Package ‘easySdcTable’

April 4, 2020

Type Package

Title Easy Interface to the Statistical Disclosure Control Package 'sdcTable'

Version 0.5.0

Date 2020-04-04

Author Øyvind Langsrud [aut, cre]

Maintainer Øyvind Langsrud <oyl@ssb.no>

Depends SSBtools

Imports sdcTable, shiny, methods

VignetteBuilder knitr

Suggests knitr, rmarkdown, RegSDC, Matrix, testthat (>= 2.1.0)

Description The main function, ProtectTable(), performs table suppression according to a frequency rule with a data set as the only required input. Within this function, protectTable(), protectLinkedTables() or runArgusBatchFile() in package 'sdcTable' is called. Lists of level-hierarchy (parameter 'dimList') and other required input to these functions are created automatically.

The function, PTgui(), starts a graphical user interface based on the shiny package.

License Apache License 2.0 | file LICENSE

LazyData TRUE

RoxygenNote 7.1.0

Encoding UTF-8

URL https://github.com/statisticsnorway/easySdcTable

BugReports https://github.com/statisticsnorway/easySdcTable/issues

NeedsCompilation no

Repository CRAN

Date/Publication 2020-04-04 17:10:09 UTC
EasyData

Function that returns a dataset

Description

Function that returns a dataset

Usage

`EasyData(dataset, path = NULL)`

Arguments

- `dataset` Name of data set within the easySdcTable package
- `path` When non-NULL the data set is read from "path/dataset.RData"

Value

The dataset

Examples

```
z <- EasyData("sosialFiktiv")
```
ProtectTable

Easy interface to sdcTable: Table suppression according to a frequency rule.

Description

`protectTable()` or `protectLinkedTables()` in package 'sdcTable' is run with a data set as the only required input. One (stacked) or several (unstacked) input variables can hold cell counts. Output is on a form similar to input.

Usage

```r
ProtectTable(  
data,  
dimVar = 1:NCOL(data),  
freqVar = NULL,  
protectZeros = TRUE,  
maxN = 3,  
method = "SimpleSingle",  
findLinked = TRUE,  
total = "Total",  
addName = FALSE,  
sep = ".",  
removeZeros = FALSE,  
dimList = NULL,  
groupVarInd = NULL,  
ind1 = NULL,  
ind2 = NULL,  
rowData = NULL,  
varNames = paste("var", 1:100, sep = ",")  
)
```

IncProgress = IncDefault,
...
)

Arguments

data data frame
dimVar The main dimensional variables and additional aggregating variables (name or number).
freqVar Variable(s) holding counts or NULL in the case of micro data (name or number).
protectZeros When TRUE empty cells (count=0) is considered sensitive (i.e. same as allowZeros in primarySuppression).
maxN All cells having counts \leq \text{maxN} are set as primary suppressed.
method Parameter method in protectTable, protectLinkedTables or wrapper methods via PTwrap:
 • "SIMPLEHEURISTIC": This method is default in protectable.
 • "OPT", "HITAS", "HYPERCUBE": Other methods in protectable. "HYPERCUBE" is not possible in cases with two linked tables.
 • "SimpleSingle" (default): "SIMPLEHEURISTIC" with detectSingletons=TRUE when protectZeros=FALSE and "SIMPLEHEURISTIC" with threshold=1 (can be overridden by input) when protectZeros=TRUE.
 • "Simple": "SIMPLEHEURISTIC" with detectSingletons=FALSE.
Alternatively this parameter can be a named list specifying parameters for running tau-argus (see details). See PTwrap for other (experimental) wrapper methods (see details).
findLinked When TRUE, the function may find two linked tables and run protectLinkedTables.
total String used to name totals.
addName When TRUE the variable name is added to the level names, except for variables with most levels.
sep A character string to separate when addName apply and when creating variable names.
removeZeros When TRUE, rows with zero count will be removed from the data within the algorithm.
dimList By default, hierarchies will be automatically found from data (see FindDimLists). With non-NULL dimList, these will be changed. In practice this is done by the function ReplaceDimList.
groupVarInd Possible manual specification of list defining the hierarchical variable groups.
 When NULL (default) this information will be found automatically by FindTableGroup.
ind1 Coding of table 1 as indices referring to elements of groupVarInd. This information will be found automatically by FindTableGroup when groupVarInd=NULL.
ind2 Coding of table 2 as indices referring to elements of groupVarInd (as ind1 above).
protTable

rowData
Input to Stack used to generate extra dimVar variables when stacking in cases with several freqvar variables. When NULL rowData will be created automatically by AutoSplit using varNames (see below) and the the freqvar names as input.

