
if (require(earth)) {
  old.par <- par(no.readonly=TRUE);
  par(mfrow=c(2,2), mar=c(4,3,1.7,0.5), mgp=c(1.6,0.6,0), par(cex=0.8))
  data(titanic)
  mod <- earth(survived ~ ., data=titanic, degree=2, glm=list(family=binomial))

  plotd(mod)

  plotd(mod, hist=TRUE, legend.pos=c(.25,220))

  plotd(mod, hist=TRUE, type="class", labels=TRUE, xlab="", xaxis.cex=8)

  par(old.par)
}
```

predict.earth
Predict with an earth model

Description

Predict with an earth model.

Usage

```r
## S3 method for class 'earth'
predict(object = stop("no 'object' argument"), newdata = NULL,
       type = c("link", "response", "earth", "class", "terms"),
       interval = "none", level = .95,
       thresh = .5, trace = FALSE, ...)```

Arguments

- **object**: An earth object. This is the only required argument.
- **newdata**: Make predictions using newdata, which can be a data frame, a matrix, or a vector with length equal to a multiple of the number of columns of the original input matrix x. Default is NULL, meaning return values predicted from the training set. NAs are allowed in newdata (and the predicted value will be NA unless the NAs are in variables that are unused in the earth model).
- **type**: Type of prediction. One of "link" (default), "response", "earth", "class", or "terms". See the Note below.
- **interval**: Return prediction or confidence levels. Default is "none". Use interval="pint" to get prediction intervals on new data. Requires that the earth model was built with varmod.method. This argument gets passed on as the type argument to predict.varmod. See its help page for details.
level  Confidence level for the interval argument. Default is 0.95, meaning construct 95% confidence bands (estimate the 2.5% and 97.5% levels).

thresh  Threshold, a value between 0 and 1 when predicting a probability. Only applies when type="class". Default is 0.5. See the Note below.

trace  Default FALSE. Set to TRUE to see which data, subset, etc. predict.earth is using.

Value

The predicted values (a matrix for multiple response models).

If type="terms", a matrix with each column showing the contribution of a predictor.

If interval="pint" or "cint", a matrix with three columns:
  fit: the predicted values
  lwr: the lower confidence or prediction limit
  upr: the upper confidence or prediction limit

If interval="se", the standard errors.

Note

Predicting with standard earth models

Use the default type="link", or possibly type="class".

Actually, the "link", "response", and "earth" choices all return the same value unless the glm argument was used in the original call to earth.

Predicting with earth-GLM models

This section applies to earth models with a GLM component, i.e., when the glm argument was used in the original call to earth.

The "link" and "response" options: see predict.glm for a description of these. In brief: for logistic models use type="link" to get log-odds and type="response" to get probabilities.

Use option "earth" to get the linear fit (this gives the prediction you would get if your original call to earth had no glm argument).

Predicting with "class"

Use option "class" to get the predicted class. With option "class", this function first makes predictions with type="response" and then assigns the predicted values to classes as follows:

(i) When the response is a logical, predict TRUE if the predicted probability is greater than thresh.
(ii) When the response is a numeric, predict TRUE if the predicted value is greater than thresh. Actually, this is identical to the above case, although thresh here may legitimately be a value outside the 0...1 range.
(iii) When the response is a two level factor, predict the second level if its probability is more than thresh. In other words, with the default thresh=0.5 predict the most probable level.
(iv) When the response is a three or more level factor, predict the most probable level (and thresh is ignored).

Predicting with "terms"
The "terms" option returns a "link" response suitable for termplot. Only the additive terms and the first response (for multi-response models) are returned. Also, "terms" always returns the earth terms, and ignores the GLM component of the model, if any.

See Also

earth, predict

Examples

data(trees)
earth.mod <- earth(Volume ~ ., data = trees)
predict(earth.mod)  # same as earth.mod$fitted.values
predict(earth.mod, c(10,80))  # yields 16.8

predict.varmod

Predict with a varmod model

Description

You probably won’t need to call this function directly. It is called by predict.earth when that function’s interval argument is used.

Usage

## S3 method for class 'varmod'
predict(
  object = stop("no 'object' argument"),
  newdata = NULL,
  type = c("pint", "cint", "se", "abs.residual"),
  level = .95,
  trace = FALSE,
  ...
)

Arguments

object  A varmod object.
newdata Make predictions using newdata. Default is NULL, meaning return values predicted from the training set.
type Type of prediction. This is the interval argument of predict.earth. One of "pint" Prediction intervals.
          "cint" Confidence intervals. Cannot be used with newdata.
          "se" Standard error of the parent model residuals.
"abs.residual" The absolute residuals of the parent model on which the residual model regresses.

