Package ‘easyalluvial’

July 5, 2022

Title Generate Alluvial Plots with a Single Line of Code

Version 0.3.1

URL https://github.com/erblast/easyalluvial/

Description Alluvial plots are similar to sankey diagrams and visualise categorical data over multiple dimensions as flows. (Rosvall M, Bergstrom CT (2010) Mapping Change in Large Networks. PLoS ONE 5(1): e8694. <doi:10.1371/journal.pone.0008694>) Their graphical grammar however is a bit more complex then that of a regular x/y plots. The 'ggalluvial' package made a great job of translating that grammar into 'ggplot2' syntax and gives you many options to tweak the appearance of an alluvial plot, however there still remains a multi-layered complexity that makes it difficult to use 'ggalluvial' for explorative data analysis. 'easyalluvial' provides a simple interface to this package that allows you to produce a decent alluvial plot from any dataframe in either long or wide format from a single line of code while also handling continuous data. It is meant to allow a quick visualisation of entire dataframes with a focus on different colouring options that can make alluvial plots a great tool for data exploration.

License CC0

Encoding UTF-8

LazyData true

Depends R(>= 3.5)

Suggests testthat, covr, ISLR, nycflights13, vdiffr (>= 0.3.1), pkgdown, mlbench, earth, workflows, future, furrr, e1071, caret, parsnip, vip, rpart, glmnet, xgboost

RoxygenNote 7.2.0

Imports purrr, tidyr (>= 1.0.0), dplyr, forcats, ggalluvial (>= 0.9.1), ggplot2 (>= 3.2.0), ggridges, RColorBrewer, recipes (>= 0.1.5), rlang, stringr, magrittr, tibble, gridExtra, randomForest, progressr, progress

Language en-US

NeedsCompilation no

Author Bjoern Koneswarakantha [aut, cre]

(<https://orcid.org/0000-0003-4585-7799>)
add_imp_plot

Description

adds bar plot of important features to model response alluvial plot

Usage

add_imp_plot(grid, p = NULL, data_input, plot = T, ...)
add_marginal_histograms

Arguments

grid gtable or ggplot
p alluvial plot, optional if alluvial plot has already been passed as grid. Default: NULL
data_input dataframe used to generate alluvial plot
plot logical if plot should be drawn or not
... additional parameters passed to plot_imp

Value
gtable

See Also

arrangeGrob plot_imp

Examples

Not run:
df = mtcars[, !names(mtcars) %in% 'ids']

train = caret::train(disp ~ .
, df
, method = 'rf'
, trControl = caret::trainControl(method = 'none')
, importance = TRUE)

pred_train = caret::predict.train(train, df)

p = alluvial_model_response_caret(train, degree = 4, pred_train = pred_train)

p_grid = add_marginal_histograms(p, data_input = df)

p_grid = add_imp_plot(p_grid, p, data_input = df)

End(Not run)
Usage

```
add_marginal_histograms(
    p, 
    data_input, 
    top = TRUE, 
    keep_labels = FALSE, 
    plot = TRUE, 
    ...
)
```

Arguments

- `p` alluvial plot
- `data_input` dataframe, input data that was used to create dataframe
- `top` logical, position of histograms, if FALSE adds them at the bottom, Default: TRUE
- `keep_labels` logical, keep title and caption, Default: FALSE
- `plot` logical if plot should be drawn or not
- `...` additional arguments for model response alluvial plot concerning the response variable
 - `pred_train` display training prediction, not necessary if pred_train has already been passed to alluvial_model_response()
 - `scale` int, y-axis distance between the ridge plots, Default: 400
 - `resp_var` character vector, specify response variable in data_input, if not set response variable will try to be inferred, Default: NULL

Value

gtable

See Also

arrangeGrob

Examples

```r
## Not run:
p = alluvial_wide(mtcars2, max_variables = 3)
p_grid = add_marginal_histograms(p, mtcars2)

## End(Not run)
```
Description

Plots two variables of a dataframe on an alluvial plot. A third variable can be added either to the left or the right of the alluvial plot to provide coloring of the flows. All numerical variables are scaled, centered and YeoJohnson transformed before binning.

Usage

```r
alluvial_long(
  data,
  key,
  value,
  id,
  fill = NULL,
  fill_right = T,
  bins = 5,
  bin_labels = c("LL", "ML", "M", "MH", "HH"),
  NA_label = "NA",
  order_levels_value = NULL,
  order_levels_key = NULL,
  order_levels_fill = NULL,
  complete = TRUE,
  fill_by = "first_variable",
  col_vector_flow = palette_qualitative() %>% palette_filter(greys = F),
  col_vector_value = RColorBrewer::brewer.pal(9, "Greys")[c(3, 6, 4, 7, 5)],
  verbose = F,
  stratum_labels = T,
  stratum_label_size = 4.5,
  stratum_width = 1/4,
  auto_rotate_xlabs = T,
  ...
)
```

Arguments

data: a dataframe
key: unquoted column name or string of x axis variable
value: unquoted column name or string of y axis variable
id: unquoted column name or string of id column
fill: unquoted column name or string of fill variable which will be used to color flows, Default: NULL
fill_right: logical, TRUE fill variable is added to the right FALSE to the left, Default: T
alluvial_long

