Package ‘easyalluvial’

December 7, 2023

Title Generate Alluvial Plots with a Single Line of Code
Version 0.3.2
URL https://github.com/erblast/easyalluvial/
Description Alluvial plots are similar to sankey diagrams and visualise categorical data over multiple dimensions as flows. (Rosvall M, Bergstrom CT (2010) Mapping Change in Large Networks. PLoS ONE 5(1): e8694. <doi:10.1371/journal.pone.0008694>
Their graphical grammar however is a bit more complex then that of a regular x/y plots. The 'ggalluvial' package made a great job of translating that grammar into 'ggplot2' syntax and gives you many options to tweak the appearance of an alluvial plot, however there still remains a multi-layered complexity that makes it difficult to use 'ggalluvial' for explorative data analysis. 'easyalluvial' provides a simple interface to this package that allows you to produce a decent alluvial plot from any dataframe in either long or wide format from a single line of code while also handling continuous data. It is meant to allow a quick visualisation of entire dataframes with a focus on different colouring options that can make alluvial plots a great tool for data exploration.
License CC0
Encoding UTF-8
LazyData true
Depends R(>= 3.5)
Suggests testthat, covr, ISLR, nycflights13, vdiffr (>= 0.3.1), pkgdown, mlbench, earth, workflows, future, furrr, e1071, caret, parsnip, vip, rpart, glmnet, xgboost
RoxygenNote 7.2.3
Imports purrr , tidyr (>= 1.0.0) , dplyr , forcats , ggalluvial (>= 0.9.1) , ggplot2 (>= 3.2.0) , ggridges , RColorBrewer , recipes (>= 0.1.5) , rlang , stringr , magrittr , tibble , gridExtra , randomForest , progresr , progress
Language en-US
NeedsCompilation no
Author Bjoern Koneswarakantha [aut, cre]
 (<https://orcid.org/0000-0003-4585-7799>)
add_imp_plot

Description

adds bar plot of important features to model response alluvial plot

Usage

add_imp_plot(grid, p = NULL, data_input, plot = T, ...)

Maintainer Bjoern Koneswarakantha <datistics@gmail.com>
Repository CRAN
Date/Publication 2023-12-07 13:40:06 UTC
add_marginal_histograms

Arguments

grid gtable or ggplot
p alluvial plot, optional if alluvial plot has already been passed as grid. Default: NULL
data_input dataframe used to generate alluvial plot
plot logical if plot should be drawn or not
... additional parameters passed to plot_imp

Value
gtable

See Also

arrangeGrob plot_imp

Examples

Not run:
df = mtcars2[, !names(mtcars2) %in% 'ids']

train = caret::train(disp ~ .,
 df,
 method = 'rf',
 trControl = caret::trainControl(method = 'none')
 , importance = TRUE)

pred_train = caret::predict.train(train, df)

p = alluvial_model_response_caret(train, degree = 4, pred_train = pred_train)

p_grid = add_marginal_histograms(p, data_input = df)

p_grid = add_imp_plot(p_grid, p, data_input = df)

End(Not run)
Usage

add_marginal_histograms(
 p,
 data_input,
 top = TRUE,
 keep_labels = FALSE,
 plot = TRUE,
 ...
)

Arguments

p alluvial plot
data_input dataframe, input data that was used to create dataframe
top logical, position of histograms, if FALSE adds them at the bottom, Default: TRUE
keep_labels logical, keep title and caption, Default: FALSE
plot logical if plot should be drawn or not
... additional arguments for model response alluvial plot concerning the response variable

pred_train display training prediction, not necessary if pred_train has already been passed to alluvial_model_response()
scale int, y-axis distance between the ridge plots, Default: 400
resp_var character vector, specify response variable in data_input, if not set response variable will try to be inferred, Default: NULL

Value

gtable

See Also

arrangeGrob

Examples

Not run:
p = alluvial_wide(mtcars2, max_variables = 3)
p_grid = add_marginal_histograms(p, mtcars2)

End(Not run)
Description

Plots two variables of a dataframe on an alluvial plot. A third variable can be added either to the left or the right of the alluvial plot to provide coloring of the flows. All numerical variables are scaled, centered and YeoJohnson transformed before binning.

Usage

```r
calluvial_long(
  data,
  key,
  value,
  id,
  fill = NULL,
  fill_right = T,
  bins = 5,
  bin_labels = c("LL", "ML", "M", "MH", "HH"),
  NA_label = "NA",
  order_levels_value = NULL,
  order_levels_key = NULL,
  order_levels_fill = NULL,
  complete = TRUE,
  fill_by = "first_variable",
  col_vector_flow = palette_qualitative() %>% palette_filter(greys = F),
  col_vector_value = RColorBrewer::brewer.pal(9, "Greys")[c(3, 6, 4, 7, 5)],
  verbose = F,
  stratum_labels = T,
  stratum_label_type = "label",
  stratum_label_size = 4.5,
  stratum_width = 1/4,
  auto_rotate_xlabs = T,
  ...)
```

