Package ‘ecochange’

March 2, 2023

Type Package

Title Integrating Ecosystem Remote Sensing Products to Derive EBV Indicators

Version 2.9.3.1

Date 2023-03-02

Maintainer Wilson Lara Henao <wilarhen@gmail.com>

Description Essential Biodiversity Variables (EBV) are state variables with dimensions on time, space, and biological organization that document biodiversity change. Freely available ecosystem remote sensing products (ERSP) are downloaded and integrated with data for national or regional domains to derive indicators for EBV in the class ecosystem structure (Pereira et al., 2013) <doi:10.1126/science.1229931>, including horizontal ecosystem extents, fragmentation, and information-theory indices. To process ERSP, users must provide a polygon or geographic administrative data map. Downloadable ERSP include Global Surface Water (Peckel et al., 2016) <doi:10.1038/nature20584>, Forest Change (Hansen et al., 2013) <doi:10.1126/science.1244693>, and Continuous Tree Cover data (Sexton et al., 2013) <doi:10.1080/17538947.2013.786146>.

License GPL-3

Depends R (>= 3.5.0), raster, sf, parallel, rasterVis

Imports sp, ggplot2, landscapemetrics, tibble, utils, httr, geodata, getPass, methods, rlang, lattice, rasterDT, stats

Suggests knitr, rmarkdown, curl, xml2, rvest, viridis

VignetteBuilder knitr

Encoding UTF-8

NeedsCompilation no

Author Wilson Lara Henao [aut, cre], Victor Gutierrez-Velez [aut], Ivan Gonzalez [ctb], Maria C. Londono [ctb]

Repository CRAN

Date/Publication 2023-03-02 20:10:02 UTC
R topics documented:

EBVstats ... 2
echanges ... 3
gaugeIndicator ... 5
getGADM ... 7
getrsp ... 8
getWRS ... 10
listGP ... 11
plot.EBVstats ... 12
plot.echanges ... 13
plot.Indicator ... 14
rsp2ebv ... 15
sampleIndicator ... 17
tabuleRaster ... 19

Index 20

EBVstats EBV Stats

Description

This function is a wrapper of cellStats used to compute statistics for spatial indicators in the EBV class ecosystem structure. To derive the spatial indicators see functions echanges and sampleIndicator.

Usage

EBVstats(ccp, stats,
...)

Arguments

ccp echanges, or RasterStack or NULL. If NULL then NULL is returned.
stats character. vector of stats defined in cellStats. If missing then six summary statistics, including 'mean', 'sd', 'min', 'max', are computed.
... Additional arguments in cellStats

Value

tibble.

Author(s)

Wilson Lara Henao <wilarhen@gmail.com> [aut, cre], Victor Gutierrez-Velez [aut], Ivan Gonzalez [ctb], Maria C. Londono [ctb]
Examples

```r
## RasterBrick of structural Essential Biodiversity Variables
## covering the extent of a location in the northern Amazon basin
## (Colombia) is imported:
path. <- system.file('amazon.grd', package = 'ecochange')
amazon <- brick(path.)

## Changes in layers of tree-canopy cover (TC) are computed by
## processing the 'amazon' brick:
def <- echanges(amazon, eco = 'TC',
                change = 'lossyear',
                eco_range = c(1, 80),
                get_unaffected = TRUE,
                binary_output = FALSE,
                mc.cores = 2)

## Function 'EBVstats' is used to compute ecosystem statistics
st_amazon <- EBVstats(def)

## A plot of the 'st_amazon' object
plot.EBVstats(st_amazon,
              cex = 1.5,
              xlab = 'Year',
              ylab = 'Canopy cover (%)',
              main = 'Ecosystem changes',
              sub = 'Northern Amazon',
              fill = 'Layer')
```

Description

This function produces ecosystem-change maps by masking cell values in a layer of ecosystem changes over a target set of ecosystem variables. The function also allows focusing the ecosystem-change analysis on a species distribution range.

Usage

```r
echanges(ps, eco = names(ps[[1:(nlayers(ps) -
1)]]), change = names(ps[[nlayers(ps)]]),
sp_dist, eco_range = c(1, 100), change_vals = 1:19,
sp_dist_range = c(1, 1), spread = TRUE,
get_unaffected = TRUE,
binary_output = FALSE,
noDataValue = 0,
mc.cores = round(detectCores() * 0.6, 0), ...)
```
Arguments

- **ps**
 RasterStack or SpatialPolygonsDataFrame. Stack of spatial data, including the target ecosystem variables, a layer of changes, and an alternative layer of a species distribution range. This argument can also be a polygon geometry used to integrate such spatial data via implementation of `rspb2eav`; see the ellipsis term below.