- **bins**: number of bins for automatic binning of numerical variables, Default: 5
- **bin_labels**: labels for bins, Default: c("LL", "ML", "M", "MH", "HH")
- **NA_label**: character vector define label for missing data
- **order_levels_value**: character vector denoting order of y levels from low to high, does not have to be complete can also just be used to bring levels to the front, Default: NULL
- **order_levels_key**: character vector denoting order of x levels from low to high, does not have to be complete can also just be used to bring levels to the front, Default: NULL
- **order_levels_fill**: character vector denoting order of color fill variable levels from low to high, does not have to be complete can also just be used to bring levels to the front, Default: NULL
- **complete**: logical, insert implicitly missing observations, Default: TRUE
- **fill_by**: one_of(c('first_variable', 'last_variable', 'all_flows', 'values')), Default: 'first_variable'
- **col_vector_flow**: HEX color values for flows, Default: palette_filter(greys = F)
- **col_vector_value**: HEX color values for y levels/values, Default: RColorBrewer::brewer.pal(9, 'Greys')[c(3,6,4,7,5)]
- **verbose**: logical, print plot summary, Default: F
- **stratum_labels**: logical, Default: TRUE
- **stratum_label_size**: numeric, Default: 4.5
- **stratum_width**: double, Default: 1/4
- **auto_rotate_xlabs**: logical, Default: TRUE
- **...**: additional parameter passed to `manip_bin_numerics`

Value

ggplot2 object

See Also

`alluvial_wide.geom_flow`, `geom_stratum`, `manip_bin_numerics`

Examples

```r
## Not run:
data = quarterly_flights
alluvial_long( data, key = qu, value = mean_arr_delay, id = tailnum, fill_by = 'last_variable' )
```

more flow coloring variants ------------------------------------
alluvial_long(data, key = qu, value = mean_arr_delay, id = tailnum, fill_by = 'first_variable')
alluvial_long(data, key = qu, value = mean_arr_delay, id = tailnum, fill_by = 'all_flows')
alluvial_long(data, key = qu, value = mean_arr_delay, id = tailnum, fill_by = 'value')

color by additional variable carrier -----------------------------
alluvial_long(data, key = qu, value = mean_arr_delay, fill = carrier, id = tailnum)

use same color coding for flows and y levels -------------------
palette = c('green3', 'tomato')
alluvial_long(data, qu, mean_arr_delay, tailnum, fill_by = 'value',
 col_vector_flow = palette,
 col_vector_value = palette)

reorder levels --
alluvial_long(data, qu, mean_arr_delay, tailnum, fill_by = 'first_variable',
 order_levels_value = c('on_time', 'late'))
alluvial_long(data, qu, mean_arr_delay, tailnum, fill_by = 'first_variable',
 order_levels_key = c('Q4', 'Q3', 'Q2', 'Q1'))

require(dplyr)
require(magrittr)

order_by_carrier_size = data %>%
 group_by(carrier) %>%
 count() %>%
 arrange(desc(n)) %>%
 .[[carrier]]
alluvial_long(data, qu, mean_arr_delay, tailnum, carrier,
 order_levels_fill = order_by_carrier_size)

End(Not run)

alluvial_model_response

create model response plot

Description

Alluvial plots are capable of displaying higher dimensional data on a plane, thus lend themselves to plot the response of a statistical model to changes in the input data across multiple dimensions. The practical limit here is 4 dimensions. We need the data space (a sensible range of data calculated based on the importance of the explanatory variables of the model as created by `get_data_space` and the predictions returned by the model in response to the data space.
Usage

```r
alluvial_model_response(
  pred,
  dspace,
  imp,
  degree = 4,
  bin_labels = c("LL", "ML", "M", "MH", "HH"),
  col_vector_flow = c("#FF0065", "#009850", "#A56F2B", "#005EAA", "#710500", "#7B5380", "#9DD1D1"),
  method = "median",
  force = FALSE,
  params_bin_numeric_pred = list(bins = 5),
  pred_train = NULL,
  stratum_label_size = 3.5,
  ...
)
```

Arguments

- **pred** vector, predictions, if method = 'pdp' use `get_pdp_predictions` to calculate predictions
- **dspace** data frame, returned by `get_data_space`
- **imp** dataframe, with not more than two columns one of them numeric containing importance measures and one character or factor column containing corresponding variable names as found in training data.
- **degree** integer, number of top important variables to select. For plotting more than 4 will result in too many flows and the alluvial plot will not be very readable, Default: 4
- **bin_labels** labels for prediction bins from low to high, Default: c("LL", "ML", "M", "MH", "HH")
- **col_vector_flow**, character vector, defines flow colours, Default: c("#FF0065", "#009850", "#A56F2B", "#005EAA", "#710500")
- **method**, character vector, one of c('median', 'pdp')
 - **median** sets variables that are not displayed to median mode, use with regular predictions
 - **pdp** partial dependency plot method, for each observation in the training data the displayed variable as are set to the indicated values. The predict function is called for each modified observation and the result is averaged, calculate predictions using `get_pdp_predictions`. Default: 'median'
- **force** logical, force plotting of over 1500 flows, Default: FALSE
- **params_bin_numeric_pred** list, additional parameters passed to `manip_bin_numerics` which is applied to the pred parameter. Default: list(bins = 5, center = T, transform = T, scale = T)
alluvial_model_response

pred_train numeric vector, base the automated binning of the pred vector on the distribution of the training predictions. This is useful if marginal histograms are added to the plot later. Default = NULL.