Arguments

- **data**: a dataframe
- **key**: unquoted column name or string of x axis variable
- **value**: unquoted column name or string of y axis variable
- **id**: unquoted column name or string of id column
- **fill**: unquoted column name or string of fill variable which will be used to color flows, Default: NULL
alluvial_long

fill_right logical, TRUE fill variable is added to the right FALSE to the left, Default: T

bins number of bins for automatic binning of numerical variables, Default: 5

bin_labels labels for bins, Default: c("LL", "ML", "M", "MH", "HH")

NA_label character vector define label for missing data

order_levels_value character vector denoting order of y levels from low to high, does not have to be complete can also just be used to bring levels to the front, Default: NULL

order_levels_key character vector denoting order of x levels from low to high, does not have to be complete can also just be used to bring levels to the front, Default: NULL

order_levels_fill character vector denoting order of color fill variable levels from low to high, does not have to be complete can also just be used to bring levels to the front, Default: NULL

complete logical, insert implicitly missing observations, Default: TRUE

fill_by one_of(c('first_variable', 'last_variable', 'all_flows', 'values')), Default: 'first_variable'

col_vector_flow HEX color values for flows, Default: palette_filter(greys = F)

col_vector_value HEX color values for y levels/values, Default:RColorBrewer::brewer.pal(9, 'Greys')[c(3,6,4,7,5)]

verbose logical, print plot summary, Default: F

stratum_labels logical, Default: TRUE

stratum_label_type character, Default: "label"

stratum_label_size numeric, Default: 4.5

stratum_width double, Default: 1/4

auto_rotate_xlabs logical, Default: TRUE

Value ggplot2 object

See Also alluvial_wide.geom_flow, geom_stratum,manip_bin_numerics

Examples

```r
## Not run:
data = quarterly_flights
```
alluvial_long(data, key = qu, value = mean_arr_delay, id = tailnum, fill_by = 'last_variable')

more flow coloring variants ---
alluvial_long(data, key = qu, value = mean_arr_delay, id = tailnum, fill_by = 'first_variable')
alluvial_long(data, key = qu, value = mean_arr_delay, id = tailnum, fill_by = 'all_flows')
alluvial_long(data, key = qu, value = mean_arr_delay, id = tailnum, fill_by = 'value')

color by additional variable carrier -------------------------------
alluvial_long(data, key = qu, value = mean_arr_delay, fill = carrier, id = tailnum)

use same color coding for flows and y levels -----------------------
palette = c('green3', 'tomato')
alluvial_long(data, qu, mean_arr_delay, tailnum, fill_by = 'value'
 , col_vector_flow = palette
 , col_vector_value = palette)

reorder levels --
alluvial_long(data, qu, mean_arr_delay, tailnum, fill_by = 'first_variable'
 , order_levels_value = c('on_time', 'late'))
alluvial_long(data, qu, mean_arr_delay, tailnum, fill_by = 'first_variable'
 , order_levels_key = c('Q4', 'Q3', 'Q2', 'Q1'))

require(dplyr)
require(magrittr)

order_by_carrier_size = data %>%
group_by(carrier) %>%
count() %>%
arrange(desc(n)) %>%
.[['carrier']]`

alluvial_long(data, qu, mean_arr_delay, tailnum, carrier
 , order_levels_fill = order_by_carrier_size)

End(Not run)
Description

Alluvial plots are capable of displaying higher dimensional data on a plane, thus lend themselves to plot the response of a statistical model to changes in the input data across multiple dimensions. The practical limit here is 4 dimensions. We need the data space (a sensible range of data calculated based on the importance of the explanatory variables of the model as created by `get_data_space` and the predictions returned by the model in response to the data space.

Usage

```r
alluvial_model_response(
  pred,
  dspace,
  imp,
  degree = 4,
  bin_labels = c("LL", "ML", "M", "MH", "HH"),
  col_vector_flow = c("#FF0065", "#009850", "#A56F2B", "#005EAA", "#710500", "#7B5380", "#9DD1D1"),
  method = "median",
  force = FALSE,
  params_bin_numeric_pred = list(bins = 5),
  pred_train = NULL,
  stratum_label_size = 3.5,
  ...
)
```

Arguments

- **pred** vector, predictions, if method = 'pdp' use `get_pdp_predictions` to calculate predictions
- **dspace** data frame, returned by `get_data_space`
- **imp** dataframe, with not more then two columns one of them numeric containing importance measures and one character or factor column containing corresponding variable names as found in training data.
- **degree** integer, number of top important variables to select. For plotting more than 4 will result in two many flows and the alluvial plot will not be very readable, Default: 4
- **bin_labels** labels for prediction bins from low to high, Default: c("LL", "ML", "M", "MH", "HH")
- **col_vector_flow**, character vector, defines flow colours, Default: c('#FF0065', '#009850', '#A56F2B', '#005EAA', '#710500')
- **method**, character vector, one of c('median', 'pdp')
 - **median** sets variables that are not displayed to median mode, use with regular predictions
 - **pdp** partial dependency plot method, for each observation in the training data the displayed variable as are set to the indicated values. The predict function
is called for each modified observation and the result is averaged, calculate predictions using \texttt{get_pdp_predictions}.