- **level:** Confidence level for the interval argument. Default is .95, meaning construct 95% confidence bands (estimate the 2.5% and 97.5% levels).
- **trace:** Currently unused.
- **...** Unused, but provided for generic/method consistency.

**Note**

predict.varmod is called by predict.earth when its interval argument is used.

**See Also**

predict.earth varmod

**Examples**

```r
data(ozone1)
set.seed(1) # optional, for cross validation reproducibility
note: should really use ncross=30 below but for a quick demo we don't
earth.mod <- earth(O3~temp, data=ozone1, nfold=10, ncross=3, varmod.method="lm")
call predict.earth, which calls predict.varmod
predict(earth.mod, newdata=ozone1[200:203,], interval="pint", level=.95)
```

---

**residuals.earth**

*Residuals for an earth model*

**Description**

Residuals of an earth model.

**Usage**

```r
S3 method for class 'earth'
residuals(object = stop("no 'object' argument"),
 type = NULL, warn = TRUE, ...)
```
Arguments

- **object**: An `earth` object. This is the only required argument.

- **type**: One of
  - "earth" (default) Residuals (from the `lm` fit on bx).
  - "standardize" Residuals divided by `se * sqrt(1 - h_ii)`. See the `standardize` argument of `plot.earth`.
  - "delever" Residuals divided by `sqrt(1 - h_ii)`. See the `delever` argument of `plot.earth`.
  - "deviance" Residuals as above, unless the object has a `glm` component, in which case return the `glm` deviance residuals.
  - "glm.pearson"
  - "glm.working"
  - "glm.response"
  - "glm.partial" Return the corresponding `glm` residuals (from the `glm` fit on bx). Can be used only if the earth model has a `glm` component.

- **warn**: This function gives warnings when the results are not what you may expect. Use `warn=FALSE` to turn off just these warnings.

- ... Unused, but provided for generic/method consistency.

Value

The residual values (will be a matrix for multiple response models).

See Also

- `earth`
- `residuals`
- `resid` identical to `residuals`

Examples

```r
data(Hetitanic)
earth.mod <- earth(pclass ~ ., data=Hetitanic, glm=list(family=binomial))
head(resid(earth.mod, warn=FALSE)) # earth residuals, a column for each response
head(resid(earth.mod, type="earth")) # same
head(resid(earth.mod, type="deviance")) # GLM deviance residuals, a column for each response
```
Usage

```r
S3 method for class 'earth'
summary(object = stop("no 'object' argument"),
 details = FALSE, style = c("h", "pmax", "max", "C", "bf"),
 decomp = "anova", digits = getOption("digits"), fixed.point=TRUE,
 newdata = NULL, ...)

S3 method for class 'summary.earth'
print(x = stop("no 'x' argument"),
 details = x$details,
 decomp = x$decomp, digits = x$digits, fixed.point = x$fixed.point,
 newdata = x$newdata, ...)
```

Arguments

- **object**
  - An `earth` object. This is the only required argument for `summary.earth`.

- **x**
  - A `summary.earth` object. This is the only required argument for `print.summary.earth`.

- **details**
  - Default is `FALSE`. Use `TRUE` to print more information about `earth`–`glm` models. But note that the displayed P-values of the GLM coefficients are meaningless because of the amount of preprocessing by `earth` to select the regression terms.

- **style**
  - Formatting style. One of
    - "h" (default) more compact
    - "pmax" for those who prefer it and for compatibility with old versions of `earth`
    - "max" is the same as "pmax" but prints max rather than pmax
    - "C" C style expression with zero based indexing
    - "bf" basis function format.

- **decomp**
  - Specify how terms are ordered. Default is "anova". Use "none" to order the terms as created by the forward.pass. See `format.earth` for a full description.

- **digits**
  - The number of significant digits.
    - For `summary.earth`, the default is `getOption("digits")`.
    - For `print.summary.earth`, the default is the `$digits` component of `object`.

- **fixed.point**
  - Method of printing numbers in matrices. Default is `TRUE` which prints like this (making it easier to compare coefficients):
    ```r
 (Intercept) 15.029
 h(temp=58) 0.313
 h(234-ibt) -0.046
 ...
    ```
  - whereas `fixed.point=FALSE` prints like this (which is more usual in R):
    ```r
 (Intercept) 1.5e+01
 h(temp=58) 3.1e-01
 h(234-ibt) -4.6e-02
 ...
    ```
  - Matrices with two or fewer rows are never printed with a fixed point.
newdata Default NULL. Else print R-Squared for the new data (and the returned object will have newrsq and newdata fields). Additionally, if a variance model is present print the interval coverage table for the new data.