stratum_label_size numeric, Default: 3.5

... additional parameters passed to alluvial_wide

Details

this model visualisation approach follows the "visualising the model in the dataspace" principle as described in Wickham H, Cook D, Hofmann H (2015) Visualizing statistical models: Removing the blindfold. Statistical Analysis and Data Mining 8(4) <doi:10.1002/sam.11271>

Value

ggplot2 object

See Also

alluvial_wide, get_data_space, alluvial_model_response_caret

Examples

df = mtcars2[, ! names(mtcars2) %in% 'ids']
m = randomForest::randomForest(disp ~ ., df)
imp = m$importance
dspace = get_data_space(df, imp, degree = 3)
pred = predict(m, newdata = dspace)
alluvial_model_response(pred, dspace, imp, degree = 3)

partial dependency plotting method
Not run:
pred = get_pdp_predictions(df, imp
 , .f_predict = randomForest::predict.randomForest
 , m
 , degree = 3
 , bins = 5)

alluvial_model_response(pred, dspace, imp, degree = 3, method = 'pdp')

End(Not run)
Description

Wraps `alluvial_model_response` and `get_data_space` into one call for caret models.

Usage

```r
alluvial_model_response_caret(
  train,  # caret train object
  data_input,  # dataframe, input data
  degree = 4,  # integer, number of top important variables to select. For plotting more than 4 will result in too many flows and the alluvial plot will not be very readable, Default: 4
  bins = 5,  # integer, number of bins for numeric variables, increasing this number might result in too many flows, Default: 5
  bin_labels = c("LL", "ML", "M", "MH", "HH"),  # labels for the bins from low to high, Default: c("LL", "ML", "M", "MH", "HH")
  method = "median",  # character vector, one of c("median", "pdp")
  parallel = FALSE,  # parallel
  params_bin_numeric_pred = list(bins = 5),  # list(bins = 5)
  pred_train = NULL,  # caret train object
  stratum_label_size = 3.5,  # integer, number of top important variables to select. For plotting more than 4 will result in too many flows and the alluvial plot will not be very readable, Default: 4
  force = F,  # character vector, one of c("median", "pdp")
  resp_var = NULL,  # character vector, one of c("median", "pdp")
  ...  # ...
)
```

Arguments

- `train`: caret train object
- `data_input`: dataframe, input data
- `degree`: integer, number of top important variables to select. For plotting more than 4 will result in too many flows and the alluvial plot will not be very readable, Default: 4
- `bins`: integer, number of bins for numeric variables, increasing this number might result in too many flows, Default: 5
- `bin_labels`: labels for the bins from low to high, Default: c("LL", "ML", "M", "MH", "HH")
- `col_vector_flow`: character vector, defines flow colours, Default: c("#FF0065","#009850","#A56F2B","#005EAA","#710500","#7B5380","#9DD1D1")
- `method`: character vector, one of c("median", "pdp")
pdp partial dependency plot method, for each observation in the training data
the displayed variables are set to the indicated values. The predict function
is called for each modified observation and the result is averaged
. Default: 'median'

parallel logical, turn on parallel processing for pdp method. Default: FALSE

params_bin_numeric list, additional parameters passed to **manip_bin_numerics** which is applied to
the pred parameter. Default: list(bins = 5, center = T, transform = T, scale = T)

pred_train numeric vector, base the automated binning of the pred vector on the distribution
of the training predictions. This is useful if marginal histograms are added to the
plot later. Default = NULL

stratum_label_size numeric, Default: 3.5

force logical, force plotting of over 1500 flows, Default: FALSE

resp_var character, sometimes target variable cannot be inferred and needs to be passed.
Default NULL

... additional parameters passed to **alluvial_wide**

Details

this model visualisation approach follows the "visualising the model in the dataspace" principle as
described in Wickham H, Cook D, Hofmann H (2015) Visualizing statistical models: Removing the
blindfold. Statistical Analysis and Data Mining 8(4) <doi:10.1002/sam.11271>

Value

ggplot2 object

Parallel Processing

We are using ‘furrr’ and the ‘future’ package to paralelize some of the computational steps for
calculating the predictions. It is up to the user to register a compatible backend (see **plan**).

See Also

alluvial_wide, get_data_space, varImp, extractPrediction, get_data_space, get_pdp_predictions

Examples

```r
if(check_pkg_installed("caret", raise_error = FALSE)) {
  df = mtcars2[, ! names(mtcars2) %in% 'ids' ]

  train = caret::train( disp ~ .,
                        df,
                        method = 'rf',
                        trControl = caret::trainControl( method = 'none' ),
                        importance = TRUE )

  # Use the trained model to generate predictions
  predictions = predict(train, newdata = df)

  # Use alluvial_model_response_caret to visualize the model
  alluvial_model_response_caret(df, resp_var = 'disp',
                                 pdp = predictions, parallel = TRUE)
}
```
alluvial_model_response_parsnip

create model response plot for parsnip models

Description

Wraps alluvial_model_response and get_data_space into one call for parsnip models.