- \texttt{force}: logical, force plotting of over 1500 flows, Default: \texttt{FALSE}
- \texttt{params_bin_numeric_pred}: list, additional parameters passed to \texttt{manip_bin_numerics} which is applied to the \texttt{pred} parameter. Default: list(\texttt{bins = 5, center = T, transform = T, scale = T})

- \texttt{pred_train}: numeric vector, base the automated binning of the \texttt{pred} vector on the distribution of the training predictions. This is useful if marginal histograms are added to the plot later. Default = \texttt{NULL}

- \texttt{stratum_label_size}: numeric, Default: 3.5

\dots

- additional parameters passed to \texttt{alluvial_wide}

Details

This model visualisation approach follows the "visualising the model in the dataspace" principle as described in Wickham H, Cook D, Hofmann H (2015) Visualizing statistical models: Removing the blindfold. Statistical Analysis and Data Mining 8(4) <doi:10.1002/sam.11271>

Value

ggplot2 object

See Also

\texttt{alluvial_wide, get_data_space, alluvial_model_response_caret}

Examples

\begin{verbatim}
df = mtcars[, ! names(mtcars) %in% 'ids']
m = randomForest::randomForest(disp ~ ., df)
imp = m$importance
dspace = get_data_space(df, imp, degree = 3)
pred = predict(m, newdata = dspace)
alluvial_model_response(pred, dspace, imp, degree = 3)

partial dependency plotting method
Not run:
pred = get_pdp_predictions(df, imp
, .f_predict = randomForest:::predict.randomForest
 , m
 , degree = 3
 , bins = 5)

alluvial_model_response(pred, dspace, imp, degree = 3, method = 'pdp')

End(Not run)
\end{verbatim}
alluvial_model_response_caret

create model response plot for caret models

Description

Wraps `alluvial_model_response` and `get_data_space` into one call for caret models.

Usage

```r
alluvial_model_response_caret(
  train,
  data_input,
  degree = 4,
  bins = 5,
  bin_labels = c("LL", "ML", "M", "MH", "HH"),
  col_vector_flow = c("#FF0065", "#009850", "#A56F2B", "#005EAA", "#710500", "#7B5380", "#9DD1D1"),
  method = "median",
  parallel = FALSE,
  params_bin_numeric_pred = list(bins = 5),
  pred_train = NULL,
  stratum_label_size = 3.5,
  force = F,
  resp_var = NULL,
  ...
)
```

Arguments

- `train`: caret train object
- `data_input`: dataframe, input data
- `degree`: integer, number of top important variables to select. For plotting more than 4 will result in too many flows and the alluvial plot will not be very readable, Default: 4
- `bins`: integer, number of bins for numeric variables, increasing this number might result in too many flows, Default: 5
- `bin_labels`: labels for the bins from low to high, Default: c("LL", "ML", "M", "MH", "HH")
- `col_vector_flow`, character vector, defines flow colours, Default: c("#FF0065","#009850","#A56F2B","#005EAA","#710500","#7B5380")
- `method`, character vector, one of c('median', 'pdp')
 - `median`: sets variables that are not displayed to median mode, use with regular predictions
pdp partial dependency plot method, for each observation in the training data
the displayed variables are set to the indicated values. The predict function
is called for each modified observation and the result is averaged.

Default: ‘median’

parallel logical, turn on parallel processing for pdp method. Default: FALSE

params_bin_numeric_pred
list, additional parameters passed to manip_bin_numerics which is applied to
the pred parameter. Default: list(bins = 5, center = T, transform = T, scale = T)

pred_train numeric vector, base the automated binning of the pred vector on the distribution
of the training predictions. This is useful if marginal histograms are added to the
plot later. Default = NULL

stratum_label_size numeric, Default: 3.5

force logical, force plotting of over 1500 flows, Default: FALSE

resp_var character, sometimes target variable cannot be inferred and needs to be passed.
Default NULL

... additional parameters passed to alluvial_wide

Details

this model visualisation approach follows the "visualising the model in the dataspace" principle as
described in Wickham H, Cook D, Hofmann H (2015) Visualizing statistical models: Removing the
blindfold. Statistical Analysis and Data Mining 8(4) <doi:10.1002/sam.11271>

Value

ggplot2 object

Parallel Processing

We are using ‘furrr’ and the ‘future’ package to paralelize some of the computational steps for
calculating the predictions. It is up to the user to register a compatible backend (see plan).

See Also

alluvial_wide, get_data_space, varImp, extractPrediction, get_data_space, get_pdp_predictions

Examples

```r
if(check_pkg_installed("caret", raise_error = FALSE)) {
  df = mtcars2[, ! names(mtcars2) %in% 'ids' ]

  train = caret::train( disp ~ .,
    df,
    method = 'rf',
    trControl = caret::trainControl( method = 'none' ),
    importance = TRUE )
```
alluvial_model_response_parsnip

create model response plot for parsnip models

Description

Wraps `alluvial_model_response` and `get_data_space` into one call for parsnip models.