varNames
The names of the extra dimVar variable(s) made when stacking in cases with several freqvar variables. When length(varNames)>1 several variables may be found by AutoSplit.

split
Parameter to AutoSplit - see varNames and rowData above. When NULL (default), automatic splitting without needing a split string.

border
Parameter to AutoSplit - see varNames and rowData above.

revBorder
Parameter to AutoSplit - see varNames and rowData above.

freqName
Input to Stack. The name of the new freqvar variable obtained when stacking in cases with several input freqvar variables.

totalFirst
Parameter controlling how output is sorted.

numericOrder
Parameter controlling how output is sorted. Output is character but sorting can be based on the numeric input variables.

namesAsInput
When TRUE those output variables (created by unstacking) that correspond to input will be named as input.

orderAsInput
When TRUE output corresponding to input will be ordered as input and kept together as one block.

sortByReversedColumns
When TRUE output will be sorted by variables in opposite order.

doUnstack
When FALSE output will not be unstacked (in cases with sever input freqvar variables)

removeTotal
When TRUE the total string (see total above) will be removed from the names of output variables created by unstacking (in cases with sever input freqvar variables).

doUnstack2

singleOutput
When TRUE output will be in as single data set. Default is FALSE for unstacked data (in cases with sever input freqvar variables) and otherwise TRUE.

suppression
Value used for suppressed elements in suppressed output data. Default is NA.

outFreq
String used to name output variable(s)

outSdcStatus
String used to name output variable(s)

outSuppressed
String used to name output variable(s)

infoAsFrame
When TRUE output element info is a data frame (useful in Shiny).

IncProgress
A function to report progress (incProgress in Shiny). Set equal to NULL to turn it off.

...
Further parameters sent to protTable (possibly via protLinkedTables) such as verbose (print output while calculating) and timeLimit. Parameters to createArgusInput and PTwrap is also possible (see details).
Details

One or two tables are identified automatically and subjected to cell suppression by `protectTable` (single table) or `protectLinkedTables` (two linked tables). The tables can alternatively be specified manually by `groupVarInd`, `ind1` and `ind2`. The output will be on a form similar to input depending on whether `freqVar` is a single variable or not. The status of the cells are coded as "u" (primary suppressed), "x" (secondary suppression), and "s" (can be published). This is taken directly from the output from `sdcTable`. In cases with two linked tables "u" or "x" for common cells are based on output from the first table.

- **To run tau-argus** specify method as a named list containing the parameter `exe` for `runArgusBatchFile` and other parameters for `createArgusInput`.
 - One may specify: `method = list(exe="C:/Tau/TauArgus.exe", typ="tabular", path=getwd(), solver="FREE", method="OPT")` However these values of "exe", "path" and "solver" and "method" are set by default so in this case using `method = list(typ="tabular",method="OPT")` is equivalent.
 - If `typ="microdata"` is specified. Necessary transformation to microdata will be made.

- **Wrapper methods (partly experimental):** In the function `PTwrap` several additional methods are defined. If input to `ProtectTable()` is one of these methods `ProtectTable()` will be run via `PTwrap()` so making explicit call to `PTwrap()` is not needed.

- **Singleton and zeros:** The parameter `detectSingletons` was included in `protecttable` to handle the so-called singleton problem that appears when `protectZeros=FALSE`. Not all problems were solved and the parameter threshold has been introduced later. The value of threshold needed depends on the number of singletons in one group. It seems that `threshold=3` is equivalent to `detectSingletons=TRUE`. When `protectZeros=TRUE` the related “zero problem” occurs. This problem is solved by `threshold=1`.

- **NOTE:** The use of `numVarInd`, `weightInd` and `sampWeightInd` in `sdcTable` is not implemented. This also limit possible input to tau-argus.