Usage

alluvial_model_response_parsnip(
 m,
 data_input,
 degree = 4,
 bins = 5,
 bin_labels = c("LL", "ML", "M", "MH", "HH"),
 col_vector_flow = c("#FF0065", "#009850", "#A56F2B", "#005EAA", "#710500", "#7B5380", "#9DD1D1"),
 method = "median",
 parallel = FALSE,
 params_bin_numeric_pred = list(bins = 5),
 pred_train = NULL,
 stratum_label_size = 3.5,
 force = F,
 resp_var = NULL,
 .f_imp = vip::vi_model,
 ...
)

Arguments

m parsnip model or trained workflow
data_input dataframe, input data
degree integer, number of top important variables to select. For plotting more than 4 will result in two many flows and the alluvial plot will not be very readable. Default: 4
alluvial_model_response_parsnip

bins integer, number of bins for numeric variables, increasing this number might result in too many flows, Default: 5

bin_labels labels for the bins from low to high, Default: c("LL", "ML", "M", "MH", "HH")
col_vector_flow, character vector, defines flow colours, Default: c('#FF0065', '#009850', '#A56F2B', '#005EAA', '#710500')
method, character vector, one of c('median', 'pdp')
 median sets variables that are not displayed to median mode, use with regular predictions
 pdp partial dependency plot method, for each observation in the training data the displayed variables are set to the indicated values. The predict function is called for each modified observation and the result is averaged
 . Default: 'median'
parallel logical, turn on parallel processing for pdp method. Default: FALSE

params_bin_numeric_pred list, additional parameters passed to manip_bin_numerics which is applied to the pred parameter. Default: list(bins = 5, center = T, transform = T, scale = T)
pred_train numeric vector, base the automated binning of the pred vector on the distribution of the training predictions. This is useful if marginal histograms are added to the plot later. Default = NULL
stratum_label_size numeric, Default: 3.5
force logical, force plotting of over 1500 flows, Default: FALSE
resp_var character, sometimes target variable cannot be inferred and needs to be passed. Default NULL
.f_imp vip function that calculates feature importance, Default: vip::vi_model
... additional parameters passed to alluvial_wide

Details
this model visualisation approach follows the "visualising the model in the dataspace" principle as described in Wickham H, Cook D, Hofmann H (2015) Visualizing statistical models: Removing the blindfold. Statistical Analysis and Data Mining 8(4) <doi:10.1002/sam.11271>

Value
ggplot2 object

Parallel Processing
We are using 'furrr' and the 'future' package to parallelize some of the computational steps for calculating the predictions. It is up to the user to register a compatible backend (see plan).

See Also
alluvial_wide, get_data_space, varImp, extractPrediction, get_data_space, get_pdp_predictions
Examples

```r
if(check_pkg_installed("parsnip", raise_error = FALSE)) {
  df = mtcars2[, ! names(mtcars2) %in% 'ids']

  m = parsnip::rand_forest(mode = "regression") %>%
    parsnip::set_engine("randomForest") %>%
    parsnip::fit(disp ~ ., data = df)

  alluvial_model_response_parsnip(m, df, degree = 3)
}
## Not run:
# workflow ---------------------------------
  m <- parsnip::rand_forest(mode = "regression") %>%
    parsnip::set_engine("randomForest")

  rec_prep = recipes::recipe(disp ~ ., df) %>%
    recipes::prep()

  wf <- workflows::workflow() %>%
    workflows::add_model(m) %>%
    workflows::add_recipe(rec_prep) %>%
    parsnip::fit(df)

  alluvial_model_response_parsnip(wf, df, degree = 3)

  # partial dependence plotting method -----
  future::plan("multisession")
  alluvial_model_response_parsnip(m, df, degree = 3, method = 'pdp', parallel = TRUE)

  ## End(Not run)
```

alluvial_wide
alluvial plot of data in wide format

Description

plots a dataframe as an alluvial plot. All numerical variables are scaled, centered and YeoJohnson transformed before binning. Plots all variables in the sequence as they appear in the dataframe until maximum number of values is reached.