Usage

```r
alluvial_model_response_parsnip(
  m,
  data_input,
  degree = 4,
  bins = 5,
  bin_labels = c("LL", "ML", "M", "MH", "HH"),
  col_vector_flow = c("#FF0065", "#009850", "#A56F2B", "#005EAA", "#710500", "#7B5380", "#9DD1D1"),
  method = "median",
  parallel = FALSE,
  params_bin_numeric_pred = list(bins = 5),
  pred_train = NULL,
  stratum_label_size = 3.5,
  force = F,
  resp_var = NULL,
  .f_imp = vip::vi_model,
  ...
)
```

Arguments

- `m` parsnip model or trained workflow
- `data_input` dataframe, input data
- `degree` integer, number of top important variables to select. For plotting more than 4 will result in too many flows and the alluvial plot will not be very readable. Default: 4
alluvial_model_response_parsnip

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bins</td>
<td>integer, number of bins for numeric variables, increasing this number might result in too many flows, Default: 5</td>
</tr>
<tr>
<td>bin_labels</td>
<td>labels for the bins from low to high, Default: c("LL", "ML", "M", "MH", "HH")</td>
</tr>
<tr>
<td>col_vector_flow</td>
<td>character vector, defines flow colours, Default: c('#FF0065', '#009850', '#A56F2B', '#005EAA', '#710500')</td>
</tr>
<tr>
<td>method</td>
<td>character vector, one of c("median", 'pdp')</td>
</tr>
<tr>
<td>parallel</td>
<td>logical, turn on parallel processing for pdp method. Default: FALSE</td>
</tr>
<tr>
<td>params_bin_numeric_pred</td>
<td>list, additional parameters passed to <code>manip_bin_numerics</code> which is applied to the pred parameter. Default: list(bins = 5, center = T, transform = T, scale = T)</td>
</tr>
<tr>
<td>pred_train</td>
<td>numeric vector, base the automated binning of the pred vector on the distribution of the training predictions. This is useful if marginal histograms are added to the plot later. Default = NULL</td>
</tr>
<tr>
<td>stratum_label_size</td>
<td>numeric, Default: 3.5</td>
</tr>
<tr>
<td>force</td>
<td>logical, force plotting of over 1500 flows, Default: FALSE</td>
</tr>
<tr>
<td>resp_var</td>
<td>character, sometimes target variable cannot be inferred and needs to be passed. Default NULL</td>
</tr>
<tr>
<td>.f_imp</td>
<td>vip function that calculates feature importance, Default: <code>vip::vi_model</code></td>
</tr>
<tr>
<td>...</td>
<td>additional parameters passed to <code>alluvial_wide</code></td>
</tr>
</tbody>
</table>

Details

This model visualisation approach follows the "visualising the model in the dataspace" principle as described in Wickham H, Cook D, Hofmann H (2015) Visualizing statistical models: Removing the blindfold. Statistical Analysis and Data Mining 8(4) <doi:10.1002/sam.11271>

Value

`ggplot2` object

Parallel Processing

We are using ‘furrr’ and the ‘future’ package to parallelize some of the computational steps for calculating the predictions. It is up to the user to register a compatible backend (see `plan`).

See Also

`alluvial_wide`, `get_data_space`, `varImp`, `extractPrediction`, `get_data_space`, `get_pdp_predictions`
Examples

```r
if(check_pkg_installed("parsnip", raise_error = FALSE) &
   check_pkg_installed("vip", raise_error = FALSE)) {
  df = mtcars2[, !names(mtcars2) %in% 'ids']

  m = parsnip::rand_forest(mode = "regression") %>%
      parsnip::set_engine("randomForest") %>%
      parsnip::fit(disp ~ ., data = df)

  alluvial_model_response_parsnip(m, df, degree = 3)
}
```

```r
## Not run:
# workflow ---------------------------------

m <- parsnip::rand_forest(mode = "regression") %>%
   parsnip::set_engine("randomForest")

rec_prep = recipes::recipe(disp ~ ., df) %>%
   recipes::prep()

wf <- workflows::workflow() %>%
   workflows::add_model(m) %>%
   workflows::add_recipe(rec_prep) %>%
   parsnip::fit(df)

alluvial_model_response_parsnip(wf, df, degree = 3)
```

```r
# partial dependence plotting method -----
future::plan("multisession")
alluvial_model_response_parsnip(m, df, degree = 3, method = 'pdp', parallel = TRUE)
```

```
## End(Not run)
```

alluvial_wide

alluvial wide

alluvial plot of data in wide format

Description

Plots a dataframe as an alluvial plot. All numerical variables are scaled, centered and YeoJohnson transformed before binning. Plots all variables in the sequence as they appear in the dataframe until maximum number of values is reached.

Usage

```r
alluvial_wide(
data,
id = NULL,
max_variables = 20,
bins = 5,
```
bin_labels = c("LL", "ML", "M", "MH", "HH"),
NA_label = "NA",
order_levels = NULL,
fill_by = "first_variable",
col_vector_flow = palette_qualitative() %>% palette_filter(greys = F),
col_vector_value = RColorBrewer::brewer.pal(9, "Greys")[c(4, 7, 5, 8, 6)],
colorful_fill_variable_stratum = T,
verbose = F,
stratum_labels = T,
stratum_label_type = "label",
stratum_label_size = 4.5,
stratum_width = 1/4,
auto_rotate_xlabs = T,
...)