... Extra arguments are passed to format.earth.

Value

The value is the same as that returned by earth but with the following extra components.

strings String(s) created by format.earth. For multiple response models, a vector of strings.

newrsq Only if newdata was passed to summary.earth.

correlation Only if newdata was passed to summary.earth.

digits

details
decomp

Note

The printed Estimated importance uses evimp with the nsubsets criterion. The most important predictor is printed first, and so on.

See Also

earth, evimp, format.earth

Examples

earth.mod <- earth(Volume~., data = trees)
summary(earth.mod, digits = 2)

update.earth Update an earth model

Description

Update an earth model.

Usage

## S3 method for class 'earth'
update(object = stop("no 'object' argument"),
    formula. = NULL, ponly = FALSE, ..., evaluate = TRUE)
Arguments

object The earth object
formula The formula argument is treated like earth’s formula argument.

ponly Force pruning only, no forward pass. Default is FALSE, meaning update.earth decides automatically if a forward pass is needed. See note below.

... Arguments passed on to earth.
evaluate If TRUE (default) evaluate the new call, else return the call. Mostly for compatibility with the generic update.

Details

If only the following arguments are used, a forward pass is unnecessary, and update.earth will perform only the pruning pass. This is usually much faster for large models.

object glm trace nprune pmethod Eval.model.subsets Print.pruning.pass Force.xtx.prune Use.beta.cache Endspan.penalty Get.leverages

This automatic determination to do a forward pass can be overridden with the ponly argument. If ponly=TRUE the forward pass will be skipped and only the pruning pass will be executed. This is useful for doing a pruning pass with new data. (Use earth’s data argument to specify the new data.) Typically in this scenario you would also specify penalty=-1. This is because with sufficient new data, independent of the original training data, the RSS not the GCV should be used for evaluating model subsets (The GCV approximates what the RSS would be on new data — but here we actually have new data, so why bother approximating. This “use new data for pruning” approach is useful in situations where you don’t trust the GCV approximation for your data.) By making penalty=-1, earth will calculate the RSS, not the GCV. See also the description of penalty on the earth help page.

Another (somewhat esoteric) use of ponly=TRUE is to do subset selection with a different penalty from that used to build the original model.

With trace=1, update.earth will tell you if earth’s forward pass was skipped.

If you used keepxy=TRUE in your original call to earth, then update.earth will use the saved values of x, y, etc., unless you specify otherwise by arguments to update.earth. It can be helpful to set trace=1 to see which x and y is used by update.earth.
Value

The value is the same as that returned by `earth`. If `object` is the only parameter then no changes are made — the returned value will be the same as the original `object`.

See Also

`earth`

Examples

data(ozone1)

(earth.mod <- earth(O3 ~ ., data = ozone1, degree = 2))

update(earth.mod, formula = O3 ~ . - temp) # requires forward pass and pruning

update(earth.mod, nprune = 8) # requires only pruning

update(earth.mod, penalty=1, ponly=TRUE) # pruning pass only with a new penalty

---

**varmod**

Variance models for estimating prediction intervals

Description

A variance model estimates the variance of predicted values. It can be used to estimate prediction intervals. See the interval argument of `predict.earth`.

A variance model is built by `earth` if `earth`'s `varmod.method` argument is specified. Results are stored in the `$varmod` field of the `earth` model. See the vignette “Variance models in earth” for details.

You probably won’t need to directly call `print.varmod` or `summary.varmod`. They get called internally by `summary.earth`.

Usage

```r
S3 method for class 'varmod'
summary(
 object = stop("no 'object' argument"),
 level = .95,
 style = "standard",
 digits = 2,
 newdata = NULL,
 ...
)
```
Arguments

object: A \texttt{varmod} object. This is the only required argument.
level: Same as \texttt{predict.earth}'s \texttt{level} argument.
style: Determines how the coefficients of the \texttt{varmod} are printed by \texttt{summary.varmod}:
- "standard" (default)
- "unit" for easy comparison normalize the coefficients by dividing by the first coefficient.
digits: Number of digits to print. Default is 2.
newdata: Default NULL.
Else print the interval coverage table for the new data.