Usage

```r
alluvial_wide(
  data,
  id = NULL,
  max_variables = 20,
  bins = 5,
  bin_labels = c("LL", "ML", "M", "MH", "HH"),
)```
NA_label = "NA",
order_levels = NULL,
fill_by = "first_variable",
col_vector_flow = palette_qualitative() %>% palette_filter(greys = F),
col_vector_value = RColorBrewer::brewer.pal(9, "Greys")[c(4, 7, 5, 8, 6)],
colorful_fill_variable_stratum = T,
verbose = F,
stratum_labels = T,
stratum_label_size = 4.5,
stratum_width = 1/4,
auto_rotate_xlabs = T,
...)

Arguments

data a dataframe
id unquoted column name of id column or character vector with id column name
max_variables maximum number of variables, Default: 20
bins number of bins for numerical variables, Default: 5
bin_labels labels for the bins from low to high, Default: c("LL", "ML", "M", "MH", "HH")
NA_label character vector, define label for missing data, Default: 'NA'
order_levels character vector denoting levels to be reordered from low to high
fill_by one_of(c('first_variable', 'last_variable', 'all_flows', 'values')), Default: 'first_variable'
col_vector_flow HEX colors for flows, Default: palette_filter( greys = F)
col_vector_value Hex colors for y levels/values, Default: RColorBrewer::brewer.pal(9, "Greys")[c(3, 6, 4, 7, 5)]
colorful_fill_variable_stratum logical, use flow colors to colorize fill variable stratum, Default: TRUE
verbose logical, print plot summary, Default: F
stratum_labels logical, Default: TRUE
stratum_label_size numeric, Default: 4.5
stratum_width double, Default: 1/4
auto_rotate_xlabs logical, Default: TRUE
...

Details

Under the hood this function converts the wide format into long format. ggalluvial also offers a way
to make alluvial plots directly from wide format tables but it does not allow individual colouring of
the stratum segments. The tradeoff is that we can only order levels as a whole and not individually
by variable. Thus if some variables have levels with the same name the order will be the same. If
we want to change level order independently we have to assign unique level names first.
check_pkg_installed

check if package is installed

Description
check if package is installed

Usage
check_pkg_installed(pkg, raise_error = TRUE)

Arguments
pkg character, package name
raise_error logical

Value
ggplot2 object

See Also
alluvial_wide, geom_flow, geom_stratum, manip_bin_numerics

Examples
## Not run:
alluvial_wide( data = mtcars2, id = ids
  , max_variables = 3
  , fill_by = 'first_variable' )#'
  # more coloring variants----------------------
  alluvial_wide( data = mtcars2, id = ids
    , max_variables = 5
    , fill_by = 'last_variable' )
  alluvial_wide( data = mtcars2, id = ids
    , max_variables = 5
    , fill_by = 'all_flows' )
  alluvial_wide( data = mtcars2, id = ids
    , max_variables = 5
    , fill_by = 'first_variable' )
  # manually order variable values and colour by stratum value
  alluvial_wide( data = mtcars2, id = ids
    , max_variables = 5
    , fill_by = 'values'
    , order_levels = c('4', '8', '6') )

## End(Not run)
Value

logical

Examples

check_pkg_installed("easyalluvial")

description

calculates a dataspace based on the modeling dataframe and the importance of the explanatory variables. It only considers the most important variables as defined by the degree parameter. It selects a number (defined by bins) of sensible single values spread over the range of the numeric variables and creates all possible value combinations among the most important variables. The values of the remaining variables are set to mode(factors) or median(numerics).

Usage

get_data_space(df, imp, degree = 4, bins = 5, max_levels = 10)

Arguments

df

dataframe, training data

imp

dataframe, with not more then two columns one of them numeric containing importance measures and one character or factor column containing corresponding variable names as found in training data.

degree

integer, number of top important variables to select. For plotting more than 4 will result in too many flows and the alluvial plot will not be very readable, Default: 4

bins

integer, number of bins for numeric variables, and maximum number of levels for factor variables, increasing this number might result in too many flows, Default: 5

max_levels

integer, maximum number of levels per factor variable, Default: 10

Details

It selects a the top most important variables based on the degree parameter and bins the numeric variables using manip_bin_numerics, while leaving categoric variables unchanged. The number of bins for each numeric variable is set to bins -2. Next the median is picked for each of the bins and the min and the max value is added for each numeric variable So that we get median(bin) X bins -2, max, min for each numeric variable. Then all possible combinations between those values and the categoric factor levels are created. The total number of all possible combinations defines the range of the data space. The values of the remaining variables are set to mode(factors) or median(numerics).
this model visualisation approach follows the "visualising the model in the dataspace" principle as described in Wickham H, Cook D, Hofmann H (2015) Visualizing statistical models: Removing the blindfold. Statistical Analysis and Data Mining 8(4) <doi:10.1002/sam.11271>

Value
data frame

See Also
alluvial_wide, manip_bin_numerics

Examples

```r
df = mtcars[, ! names(mtcars) %in% 'ids']
m = randomForest::randomForest(disp ~ ., df)
imp = m$importance
dspace = get_data_space(df, imp)
```

Description

Alluvial plots are capable of displaying higher dimensional data on a plane, thus lend themselves to plot the response of a statistical model to changes in the input data across multiple dimensions. The practical limit here is 4 dimensions while conventional partial dependence plots are limited to 2 dimensions.

Briefly the 4 variables with the highest feature importance for a given model are selected and 5 values spread over the variable range are selected for each. Then a grid of all possible combinations is created. All none-plotted variables are set to the values found in the first row of the training data set. Using this artificial data space model predictions are being generated. This process is then repeated for each row in the training data set and the overall model response is averaged in the end. Each of the possible combinations is plotted as a flow which is coloured by the bin corresponding to the average model response generated by that particular combination.

Usage