Arguments

data a dataframe
id unquoted column name of id column or character vector with id column name
max_variables maximum number of variables, Default: 20
bins number of bins for numerical variables, Default: 5
bin_labels labels for the bins from low to high, Default: c("LL", "ML", "M", "MH", "HH")
NA_label character vector, define label for missing data, Default: 'NA'
order_levels character vector denoting levels to be reordered from low to high
fill_by one_of(c('first_variable', 'last_variable', 'all_flows', 'values')), Default: 'first_variable'
col_vector_flow HEX colors for flows, Default: palette_filter(greys = F)
col_vector_value Hex colors for y levels/values, Default: RColorBrewer::brewer.pal(9, "Greys")[c(3, 6, 4, 7, 5)]
colorful_fill_variable_stratum logical, use flow colors to colorize fill variable stratum, Default: TRUE
verbose logical, print plot summary, Default: F
stratum_labels logical, Default: TRUE
stratum_label_type character, Default: "label"
stratum_label_size numeric, Default: 4.5
stratum_width double, Default: 1/4
auto_rotate_xlabs logical, Default: TRUE
... additional arguments passed to manip_bin_numerics
Details
Under the hood this function converts the wide format into long format. ggalluvial also offers a way to make alluvial plots directly from wide format tables but it does not allow individual colouring of the stratum segments. The tradeoff is that we can only order levels as a whole and not individually by variable. Thus if some variables have levels with the same name the order will be the same. If we want to change level order independently we have to assign unique level names first.

Value
ggplot2 object

See Also
alluvial_wide, geom_flow, geom_stratum, manip_bin_numerics

Examples
```r
## Not run:
alluvial_wide( data = mtcars2, id = ids
, max_variables = 3
, fill_by = 'first_variable' )#
# more coloring variants----------------------
alluvial_wide( data = mtcars2, id = ids
, max_variables = 5
, fill_by = 'last_variable' )

alluvial_wide( data = mtcars2, id = ids
, max_variables = 5
, fill_by = 'all_flows' )

alluvial_wide( data = mtcars2, id = ids
, max_variables = 5
, fill_by = 'first_variable' )

# manually order variable values and colour by stratum value
alluvial_wide( data = mtcars2, id = ids
, max_variables = 5
, fill_by = 'values'
, order_levels = c('4', '8', '6') )

## End(Not run)
```
get_data_space

Usage

check_pkg_installed(pkg, raise_error = TRUE)

Arguments

pkg character, package name
raise_error logical

Value

logical

Examples

check_pkg_installed("easyalluvial")

dataframe, training data
dataframe, with not more than two columns one of them numeric containing importance measures and one character or factor column containing corresponding variable names as found in training data.
integer, number of top important variables to select. For plotting more than 4 will result in too many flows and the alluvial plot will not be very readable, Default: 4
integer, number of bins for numeric variables, and maximum number of levels for factor variables, increasing this number might result in too many flows, Default: 5
integer, maximum number of levels per factor variable, Default: 10

describes a dataspace based on the modeling dataframe and the importance of the explanatory variables. It only considers the most important variables as defined by the degree parameter. It selects a number (defined by bins) of sensible single values spread over the range of the numeric variables and creates all possible value combinations among the most important variables. The values of the remaining variables are set to mode(factors) or median(numerics).

Usage

generate_data_space(df, imp, degree = 4, bins = 5, max_levels = 10)

Arguments

df
imp
degree
bins
max_levels

dataframe, training data
dataframe, with not more than two columns one of them numeric containing importance measures and one character or factor column containing corresponding variable names as found in training data.
integer, number of top important variables to select. For plotting more than 4 will result in too many flows and the alluvial plot will not be very readable, Default: 4
integer, number of bins for numeric variables, and maximum number of levels for factor variables, increasing this number might result in too many flows, Default: 5
integer, maximum number of levels per factor variable, Default: 10
get_pdp_predictions

Details

It selects the top most important variables based on the degree parameter and bins the numeric variables using `manip_bin_numerics`, while leaving categoric variables unchanged. The number of bins for each numeric variable is set to bins -2. Next the median is picked for each of the bins and the min and the max value is added for each numeric variable. So that we get (median(bin) X bins -2, max, min) for each numeric variable. Then all possible combinations between those values and the categoric factor levels are created. The total number of all possible combinations defines the range of the data space. The values of the remaining variables are set to mode(factors) or median(numerics).

This model visualisation approach follows the "visualising the model in the dataspace" principle as described in Wickham H, Cook D, Hofmann H (2015) Visualizing statistical models: Removing the blindfold. Statistical Analysis and Data Mining 8(4) <doi:10.1002/sam.11271>

Value

data frame

See Also

`alluvial_wide, manip_bin_numerics`

Examples

```r
df = mtcars2[, ! names(mtcars2) %in% 'ids']
m = randomForest::randomForest( disp ~ ., df)
imp = m$importance
dspace = get_data_space(df, imp)
```

Description

Alluvial plots are capable of displaying higher dimensional data on a plane, thus lend themselves to plot the response of a statistical model to changes in the input data across multiple dimensions. The practical limit here is 4 dimensions while conventional partial dependence plots are limited to 2 dimensions.