- **eco**
 character. Regular expression matching names of a subset of layers representing the target ecosystem variables. Default matches names of the first 1:(n-1) layers in `ps`.

- **change**
 character. Name of the layer of ecosystem changes. Default matches the name of the last layer in `ps`.

- **sp_dist**
 character. Name of an alternative layer representing a species distribution range. If missing then this argument is ignored.

- **eco_range**
 numeric. Range of values in the target ecosystem variable.

- **change_vals**
 numeric. Vector of values in the layer of ecosystem changes.

- **sp_dist_range**
 numeric. Range of values in the alternative layer of species distribution range. This argument is ignored if `sp_dist` is missing.

- **spread**
 logical. Spread representation of ecosystem changes. Users do not need to change this argument. It is used by other routines to fastening computation of ecosystem horizontal extents. If FALSE then the function mask cell values in the target ecosystem variables over the layer of ecosystem changes. Default TRUE.

- **get_unaffected**
 logical. Extract unaffected areas. If FALSE then pixel values of the ecological variable across the changed areas are extracted. Default TRUE.

- **binary_output**
 logical. Produce binary outputs (masks). If FALSE then ranges of values of the ecological variable are maintained. Default FALSE.

- **noDataValue**
 numeric. Output NoDataValue. Default 0.

- **mc.cores**
 numeric. The number of cores. Default uses around 60 percent of the CPU capacity.

- **...**
 If `ps` is a polygon then additional arguments in `rspb2eav`.

Value

Class `echanges`.

Author(s)

Wilson Lara Henao <wilarhen@gmail.com> [aut, cre], Victor Gutierrez-Velez [aut], Ivan Gonzalez [ctb], Maria C. Londono [ctb]

References

gaugeIndicator

Examples

```r
## Brick with structural Essential Biodiversity Variables covering the
## extent of a location in the northern Amazon basin (Colombia):
path. <- system.file('amazon.grd',package = 'ecochange')
amazon <- brick(path.)

## Changes in layers of tree-canopy cover (TC) in the 'amazon'
## brick are computed:
def <- echanges(amazon, eco = 'TC',
               change = 'lossyear',
               eco_range = c(1,80),
               get_unaffected = TRUE,
               binary_output = FALSE,
               mc.cores = 2)

## Method 'plot.echanges' allows comparing rasters using a common scale bar:
plot.echanges(def)
```

gaugeIndicator

Gauge Biodiversity Indicator

Description

This function processes ecosystem-change maps from echanges to calculate biodiversity indicators, including ecosystem extent, entropy, fractal dimension, among others. To sample the indicators across fixed-size grids see sampleIndicator.

Usage

```r
gaugeIndicator(ps, ...,
               metric = "area_ha",
               smp_lsm = list(),
               mc.cores = round(detectCores() *
                                0.6, 0))
```
gaugeIndicator

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ps</td>
<td>SpatialPolygonsDataFrame or RasterStack</td>
<td>Polygon geometry used to produce ecosystem-change maps via the implementation of <code>echanges</code> or the stack of ecosystem-change maps.</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td>If <code>ps</code> is a polygon then additional arguments in <code>echanges</code> or <code>rsp2ebv</code>.</td>
</tr>
<tr>
<td>metric</td>
<td>character</td>
<td>The name of an indicator. Default 'area_ha' computes ecosystem areas (ha) at class level. See the argument 'metric' in <code>list_lsm</code> to implement other metrics.</td>
</tr>
<tr>
<td>smp_lsm</td>
<td>list</td>
<td>List of arguments in <code>calculate_lsm</code>. This argument is ignored when metric = 'area_ha'.</td>
</tr>
<tr>
<td>mc.cores</td>
<td>numeric</td>
<td>The number of cores. Default uses around 60 percent of the cores.</td>
</tr>
</tbody>
</table>

Details

Coordinate reference system of the spatial units must have metric units UTM. Performance in the computation of ecosystem extents is optimized via the implementation of the function `tabuleRaster`. Indicators other than ecosystem extents are calculated implementing `calculate_lsm`.

Value

Class `Indicator`.