Value

When `singleOutput=TRUE` output is a list of two elements.

- **info:** Information as a single column character matrix. This is information about the extra `dimVar` variables created when stacking, information about the identified (linked) table(s) and summary output from `sdcTable`.
- **data:** A data frame where variables are named according to `outFreq`, `outSdcStatus` and `outSuppressed`. When `singleOutput=FALSE` output element `data` is replaced by three elements and these are named according to `outFreq`, `outSdcStatus` and `outSuppressed`.

Note

`ProtectTable` makes a call to the function `ProtectTable1`.

See Also

See also the vignettes.
Examples

==== Example 1, 8 regions ====
z1 <- EasyData("z1")
ProtectTable(z1,1:2,3)
ProtectTable(z1, c("region","hovedint"), "ant") # Input by name
--- Unstacked input data ---
z1w = EasyData("z1w")
ProtectTable(z1w, 1, 2:5)
ProtectTable(z1w, 1, 2:5, varName="hovedint")
ProtectTable(z1w, 1, 2:5, method="HITAS")
ProtectTable(z1w, 1, 2:5, totalFirst = TRUE, method="Simple")

==== Example 2, 11 regions ====
z2 <- EasyData("z2")
ProtectTable(z2,c(1,3,4), 5) # With region-variable kostragr
--- Unstacked input data ---
z2w <- EasyData("z2w")
ProtectTable(z2w, 1:2, 4:7, method = "Simple") # With region-variable fylke
ProtectTable(z2w, 1:3, 4:7, method = "SIMPLEHEURISTIC") # Two linked tables

Not run:

==== Example 3, 36 regions ====
z3 <- EasyData("z3")
ProtectTable(z3, c(1,4,5), 7) # Three dimensions. No subtotals
ProtectTable(z3, 1:6, 7, method = "SIMPLEHEURISTIC") # Two linked tables
--- Unstacked input data with coded column names
z3w <- EasyData("z3w")
ProtectTable(z3w,1:3,4:15, varName="g12", method ="Simple") # coding not used when single varName
ProtectTable(z3w,1:3,4:15, varName=c("hovedint","mnd")) # Two variables found automatically
ProtectTable(z3w,1:3,4:15, varName=c("hovedint","mnd"),
method ="Simple", removeTotal=FALSE) # Keep "Total" in variable names
--- Unstacked input data with three level column name coding
ProtectTable(z3wb,1:3,4:15, varName=c("hovedint","mnd","mnd2")) # Two variables found automatically
ProtectTable(z3wb,1:3,4:15, varName=c("hovedint","mnd","mnd2"),
method ="Simple", split="_") # Three variables when splitting
ProtectTable(z3wb,1:3,4:15, varName=c("hovedint","mnd","mnd2"), method = "SIMPLEHEURISTIC",
split="_",namesAsInput=FALSE,orderAsInput=FALSE) # Alternative output format

==== Examples Tau-Argus ====
exeArgus <- "C:/TauArgus4.1.4/TauArgus.exe" # Change to TauArgus.exe-path in your computer
pathArgus <- "C:/Users/nnn/Documents" # Change to an existing folder
z1 = EasyData("z1")
ProtectTable(z1,1:2,3,method=list(exe=exeArgus, path=pathArgus, typ="tabular", method="OPT"))
ProtectTable(z1,1:2,3,method=list(exe=exeArgus, path=pathArgus, typ="tabular", method="MOD"))
ProtectTable(z1,1:2,3,method=list(exe=exeArgus, path=pathArgus, typ="tabular", method="GH"))
ProtectTable(z1,1:2,3,maxN=-1,
method=list(path=pathArgus, exe=exeArgus, method="OPT",
primSuppRules= list(list(type="freq", n=4, rg=20))))
z3w <- EasyData("z3")
ProtectTable(z3,c(1:2,4,5),7,maxN=-1,
method=list(path=pathArgus, exe=exeArgus, method="OPT",
primSuppRules=list(list(type="freq", n=4, rg=20))))
Examples with parameter dimList

```r
c2 <- EasyData("z2")
dList <- FindDimLists(z2[-5])
ProtectTable(z2[, c(1,4,5)], 1:2, 3, method = "Simple", dimList = dList[1,])
ProtectTable(z2[, c(1,4,5)], 1:2, 3, method = "SIMPLEHEURISTIC", dimList = dList[2])
ProtectTable(z2[, c(1,4,5)], 1:2, 3, method = "Simple",
            dimList = DimList2Hrc(dList[c(2,3)]))
```

Description

protectTable or protectLinkedTables is run with a data set at the only required input.