Note

A "\texttt{varmod}" object has the following fields:

- call: The call used internally in the parent model to build the \texttt{varmod} object.
- parent: The parent \texttt{earth} model.
- method: Copy of the \texttt{varmod.method} argument to the parent model.
- package: NULL, unless \texttt{method="gam"}, in which case either "gam" or "mgcv".
- exponent: Copy of the \texttt{varmod.exponent} argument to the parent model.
- lambda: Currently always 1, meaning use absolute residuals.
- rmeth: Currently always "hc2", meaning correct the residuals with $1/(1-h_{ii})$.
- converged: Did the residual submodel IRLS converge?
- iters: Number of residual model IRLS iterations (1 to 50).
- residmod: The residual submodel. So for example, if \texttt{varmod.method="lm"}, this will be an \texttt{lm} object.
- min.sd: The predicted residual standard deviation is clamped so it will always be at least this value. This prevents prediction of negative or absurdly small variances. See \texttt{earth}'s \texttt{varmod.clamp} argument. Clamping takes place in \texttt{predict.varmod}, which is called by \texttt{predict.earth} when estimating prediction intervals.
- model.var: An n x 1 matrix. The \texttt{model.var} for an observation is the estimated model variance for that observation over all datasets, and is estimated with repeated cross validation. It is the variance of the mean out-of-fold prediction for that observation over ncross repetitions.
- abs.resids: An n x 1 matrix. The absolute residuals used to build the residual model.
- parent.y: An n x 1 matrix. Parent earth model y.
- iter.rsq: Weighted R-Squared of residual submodel residmod, after IRLS iteration.
- iter.stderr: Standard errors of the coefficients of the residual submodel residmod, after IRLS iteration.
See Also

plot.varmod, predict.varmod

Examples

data(ozone1)

set.seed(1) # optional, for cross validation reproducibility

# note: should really use ncross=30 below but for a quick demo we don't
earth.mod <- earth(O3~temp, data=ozone1, nfold=10, ncross=3, varmod.method="lm")

print(summary(earth.mod)) # note additional info on the variance model

old.mfrow <- par(mfrow=c(2,2), mar=c(3, 3, 3, 1), mgp=c(1.5, 0.5, 0))
plotmo(earth.mod, do.par=FALSE, response.col=1, level=.90, main="earth model: O3~temp")
plot(earth.mod, which=3, level=.90) # residual plot: note 90% pred and darker conf intervals
par(par=old.mfrow)
Index

+Topic datasets
  etitanic, 16
  ozone1, 24
+Topic models
  contr.earth.response, 2
  earth, 3
  evimp, 18
  format.earth, 19
  mars.to.earth, 22
  model.matrix.earth, 23
  plot.earth, 25
  plot.earth.models, 28
  plot.evimp, 30
  plotd, 32
  predict.earth, 37
  residuals.earth, 40
  summary.earth, 41
  update.earth, 43
+Topic regression
  earth, 3
+Topic smooth
  earth, 3
  airquality, 25
  class, 11
  contr.earth.response, 2
  contrasts, 2
  density, 33–36
  earth, 2, 3, 7, 11, 16–19, 22–26, 28, 29, 31, 32, 35–45
  earth.object, 10, 11, 24
  earth_plotmodels (plot.earth), 25
  etitanic, 16
  evimp, 10, 11, 18, 30, 31, 43
  factor, 14
  factors, 4
  format.earth, 11, 19, 42, 43
  gam, 7
  glm, 5, 14, 24, 32, 35, 41, 42
  grep, 6
  hist, 33–36
  lda, 32, 36
  leaps, 7, 9, 10
  legend, 34
  lm, 6, 7, 24, 32, 35, 41
  lm.fit, 24
  logical, 14
  mars, 10, 22
  mars.to.earth, 22
  model.matrix.earth, 11, 23
  nls, 8
  ozone, 10
  ozone1, 24
  plot, 26, 29
  plot.density, 34–36
  plot.earth, 11, 25, 29, 36, 41
  plot.earth.models, 28, 28, 29, 31
  plot.evimp, 19, 30
  plot.histogram, 35, 36
  plot.varmod, 31, 47
  plotd, 28, 29, 32
  plotmo, 5, 11, 28, 29, 31
  plotres, 25, 28, 28, 29, 32
  pmax, 21
  predict, 33, 35, 39
  predict.earth, 13, 33, 37, 39, 40, 45
  predict.glm, 38
  predict.varmod, 37, 39, 47
  print.summary.earth (summary.earth), 41
  qda, 36

48
INDEX

resid. 41
residuals. 41
residuals.earth. 40
rlm. 7

Scale. 8
sqrt. 18
summary.earth. 11, 15, 19, 21, 41, 42, 45
summary.varmod (varmod). 45

termplot. 39

update. 44
update.earth. 4, 8, 22, 43

varmod. 7, 16, 32, 40, 45