Briefly the 4 variables with the highest feature importance for a given model are selected and 5 values spread over the variable range are selected for each. Then a grid of all possible combinations is created. All none-plotted variables are set to the values found in the first row of the training data set. Using this artificial data space model predictions are being generated. This process is then repeated for each row in the training data set and the overall model response is averaged in the end. Each of the possible combinations is plotted as a flow which is coloured by the bin corresponding to the average model response generated by that particular combination.
get_pdp_predictions

Usage

get_pdp_predictions(
 df,
 imp,
 m,
 degree = 4,
 bins = 5,
 .f_predict = predict,
 parallel = FALSE
)

Arguments

df dataframe, training data
imp dataframe, with not more than two columns one of them numeric containing importance measures and one character or factor column containing corresponding variable names as found in training data.
m model object
degree integer, number of top important variables to select. For plotting more than 4 will result in two many flows and the alluvial plot will not be very readable, Default: 4
bins integer, number of bins for numeric variables, increasing this number might result in too many flows, Default: 5
.f_predict corresponding model predict() function. Needs to accept ‘m’ as the first parameter and use the ‘newdata’ parameter. Supply a wrapper for predict functions with x-y syntax. For parallel processing the predict method of object classes will not always get imported correctly to the worker environment. We can pass the correct predict method via this parameter for example randomForest:::predict.randomForest. Note that a lot of modeling packages do not export the predict method explicitly and it can only be found using :::.
parallel logical, turn on parallel processing. Default: FALSE

Details

For more on partial dependency plots see [https://christophm.github.io/interpretable-ml-book/pdp.html].

Value

vector, predictions

Parallel Processing

We are using ‘furrr’ and the ‘future’ package to parallelize some of the computational steps for calculating the predictions. It is up to the user to register a compatible backend (see plan).
get_pdp_predictions_seq

get predictions compatible with the partial dependence plotting
method, sequential variant that only works for numeric predictions.

Description
has been replaced by pdp_predictions which can be paralelized and also handles factor predictions.
It is still used to test results.

Usage
get_pdp_predictions_seq(df, imp, m, degree = 4, bins = 5, .f_predict = predict)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>df</td>
<td>dataframe, training data</td>
</tr>
<tr>
<td>imp</td>
<td>dataframe, with not more then two columns one of them numeric containing importance measures and one character or factor column containing corresponding variable names as found in training data.</td>
</tr>
<tr>
<td>m</td>
<td>model object</td>
</tr>
</tbody>
</table>
manip_bin_numerics

integer, number of top important variables to select. For plotting more than 4 will result in two many flows and the alluvial plot will not be very readable, Default: 4

bins

integer, number of bins for numeric variables, increasing this number might result in too many flows, Default: 5

.f_predict

corresponding model predict() function. Needs to accept ‘m’ as the first parameter and use the ‘newdata’ parameter. Supply a wrapper for predict functions with x-y syntax. For parallel processing the predict method of object classes will not always get imported correctly to the worker environment. We can pass the correct predict method via this parameter for example randomForest:::predict.randomForest. Note that a lot of modeling packages do not export the predict method explicitly and it can only be found using ::::.

See Also

* get_pdp_predictions

manip_bin_numerics

* bin numerical columns

Description

centers, scales and Yeo Johnson transforms numeric variables in a dataframe before binning into n bins of equal range. Outliers based on boxplot stats are capped (set to min or max of boxplot stats).

Usage

manip_bin_numerics(
 x,
 bins = 5,
 bin_labels = c("LL", "ML", "M", "MH", "HH"),
 center = T,
 scale = T,
 transform = T,
 round_numeric = T,
 digits = 2,
 NA_label = "NA"
)

Arguments

- **x**: dataframe with numeric variables, or numeric vector
- **bins**: number of bins for numerical variables, passed to cut as breaks parameter, Default: 5
- **bin_labels**: labels for the bins from low to high, Default: c("LL", "ML", "M", "MH", "HH"). Can also be one of c('mean', 'median', 'min_max', 'cuts'), the corresponding summary function will supply the labels.
manip_factor_2_numeric

converts factor to numeric preserving numeric levels and order in character levels.

Description

before converting we check whether the levels contain a number, if they do the number will be preserved.

Usage

manip_factor_2_numeric(vec)

Arguments

vec vector

Value

vector

See Also

str_detect
Examples

```r
fac_num = factor( c(1,3,8) )
fac_chr = factor( c('foo','bar') )
fac_chr_ordered = factor( c('a','b','c'), ordered = TRUE )

manip_factor_2_numeric( fac_num )
manip_factor_2_numeric( fac_chr )
manip_factor_2_numeric( fac_chr_ordered )
# does not work for decimal numbers
manip_factor_2_numeric(factor(c("A12", "B55", "10e4")))
manip_factor_2_numeric(factor(c("1.56", "4.56", "8.4")))
```

mtcars2

`mtcars` dataset with `cyl`, `vs`, `am`, `gear`, `carb` as factor variables and car model names as id

Description

mtcars dataset with `cyl`, `vs`, `am`, `gear`, `carb` as factor variables and car model names as id

Usage

mtcars2

Format

A data frame with 32 rows and 12 variables

- **mpg** Miles/(US) gallon
- **cyl** Number of cylinders
- **disp** Displacement (cu.in.)
- **hp** Gross horsepower
- **drat** Rear axle ratio
- **wt** Weight (1000 lbs)
- **qsec** 1/4 mile time
- **vs** Engine
- **am** Transmission
- **gear** Number of forward gears
- **carb** Number of carburetors
- **ids** Car model name

Source

datasets
palette_filter

color filters for any vector of hex color values

Description

Filters are based on RGB values.