Usage

```r
ProtectTable1(
data,
dimVarInd = 1:NCOL(data),
freqVarInd = NULL,
protectZeros = TRUE,
maxN = 3,
method = "SIMPLEHEURISTIC",
findLinked = TRUE,
total = "Total",
addName = FALSE,
sep = ".",
removeZeros = FALSE,
dimList = NULL,
groupVarInd = NULL,
ind1 = NULL,
ind2 = NULL,
dimDataReturn = FALSE,
IncProgress = IncDefault,
...)
```

Arguments

- **data**: Matrix or data frame
- **dimVarInd**: Column-indices of the main dimensional variables and additional aggregating variables.
- **freqVarInd**: Column-indices of a variable holding counts or NULL in the case of micro data.
ProtectTable1

protectZeros When TRUE empty cells (count=0) is considered sensitive (i.e. same as allowZeros in primarySuppression).
maxN All cells having counts <= maxN are set as primary suppressed.
method Parameter "method" in protectTable or protectLinkedTables. Alternatively a list defining parameters for running tau-argus (see ProtectTable).
findLinked When TRUE, the function may find two linked tables and run protectLinkedTables.
total String used to name totals.
addName When TRUE the variable name is added to the level names, except for variables with most levels.
sep A character string to separate when addName apply.
removeZeros When TRUE, rows with zero count will be removed from the data.
dimList See ProtectTable.
groupVarInd Possible manual specification if list defining the hierarchical variable groups
ind1 Coding of table 1 as indices referring to elements of groupVarInd
ind2 Coding of table 2 as indices referring to elements of groupVarInd
dimDataReturn When TRUE a data frame containing the dimVarInd variables is retuned
IncProgress A function to report progress (incProgress in Shiny).
... Further parameters sent to protectTable, protectLinkedTables or createArgusInput.

Details

One or two tables are identified automatically and subjected to cell suppression methods in package sdcTable. The tables can alternatively be specified manually by groupVarInd, ind1 and ind2 (see FindTableGroup).

Value

Output is a list of three elements.

`table1` consists of the following elements:

- `secondary` Output from `protectTable` or first element of output from `protectLinkedTables` or output from `runArgusBatchFile`.
- `primary` Output from `primarySuppression`.
- `problem` Output from `makeProblem`.
- `dimList` Generated input to `makeProblem`.
- `ind` Indices referring to elements of `groupVarInd` in the output element common.

`table2` consists of elements of the same type as `table1` in cases of two linked tables. Otherwise `table2` is NULL.

`common` consists of the following elements:

- `commonCells` Input to `protectLinkedTables`.
groupVarInd List defining the hierarchical variable groups
info A table summarizing the tables using variable names
nLevels The number of levels of each variable (only when groupVarInd input is NULL)
dimData Data frame containing the dimVarInd variables when dimDataReturn=TRUE. Otherwise NULL.

See Also
 ProtectTable, HierarchicalGroups, FactorLevCorr, FindDimLists, FindCommonCells

Examples

```r
## Not run:
zz <- EasyData("zz")
a <- ProtectTable1(zz, c(1, 3, 4), 5)
head(as.data.frame(getInfo(a[[1]][[1]], type = "finalData")))  # The table (not two linked)

zz <- EasyData("zz")
b <- ProtectTable1(zz, 1:6, 7)
head(as.data.frame(getInfo(b[[1]][[1]], type = "finalData")))  # First table
head(as.data.frame(getInfo(b[[2]][[1]], type = "finalData")))  # Second table

## End(Not run)
```