Author(s)

Wilson Lara Henao <wilarhen@gmail.com> [aut, cre], Victor Gutierrez-Velez [aut], Ivan Gonzalez [ctb], Maria C. Londono [ctb]

References

Examples

```r
## RasterBrick of structural Essential Biodiversity Variables
## covering the extent of a location in the northern Amazon basin
## (Colombia) is imported:
path. <- system.file('amazon.grd',package = 'ecochange')
amazon <- brick(path.)
```
getGADM

Changes in layers of tree-canopy cover (TC) in the 'amazon' brick are computed:
def <- echanges(amazon, eco = 'TC',
 change = 'lossyear',
 eco_range = c(1,80),
 get_unaffected = TRUE,
 binary_output = FALSE,
 mc.cores = 2)

Function 'gaugeIndicator' is used to compute ecosystem areas
(default):
am_areas <- gaugeIndicator(def,
 mc.cores = 2)

plot.Indicator(am_areas)

getGADM Get Geographic Administrative Unit

Description

This function is a wrapper of `gadm` that helps users to retrieve Geographic Administrative Data Maps (GADM).

Usage

getGADM(unit.nm = NULL,
 level = 2, country = "COL",
 path = tempdir())

Arguments

- **unit.nm** character or NULL. Name of Geographic Administrative Data Map (e.g., municipality), or the name of such an unit plus its corresponding higher-level unit (e.g., department/state). If NULL then a list of administrative subdivisions is printed.
- **level** numeric. A number between zero and two, indicating any of the levels of administrative subdivisions (0=country, 1=first administrative subdivision, and 2=second administrative subdivision).
- **country** character. ISO code specifying a country. Default 'COL'
- **path** character. Path name indicating where the unit will be stored. Default stores the data in a temporary directory.

Value

SpatialPolygonsDataFrame or character vector of GADM units.
getrsp

Author(s)
Wilson Lara Henao <wilarhen@gmail.com> [aut, cre], Victor Gutierrez-Velez [aut], Ivan Gonzalez [ctb], Maria C. Londono [ctb]

References
https://gadm.org/

Examples
Printing municipalities of Colombia:

```r
muni <- getGADM(NA)
head(muni)
```

getrsp Get remote sensing product

Description
This function processes the extent of a predefined region of interest (polygon geometry or GADM unit) to download ecosystem remote sensing products (ERSP). Downloadable ERSP include Global Surface Water, Forest Change, and Continuous Tree Cover data. See listGP.

Usage
```
getrsp(roi = NULL, ..., lyrs = NULL, path, rewrite.pass = FALSE, verify.web = FALSE, mc.cores = round(detectCores() * 0.6, 0))
```

Arguments
- **roi**: SpatialPolygonsDataFrame; or sf; or character; or NULL. Region of interest. This can be either 1) a polygon geometry; or 2) the name of a GADM unit (see getGADM); or 3) a NULL value. Default NULL makes the function to print a list of GADM units.
- **lyrs**: character. Remote-sensing products. Default NULL makes the function to print a list of Downloadable data, see listGP.
getrsp

path character. Path name indicating where the variables are stored. If missing then a folder named as 'ecochange' created in a current temporary directory is used.

rewrite.pass logical. Rewrite password. Only valid to download new NASA Earth data, see details section.

verify.web logical. Verify in the web whether the URLs used to download the rsp are available. See getOption('webs'). Default FALSE.

mc.cores numeric. The number of cores. Default uses around 60 percent of the cores.

Details

Downloads of Continuous Tree Cover data require user authentication through the NASA Earth data Login. To obtain a NASA Earth data Login account, please visit: https://urs.earthdata.nasa.gov/users/new.

Value

Path names of the remote sensing products just retrieved, or character vectors suggesting GADM units/Global Products that can be used to download ERSP (see NULL defaults in arguments 'roi' and 'lyrs').

Author(s)

Wilson Lara Henao <wilarhen@gmail.com> [aut, cre], Victor Gutierrez-Velez [aut], Ivan Gonzalez [ctb], Maria C. Londono [ctb]

References

Examples

```r
## Polygon of the Colombian municipality of Cartagena del Chaira:
load(system.file('cchaira_roi.RData', package = 'ecochange'))

## A Global Surface Water layer ('seasonality') which covers the
## extent of the polygon is retrieved:

rsp_cchaira <- getrsp(cchaira_roi,
   lyr = 'seasonality', mc.cores = 2, path = tempdir())
file.exists(rsp_cchaira)
```
getWRS

Get WRS

Description
This function processes regions of interest (a polygon geometry or GADM unit) to find corresponding Landsat Path/Row World Reference System (WRS) polygons. This function is internally implemented by getrsp.

Usage
getWRS(roi = NULL, path = tempdir(), ...)

Arguments
roi SpatialPolygonsDataFrame; or character; or NULL. Region of interest. This can be whether 1) a polygon geometry; or 2) the name of a GADM unit (see getGADM); or 3) a NULL value. Default NULL makes the function to print a list of GADM units.
path character. Path name indicating where the WRS data are processed.
... Additional arguments in getGADM.