Usage

```r
palette_filter(
    palette = palette_qualitative(),
    similar = F,
    greys = T,
    reds = T,
    greens = T,
    blues = T,
    dark = T,
    medium = T,
    bright = T,
    thresh_similar = 25
)
```

Arguments

- `palette`: any vector with hex color values, Default: `palette_qualitative()`
- `similar`, logical, allow similar colours, similar colours are detected using a threshold (thresh_similar), two colours are similar when each value for RGB is within threshold range of the corresponding RGB value of the second colour, Default: F
- `greys`, logical, allow grey colours, blue == green == blue, Default: T
- `reds`, logical, allow red colours, blue < 50 & green < 50 & red > 200, Default: T
- `greens`, logical, allow green colours, green > red & green > blue, Default: T
- `blues`, logical, allow blue colours, blue > green & green > red, Default: T
- `dark`, logical, allow colours of dark intensity, sum(red, green, blue) < 420, Default: T
- `medium`, logical, allow colours of medium intensity, between(sum(red, green, blue), 420, 600), Default: T
- `bright`, logical, allow colours of bright intensity, sum(red, green, blue) > 600, Default: T
- `thresh_similar`, int, threshold for defining similar colours, see similar, Default: 25

Value

vector with hex colors
palette_increase_length

Examples

```r
require(magrittr)

palette_qualitative() %>%
  palette_filter(thresh_similar = 0) %>%
  palette_plot_intensity()

## Not run:
# more examples---------------------------

palette_qualitative() %>%
  palette_filter(thresh_similar = 25) %>%
  palette_plot_intensity()

palette_qualitative() %>%
  palette_filter(thresh_similar = 0, blues = FALSE) %>%
  palette_plot_intensity()

## End(Not run)
```

palette_increase_length

increases length of palette by repeating colours

Description

works for any vector

Usage

```r
palette_increase_length(palette = palette_qualitative(), n = 100)
```

Arguments

- `palette`: any vector, Default: `palette_qualitative`
- `n`: int, length, Default: 100

Value

vector with increased length

Examples

```r
require(magrittr)

length(palette_qualitative())
```
palette_plot_intensity

plot colour intensity of palette

Description

sum of red green and blue values

Usage

`palette_plot_intensity(palette)`

Arguments

- `palette` any vector containing color hex values

Value

ggplot2 plot

See Also

`palette_plot_rgp`

Examples

```r
## Not run:
if(interactive()){
  palette_qualitative() %>%
  palette_increase_length(100) %>%
  length()
}

## End(Not run)
```
palette_plot_rgp

plot rgb values of palette

Description

grouped bar chart

Usage

palette_plot_rgp(palette)

Arguments

palette any vector containing color hex values

Value

ggplot2 plot

See Also

palette_plot_intensity

Examples

Not run:
if(interactive(){
 palette_qualitative() %>%
 palette_filter(thresh = 50) %>%
 palette_plot_rgp()
}

End(Not run)

palette_qualitative

compose palette from qualitative RColorBrewer palettes

Description

uses c('#FF0065', '#009850', '#A56F2B', '#005EAA', '#710500', '#7B5380', '#9DD1D1') and then adds all unique values found in all qualitative RColorBrewer palettes

Usage

palette_qualitative()
Value

vector with hex values

See Also

RColorBrewer

Examples

palette_qualitative()

plot_all_hists plot marginal histograms of alluvial plot

Description

will create gtable with density histograms and frequency plots of all variables of a given alluvial plot.

Usage

plot_all_hists(p, data_input, top = TRUE, keep_labels = FALSE, ...)

Arguments

- **p**: alluvial plot
- **data_input**: dataframe, input data that was used to create dataframe
- **top**: logical, position of histograms, if FALSE adds them at the bottom, Default: TRUE
- **keep_labels**: logical, keep title and caption, Default: FALSE
- **...**: additional arguments for specific alluvial plot types: pred_train can be used to pass training predictions for model response alluvials

Value

gtable

See Also

arrangeGrob

add_marginal_histograms
plot_condensation

Examples

Not run:
p = alluvial_wide(mtcars2, max_variables = 3)
plot_all_hists(p, mtcars2)

End(Not run)

plot_condensation

Plot dataframe condensation potential

Description

plotting the condensation potential is meant as a decision aid for which variables to include in an alluvial plot. All variables are transformed to categoric variables and then two variables are selected by which the dataframe will be grouped and summarized by. The pair that results in the greatest condensation of the original dataframe is selected. Then the next variable which offers the greatest condensation potential is chosen until all variables have been added. The condensation in percent is then plotted for each step along with the number of groups (flows) in the dataframe. By experience it is not advisable to have more than 1500 flows because then the alluvial plot will take a long time to render. If there is a particular variable of interest in the dataframe this variable can be chosen as a starting variable.