PTgui
Table suppression - Shiny Gui

Description

Run PTgui from the R console or use PTguiApp to make a server application

Usage

```r
PTgui(
  data = NULL,
  language = "English",
  exeArgus = NULL,
  pathArgus = getwd(),
  maxNchoices = c(1:10, 12, 15, 20),
  ...
)
```

```r
PTguiApp(
  language = "English",
  exeArgus = NULL,
  pathArgus = "",
  maxNchoices = c(1:10, 12, 15, 20),
)```
PTgui

...)

PTguiNO(
data = NULL,
language = "Norwegian",
exeArgus = NULL,
pathArgus = getwd(),
maxNchoices = c(1:10, 12, 15, 20),
...)

PTguiAppNO(
language = "Norwegian",
exeArgus = NULL,
pathArgus = "",
maxNchoices = c(1:10, 12, 15, 20),
...)

Arguments

data NULL or a data.frame
language Menu language, "English" or "Norwegian".
exeArgus Tau-argus executable
pathArgus Folder for (temporary) tau-argus files
maxNchoices Choices of maxN
... Further parameters sent to ProtectTable

Value

Output from ProtectTable. The output is returned invisibly (via invisible) which means that it is not automatically printed to the console.

Note

PTguiApp(): New for server

Examples

## Not run:

# Start the gui.
PTgui()

# Start Norwegian gui with example data and catch output
out <- PTguiNO(data=EasyData("z1w"))

# Note: Change to TauArgus.exe-path in your computer
PTwrap <- "C:/TauArgus4.2.0b2/TauArgus.exe"

# Note: Change to an existing folder
pathArgus <- "C:/Users/nnn/Documents"

# Start the gui with possibility to run tau-argus.
PTgui(exeArgus=exeArgus, pathArgus=pathArgus)

## End(Not run)

---

PTwrap

Wrapper to ProtectTable() with additional methods (partly experimental)

**Description**

Additional values of "method" is possible. Each new method (wrapper method) will make a call to ProtectTable() using a specific parameter setting.

**Usage**

```r
PTwrap(
 ...,
 maxN = 3,
 method = "SimpleSingle",
 exeArgus = "C:/Tau/TauArgus.exe",
 pathArgus = getwd(),
 solverArgus = "FREE",
 methodArgus = "OPT",
 rgArgus = 0
)
```

**Arguments**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>Parameters to ProtectTable</td>
</tr>
<tr>
<td>maxN</td>
<td>Parameter to ProtectTable</td>
</tr>
<tr>
<td>method</td>
<td>Parameter to ProtectTable or a wrapper method (see details)</td>
</tr>
<tr>
<td>exeArgus</td>
<td>Parameter to runArgusBatchFile</td>
</tr>
<tr>
<td>pathArgus</td>
<td>Parameter to createArgusInput</td>
</tr>
<tr>
<td>solverArgus</td>
<td>Parameter &quot;solver&quot; to createArgusInput</td>
</tr>
<tr>
<td>methodArgus</td>
<td>Parameter &quot;method&quot; to createArgusInput</td>
</tr>
<tr>
<td>rgArgus</td>
<td>Parameter &quot;rg&quot; in &quot;primSuppRules&quot; in createArgusInput</td>
</tr>
</tbody>
</table>
Details

The wrapper methods are:

**Simple**: "SIMPLEHEURISTIC" with detectSingletons=FALSE

**SimpleSingle**: "SIMPLEHEURISTIC" with detectSingletons=TRUE when protectZeros=FALSE and "SIMPLEHEURISTIC" with threshold=1 (can be overridden by input) when protectZeros=TRUE

**SimpleSingleOld**: "SIMPLEHEURISTIC" with detectSingletons=TRUE

**TauArgus**: Tau-argus will be run according to the settings of the other input parameters.

Using $rgArgus=0$ is equivalent to calling ProtectTable() with

```r
method = list(exe=exeArgus,typ="tabular",path=pathArgus,
solver=solverArgus,method=methodArgus)
```

Other values of $rgArgus$ is equivalent to calling ProtectTable() with

```r
method = list(exe=exeArgus,typ="microdata",path=pathArgus,
solver=solverArgus,method=methodArgus,
primSuppRules=list(list(type="freq",n=maxN+1,rg=rgArgus)))
```

**TauArgusOPT**: As "TauArgus" with methodArgus="OPT"

**TauArgusMOD**: As "TauArgus" with methodArgus="MOD"

**TauArgusGH**: As "TauArgus" with methodArgus="GH"

Value

See `ProtectTable`

---

PTxyz

*ProtectTable with output ready for SuppressDec in package RegSDC*

Description

Assuming correct suppression, suppressed values become decimal numbers (not whole numbers) instead of missing.

Usage