```r
get_pdp_predictions(
 df,
 imp,
 m,
 degree = 4,
 bins = 5,
 .f_predict = predict,
 parallel = FALSE
)
```
get_pdp_predictions

Arguments

df  dataframe, training data
imp data frame, with not more than two columns one of them numeric containing
importance measures and one character or factor column containing corresponding
variable names as found in training data.
m  model object
degree integer, number of top important variables to select. For plotting more than 4
will result in too many flows and the alluvial plot will not be very readable,
Default: 4
bins integer, number of bins for numeric variables, increasing this number might
result in too many flows, Default: 5
.f_predict corresponding model predict() function. Needs to accept ‘m’ as the first pa-
rameter and use the ‘newdata’ parameter. Supply a wrapper for predict func-
tions with x-y syntax. For parallel processing the predict method of object
classes will not always get imported correctly to the worker environment. We
can pass the correct predict method via this parameter for example randomFor-
est::predict.randomForest. Note that a lot of modeling packages do not export
the predict method explicitly and it can only be found using ::::.
parallel logical, turn on parallel processing. Default: FALSE

Details

For more on partial dependency plots see [https://christophm.github.io/interpretable-ml-book/pdp.html].

Value

vector, predictions

Parallel Processing

We are using ‘furrr’ and the ‘future’ package to paralelize some of the computational steps for
calculating the predictions. It is up to the user to register a compatible backend (see plan).

Examples

df = mtcars2[, !names(mtcars2) %in% 'ids']
m = randomForest::randomForest( disp ~ ., df)
imp = m$importance

pred = get_pdp_predictions(df, imp
  , m
  , degree = 3
  , bins = 5)

# parallel processing ---------------------------
## Not run:
future::plan("multisession")
get_pdp_predictions_seq

get predictions compatible with the partial dependence plotting method, sequential variant that only works for numeric predictions.

Description

has been replaced by pdp_predictions which can be paralelized and also handles factor predictions. It is still used to test results.

Usage

get_pdp_predictions_seq(df, imp, m, degree = 4, bins = 5, .f_predict = predict)

Arguments

df dataframe, training data
imp dataframe, with not more then two columns one of them numeric containing importance measures and one character or factor column containing corresponding variable names as found in training data.
m model object
degree integer, number of top important variables to select. For plotting more than 4 will result in too many flows and the alluvial plot will not be very readable, Default: 4
bins integer, number of bins for numeric variables, increasing this number might result in too many flows, Default: 5
.f_predict corresponding model predict() function. Needs to accept 'm' as the first parameter and use the 'newdata' parameter. Supply a wrapper for predict functions with x-y syntax. For parallel processing the predict method of object classes will not always get imported correctly to the worker environment. We can pass the correct predict method via this parameter for example randomForest:::predict.randomForest. Note that a lot of modeling packages do not export the predict method explicitly and it can only be found using :::.

# note that we have to pass the predict method via .f_predict otherwise
# it will not be available in the worker's environment.

pred = get_pdp_predictions_seq(df, imp
, m
, degree = 3
, bins = 5,
, parallel = TRUE
, .f_predict = randomForest:::predict.randomForest)

## End(Not run)
Description

centers, scales and Yeo Johnson transforms numeric variables in a dataframe before binning into n bins of equal range. Outliers based on boxplot stats are capped (set to min or max of boxplot stats).

Usage

```r
manip_bin_numerics(
 x,
 bins = 5,
 bin_labels = c("LL", "ML", "M", "MH", "HH"),
 center = T,
 scale = T,
 transform = T,
 round_numeric = T,
 digits = 2,
 NA_label = "NA"
)
```

Arguments

- `x` dataframe with numeric variables, or numeric vector
- `bins` number of bins for numerical variables, passed to `cut` as breaks parameter, Default: 5
- `bin_labels` labels for the bins from low to high, Default: c("LL", "ML", "M", "MH", "HH"). Can also be one of c('mean', 'median', 'min_max', 'cuts'), the corresponding summary function will supply the labels.
- `center` logical, Default: T
- `scale` logical, Default: T
- `transform` logical, apply Yeo Johnson Transformation, Default: T
- `round_numeric` logical, rounds numeric results if `bin_labels` is supplied with a supported summary function name.
- `digits` integer, number of digits to round to
- `NA_label` character vector, define label for missing data, Default: 'NA'

Value

dataframe
**Examples**

```r
summary(mtcars2)
summary(manip_bin_numerics(mtcars2))
summary(manip_bin_numerics(mtcars2, bin_labels = 'mean'))
summary(manip_bin_numerics(mtcars2, bin_labels = 'cuts'
 , scale = FALSE, center = FALSE, transform = FALSE))
```

---

**manip_factor_2_numeric**

converts factor to numeric preserving numeric levels and order in character levels.

---

**Description**

before converting we check whether the levels contain a number, if they do the number will be preserved.

**Usage**

```r
manip_factor_2_numeric(vec)
```

**Arguments**

- `vec` vector

**Value**

vector

**See Also**

`str_detect`

**Examples**

```r
fac_num = factor(c(1,3,8))
fac_chr = factor(c('foo','bar'))
fac_chr_ordered = factor(c('a','b','c'), ordered = TRUE)

manip_factor_2_numeric(fac_num)
manip_factor_2_numeric(fac_chr)
manip_factor_2_numeric(fac_chr_ordered)
does not work for decimal numbers
manip_factor_2_numeric(factor(c("A12", "B55", "10e4")))
manip_factor_2_numeric(factor(c("1.56", "4.56", "8.4")))
```
mtcars2

mtcars2

mtcars dataset with cyl, vs, am, gear, carb as factor variables and car model names as id

Description

mtcars dataset with cyl, vs, am, gear, carb as factor variables and car model names as id

Usage

mtcars2

Format

A data frame with 32 rows and 12 variables

mpg Miles/(US) gallon
cyl Number of cylinders
disp Displacement (cu.in.)
hp Gross horsepower
drat Rear axle ratio
wt Weight (1000 lbs)
qsec 1/4 mile time
vs Engine
am Transmission
gear Number of forward gears
carb Number of carburetors
ids car model name

Source

datasets
description

filters are based on rgb values

usage