Usage

plot_condensation(df, first = NULL)

Arguments

df dataframe
first unquoted expression or string denoting the first variable to be picked for condensation, Default: NULL

Value

ggplot2 plot

See Also

quosure reexports RColorBrewer

Examples

plot_condensation(mtcars2)

plot_condensation(mtcars2, first = 'disp')
plot_hist

plot histogram of alluvial plot variable

Description

helper function used by add_marginal_histograms

Usage

plot_hist(var, p, data_input, ...)

Arguments

var character vector, variable name
p alluvial plot
data_input dataframe used to create alluvial plot...
additional arguments for specific alluvial plot types: pred_train can be used to pass training predictions for model response alluvials

Value

ggplot object

plot_imp

plot feature importance

Description

plot important features of model response alluvial as bars

Usage

plot_imp(p, data_input, truncate_at = 50, color = "darkgrey")

Arguments

p alluvial plot
data_input dataframe used to generate alluvial plot
truncate_at integer, limit number of features to that value, Default: 50
color character vector, Default: 'darkgrey'

Value

ggplot object
Examples

Not run:
```r
df = mtcars2[, !names(mtcars2) %in% 'ids']

train = caret::train( disp ~ . ,
    df ,
    method = 'rf' ,
    trControl = caret::trainControl( method = 'none' ) ,
    importance = TRUE )

pred_train = caret::predict.train(train, df)

p = alluvial_model_response_caret(train, degree = 3, pred_train = pred_train)

plot_imp(p, mtcars2)
```

End(Not run)

quarterly_flights
Quarterly mean arrival delay times for a set of 402 flights

Description

Created from nycflights13::flights

Usage

`quarterly_flights`

Format

A data frame with 1608 rows and 6 variables

- **tailnum**: a unique identifier created from tailnum, origin, destination and carrier
- **carrier**: carrier code
- **origin**: origin code
- **dest**: destination code
- **qu**: quarter
- **mean_arr_delay**: average delay on arrival as either on_time or late

Source

nycflights13::flights
quarterly_sunspots Quarterly mean relative sunspots number from 1749-1983

Description
Quarterly mean relative sunspots number from 1749-1983

Usage
quarterly_sunspots

Format
A data frame with 940 rows and 4 variables

year
qu quarter
spots total number of sunspots
mean_spots_per_year

Source

tidy_imp tidy up dataframe containing model feature importance

Description
returns dataframe with exactly two columns, vars and imp and aggregates dummy encoded variables. Helper function called by all functions that take an imp parameter. Can be called manually if formula for aggregating dummy encoded variables must be modified.

Usage
tidy_imp(imp, df, .f = max, resp_var = NULL)

Arguments
imp dataframe or matrix with feature importance information
df dataframe, modeling training data
.f window function, Default: max
resp_var character, prediction variable, can usually be inferred from imp and df. It does not work for all models and needs to be specified in those cases.
Value

dataframe

vars character column with feature names

imp numerical column, importance values

Examples

randomforest
df = mtcars2[, ! names(mtcars2) %in% 'ids']
m = randomForest::randomForest(disp ~ ., df)
imp = m$importance
tidy_imp(imp, df)

titanic
titanic data set'

Description
titanic data set'

Usage
titanic
df = mtcars2[, ! names(mtcars2) %in% 'ids']
m = randomForest::randomForest(disp ~ ., df)
imp = m$importance
tidy_imp(imp, df)

A data frame with 891 rows and 10 variables

Survived Survived
Pclass Pclass
Sex Sex
Age Age
SibSp SibSp
Parch Parch
Fare Fare
Cabin Cabin
Embarked Embarked
title title

Source
datasets
Index

* datasets
 * mtcars2, 23
 * quarterly_flights, 31
 * quarterly_sunspots, 32
 * titanic, 33

add_imp_plot, 2
add_marginal_histograms, 3, 28
alluvial_long, 5
alluvial_model_response, 7, 10, 12
alluvial_model_response_caret, 9, 10
alluvial_model_response_parsnip, 12
alluvial_wide, 6, 9, 11, 13, 14, 16, 18
arrangeGrob, 3, 4, 28

check_pkg_installed, 16

evaluatePrediction, 11, 13

generate_feature_importance, 11

generate_feature_importance_caret, 11

generate_feature_importanceparsnip, 12

generate_feature_importanceparsnip_caret, 12

geom_flow, 6, 16
geom_stratum, 6, 16
get_data_space, 8–13, 17
get_pdp_predictions, 8, 9, 11, 13, 18, 21
get_pdp_predictions_seq, 20

manip_bin_numerics, 6, 9, 11, 13, 15, 16, 18, 21
manip_factor_2_numeric, 22
mtcars2, 23

palette_filter, 24
palette_increase_length, 25
palette_plot_intensity, 26, 27
palette_plot_rgp, 26, 27
palette_qualitative, 27
plan, 11, 13, 19
plot_all_hists, 28
plot_condensation, 29
plot_hist, 30
plot_imp, 3, 30

quarterly_flights, 31
quarterly_sunspots, 32
quosure, 29
RCColorBrewer, 28, 29
reexports, 29
str_detect, 22
tidy_imp, 32
titanic, 33
varImp, 11, 13