```r
PTxyz(data, dimVar, freqVar, ...)
```

Arguments

- **data**: data frame
- **dimVar**: The main dimensional variables and additional aggregating variables (name or number).
- **freqVar**: Variable(s) holding counts (name or number).
- **...**: Further parameters sent to `ProtectTable`
Details
Within this R package this function will be used for testing

Value
List of three matrices ready as input to SuppressDec

- **x** Sparse dummy matrix where the dimensions match z and y.
- **z** Frequencies to be published with suppressed as NA.
- **y** Inner cell frequencies.

Author(s)
Øyvind Langsrud

Examples

```r
Same examples as in ProtectTable
a1 <- PTxyz(EasyData("z1"), c("region","hovedint") ,"ant")
a2 <- PTxyz(EasyData("z2"), c(1,3,4),5)

if (require(RegSDC)) { # RegSDCdata and SuppressDec
 # Same data as in RegSDCdata examples (and in paper)
data7 <- RegSDCdata("sec7data")
data7 <- data7[!is.na(data7$y), 1:3]
data7

 # Generate x, y, z similar to xAll, y, zAllSupp in RegSDCdata examples
 # But different suppressed cells and z ordered differently
 a <- PTxyz(data7, 1:2, 3, maxN = 3, method = "HITAS")
a

 # Suppressed inner cells as decimal numbers
 yDec <- SuppressDec(ax, az, a$y, rmse = 1)
yDec

 # All cells as decimal numbers
 cbind(a$z, t(a$x) %*% cbind(a$y, yDec))

 # As ProtectTable example
 z1 <- EasyData("z1")
a <- PTxyz(z1, c("region", "hovedint"), "ant")

 # Inner cells as decimal numbers. 3 replicates.
yDec <- SuppressDec(ax, az, a$y, nRep = 3)
yDec

 # All cells with 3 replicates.
cbind(a$z, t(a$x) %*% cbind(a$y, yDec))
}
```
# An example involving two linked tables.
# It is demonstrated that the approach to suppression is not safe.
# That is, perfect fit (whole numbers) for some suppressed cells.
a <- PTxyz(EasyData("z2"), 1:4, 5)
  cbind(a$z, t(a$x) %*% cbind(a$y, SuppressDec(a$x, a$z, rmse = 1, nRep = 3)))[which(is.na(a$z)), ]
}

---

**sosialFiktiv**  

Fictitious datasets used in the examples.

---

**Description**

The most comprehensive dataset, **sosialFiktiv**, contains three dimensions. The first dimension is 'region' which is grouped in two ways, 'fylke' and 'kostragr'. The other two are 'hovedint' and 'mnd'. In 'mnd2' two of the three categories in 'mnd' are merged. The other datasets (**z1**, **z1w**, **z2**, **z2w**, **z3**, **z3w**, **z3wb**) are smaller subdatasets. Datasets marked with 'w' are unstacked and several variables are holding counts.
Index

*Topic datasets
  sosialFiktiv, 15

AutoSplit, 5

createArgusInput, 5, 6, 12

EasyData, 2

FactorLevCorr, 10
FindCommonCells, 10
FindDimLists, 4, 10
FindTableGroup, 4, 9
HierarchicalGroups, 10
invisible, 11
makeProblem, 9

primarySuppression, 4, 9
protectLinkedTables, 4–6, 9
ProtectTable, 3, 9–11, 13
protectTable, 4–6, 9
ProtectTable1, 6, 8
PTgui, 10
PTguiApp (PTgui), 10
PTguiAppNO (PTgui), 10
PTguiNO (PTgui), 10
PTwrap, 4–6, 12
PTxyz, 13

ReplaceDimList, 4
runArgusBatchFile, 6, 9, 12

sosialFiktiv, 15
Stack, 5

z1 (sosialFiktiv), 15
z1micro (sosialFiktiv), 15
z1w (sosialFiktiv), 15
z2 (sosialFiktiv), 15
z2w (sosialFiktiv), 15