```r
palette_filter(
 palette = palette_qualitative(),
 similar = F,
 greys = T,
 reds = T,
 greens = T,
 blues = T,
 dark = T,
 medium = T,
 bright = T,
 thresh_similar = 25
)
```

arguments

- **palette**: any vector with hex color values, Default: `palette_qualitative()`
- **similar**, logical, allow similar colours, similar colours are detected using a threshold (thresh_similar), two colours are similar when each value for RGB is within threshold range of the corresponding RGB value of the second colour, Default: F
- **greys**, logical, allow grey colours, blue == green == blue , Default: T
- **reds**, logical, allow red colours, blue < 50 & green < 50 & red > 200 , Default: T
- **greens**, logical, allow green colours, green > red & green > blue, Default: T
- **blues**, logical, allow blue colours, blue > green & green > red, Default: T
- **dark**, logical, allow colours of dark intensity, sum( red, green, blue) < 420 , Default: T
- **medium**, logical, allow colours of medium intensity, between( sum( red, green, blue), 420, 600) , Default: T
- **bright**, logical, allow colours of bright intensity, sum( red, green, blue) > 600, Default: T
- **thresh_similar**, int, threshold for defining similar colours, see similar, Default: 25

value

vector with hex colors
Examples

require(magrittr)

palette_qualitative() %>%
  palette_filter(thresh_similar = 0) %>%
  palette_plot_intensity()

## Not run:
# more examples---------------------------

palette_qualitative() %>%
  palette_filter(thresh_similar = 25) %>%
  palette_plot_intensity()

palette_qualitative() %>%
  palette_filter(thresh_similar = 0, blues = FALSE) %>%
  palette_plot_intensity()

## End(Not run)

palette_increase_length

increases length of palette by repeating colours

Description

works for any vector

Usage

palette_increase_length(palette = palette_qualitative(), n = 100)

Arguments

palette any vector, Default: palette_qualitative()

n, int, length, Default: 100

Value

vector with increased length

Examples

require(magrittr)

length(palette_qualitative())
palette_plot_intensity

plot colour intensity of palette

Description

sum of red green and blue values

Usage

palette_plot_intensity(palette)

Arguments

palette any vector containing color hex values

Value

ggplot2 plot

See Also

palette_plot_rgp

Examples

## Not run:
if(interactive()){
  palette_qualitative() %>%
  palette_increase_length(100) %>%
  length()
  palette_plot_intensity()
}

## End(Not run)
palette_plot_rgp

plot rgb values of palette

Description

grouped bar chart

Usage

palette_plot_rgp(palette)

Arguments

palette any vector containing color hex values

Value

ggplot2 plot

See Also

palette_plot_intensity

Examples

## Not run:
if(interactive()){
  palette_qualitative() %>%
  palette_filter(thresh = 50) %>%
  palette_plot_rgp()
}

## End(Not run)

palette_qualitative

compose palette from qualitative RColorBrewer palettes

Description

uses c('#FF0065', '#009850', '#A56F2B', '#005EAA', '#710500', '#7B5380', '#9DD1D1') and
then adds all unique values found in all qualitative RColorBrewer palettes

Usage

palette_qualitative()
plot_all_hists

Value

vector with hex values

See Also

RColorBrewer

Examples

palette_qualitative()

plot_all_hists(p, data_input, top = TRUE, keep_labels = FALSE, ...)

Description

will create gtable with density histograms and frequency plots of all variables of a given alluvial plot.

Usage

plot_all_hists(p, data_input, top = TRUE, keep_labels = FALSE, ...)

Arguments

p alluvial plot
data_input dataframe, input data that was used to create dataframe
top logical, position of histograms, if FALSE adds them at the bottom, Default: TRUE
keep_labels logical, keep title and caption, Default: FALSE
... additional arguments for specific alluvial plot types: pred_train can be used to pass training predictions for model response alluvials

Value
gtable

See Also

arrangeGrob
add_marginal_histograms
Examples

```r
Not run:
p = alluvial_wide(mtcars2, max_variables = 3)
plot_all_hists(p, mtcars2)
End(Not run)
```

### plot_condensation

**Plot dataframe condensation potential**

The `plot_condensation` function is used to determine the most appropriate variables to include in an alluvial plot. It transforms all variables to categorical variables and then selects pairs of variables by which the dataframe will be grouped and summarized. The pair that results in the greatest condensation of the original dataframe is selected. The next variable which offers the greatest condensation potential is chosen until all variables have been added. The condensation in percent is then plotted for each step along with the number of groups (flows) in the dataframe. By experience, it is not advisable to have more than 1500 flows because the alluvial plot will take a long time to render. If there is a particular variable of interest in the dataframe, it can be chosen as a starting variable.

#### Usage

```r
plot_condensation(df, first = NULL)
```

#### Arguments

- `df`  
  dataframe

- `first`  
  unquoted expression or string denoting the first variable to be picked for condensation, Default: NULL

#### Value

- ggplot2 plot

#### See Also

- `quosure` reexports `RColorBrewer`

#### Examples

```r
plot_condensation(mtcars2)
plot_condensation(mtcars2, first = 'disp')
```
plot_hist

**plot histogram of alluvial plot variable**

**Description**

helper function used by add_marginal_histograms

**Usage**

```r
plot_hist(var, p, data_input, ...)
```

**Arguments**

- `var` character vector, variable name
- `p` alluvial plot
- `data_input` dataframe used to create alluvial plot
- `...` additional arguments for specific alluvial plot types: `pred_train` can be used to pass training predictions for model response alluvials

**Value**

ggplot object

---

plot_imp

**plot feature importance**

**Description**

plot important features of model response alluvial as bars

**Usage**

```r
plot_imp(p, data_input, truncate_at = 50, color = "darkgrey")
```

**Arguments**

- `p` alluvial plot
- `data_input` dataframe used to generate alluvial plot
- `truncate_at` integer, limit number of features to that value, Default: 50
- `color` character vector, Default: 'darkgrey'

**Value**

ggplot object
Examples

```r
Not run:
df = mtcars2[, !names(mtcars2) %in% 'ids']

train = caret::train(disp ~ .,
 df
 , method = 'rf'
 , trControl = caret::trainControl(method = 'none')
 , importance = TRUE)

pred_train = caret::predict.train(train, df)
p = alluvial_model_response_caret(train, degree = 3, pred_train = pred_train)
plot_imp(p, mtcars2)

End(Not run)
```

### quarterly_flights

Quarterly mean arrival delay times for a set of 402 flights

**Description**

Created from nycflights13::flights

**Usage**

```r
quarterly_flights
```

**Format**

A data frame with 1608 rows and 6 variables

- **tailnum** a unique identifier created from tailnum, origin, destination and carrier
- **carrier** carrier code
- **origin** origin code
- **dest** destination code
- **qu** quarter
- **mean_arr_delay** average delay on arrival as either on_time or late

**Source**

nycflights13::flights
quarterly_sunspots

Description
Quarterly mean relative sunspots number from 1749-1983

Usage
quarterly_sunspots

Format
A data frame with 940 rows and 4 variables

year
qu quarter
spots total number of sunspots
mean_spots_per_year

Source

tidy_imp
tidy up dataframe containing model feature importance

Description
returns dataframe with exactly two columns, vars and imp and aggregates dummy encoded variables. Helper function called by all functions that take an imp parameter. Can be called manually if formula for aggregating dummy encoded variables must be modified.

Usage
tidy_imp(imp, df, .f = max, resp_var = NULL)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>imp</td>
<td>dataframe or matrix with feature importance information</td>
</tr>
<tr>
<td>df</td>
<td>dataframe, modeling training data</td>
</tr>
<tr>
<td>.f</td>
<td>window function, Default: max</td>
</tr>
<tr>
<td>resp_var</td>
<td>character, prediction variable, can usually be inferred from imp and df. It does not work for all models and needs to be specified in those cases.</td>
</tr>
</tbody>
</table>
Value
dataframe

vars character column with feature names
imp numerical column, importance values

Examples

# randomforest
df = mtcars2[, ! names(mtcars2) %in% 'ids' ]
m = randomForest::randomForest( disp ~ ., df)
imp = m$importance
tidy_imp(imp, df)

titanic  
titanic data set'

Description

titanic data set'

Usage
titanic

Format

A data frame with 891 rows and 10 variables

Survived Survived
Pclass Pclass
Sex Sex
Age Age
SibSp SibSp
Parch Parch
Fare Fare
Cabin Cabin
Embarked Embarked
title title

Source

datasets
Index

* datasets
  mtcars2, 23
  quarterly_flights, 31
  quarterly_sunspots, 32
  titanic, 33

add_imp_plot, 2
add_marginal_histograms, 3, 28
alluvial_long, 5
alluvial_model_response, 7, 10, 12
alluvial_model_response_caret, 9, 10
alluvial_model_response_parsnip, 12
alluvial_wide, 6, 9, 11, 13, 14, 16, 18
arrangeGrob, 3, 4, 28

check_pkg_installed, 16

equalizePrediction, 11, 13

gem_flow, 6, 16
gem_stratum, 6, 16
get_data_space, 7–13, 17
get_pdp_predictions, 8, 11, 13, 18, 21
get_pdp_predictions_seq, 20

manip_bin_numerics, 6, 8, 11, 13, 15–18, 21
manip_factor_2_numeric, 22
mtcars2, 23

palette_filter, 24
palette_increase_length, 25
palette_plot_intensity, 26, 27
palette_plot_rgp, 26, 27
palette_qualitative, 27
plan, 11, 13, 19
plot_all_hists, 28
plot_condensation, 29
plot_hist, 30
plot_imp, 3, 30

quarterly_flights, 31
quarterly_sunspots, 32
quosure, 29
RColorBrewer, 28, 29
reexports, 29
str_detect, 22
tidy_imp, 32
titanic, 33
varImp, 11, 13