Value
SpatialPolygonsDataFrame, or set of GADM units.

Author(s)
Wilson Lara Henao <wilarhen@gmail.com> [aut, cre], Victor Gutierrez-Velez [aut], Ivan Gonzalez [ctb], Maria C. Londono [ctb]

Examples
load(system.file('cchaina_roi.RData', package = 'ecochange'))

wrs_cchaira <- getWRS(cchaira_roi)
plot(wrs_cchaira)
listGP

List of global products

Description

This function prints information about ecosystem remote sensing products that can be downloaded with `getrsp`.

Usage

```r
listGP(layer = TRUE,
       Algorithm = TRUE,
       author = TRUE, funs = FALSE,
       api.code = FALSE)
```

Arguments

- `layer` character. Add column 'layer' to the data.
- `Algorithm` character. Add column 'Algorithm' to the data.
- `author` character. Add column 'author' to the data.
- `funs` character. Add column 'funs' to the data.
- `api.code` character. Add column 'api.code' to the data.

Value

tibble.

Author(s)

Wilson Lara Henao <wilarhen@gmail.com> [aut, cre], Victor Gutierrez-Velez [aut], Ivan Gonzalez [ctb], Maria C. Londono [ctb]

References

plot.EBVstats

Visualize EBVstats objects

Description
Plots for objects from EBVstats are printed.

Usage
S3 method for class 'EBVstats'
plot(x, y, ...)

Arguments
x tibble. Data set of statistics such as that produced by EBVstats.
y character. Color scale. If missing then grDevices::terrain.colors(n),
where n is the number of layers, is implemented.
... Graphical arguments:
 • cex: adjustment of sizes for most text values,
 • xlab, and ylab: titles for the x and y axes,
 • main: a text of the main title,
 • sub: a text for the sub title,
 • labels: a string or numeric sequence for the x-axis labels,
 • fill: a text for the legend title

Author(s)
Wilson Lara Henao <wilarhen@gmail.com> [aut, cre], Victor Gutierrez-Velez [aut], Ivan Gonzalez [ctb], Maria C. Londono [ctb]

Examples
RasterBrick of structural Essential Biodiversity Variables
covering the extent of a location in the northern Amazon basin
(Colombia) is imported:
path. <- system.file(
 'amazon.grd',package = 'ecochange')
amazon <- brick(path.)

Changes in layers of tree-canopy cover (TC) are computed by
processing the ‘amazon’ brick:
def <- echanges(amazon, eco = 'TC',
 change = 'lossyear',
Function 'EBVstats' is used to compute ecosystem statistics

```r
st_amazon <- EBVstats(def)
```

A plot of the 'st_amazon' object

```r
plot.EBVstats(st_amazon,
              cex = 1.5,
              xlab = 'Year',
              ylab = 'Canopy cover (%)',
              main = 'Ecosystem changes',
              sub = 'Municipality: Cartagena del Chaira',
              fill = 'Layer')
```

Description

This function can display level and box plots for objects from `rspb2ebv`, `echanges`, or `sampleIndicator`.

Usage

```r
## S3 method for class 'echanges'
plot(x, y, ...)
```

Arguments

- `x` Raster*, or `echanges`. RasterStack object or ecosystem-change representation.
- `y` character. A color palette. If this is missing or the `suggest` `viridis` is not installed then `terrain.colors` is implemented.
- `...` Graphical arguments:
 - `type`: what type of plot should be drawn: "p" for level plots (default), or "b" for box plots,
 - `cex`: adjustment of sizes for most text values. If missing then `cex = 1`; if a main title is specified then it is increased `1.4*cex`,
 - `xlab`, and `ylab`: titles for the x and y axes,
 - `main`: a text of the main title,
 - `labels`: a string or numeric sequence for the panel titles

Author(s)

Wilson Lara Henao <wilarhen@gmail.com> [aut, cre], Victor Gutierrez-Velez [aut], Ivan Gonzalez [ctb], Maria C. Londono [ctb]
Examples

```r
## Brick with structural Essential Biodiversity Variables covering the
## extent of a location in the northern Amazon basin (Colombia):
path. <- system.file('amazon.grd', package = 'ecochange')
amazon <- brick(path.)

## Changes in layers of tree-canopy cover (TC) in the 'amazon'
## brick are computed:
def <- echanges(amazon, eco = 'TC',
               change = 'lossyear',
               eco_range = c(1,80),
               get_unaffected = TRUE,
               binary_output = FALSE,
               mc.cores = 2)

plot.echanges(def)
```

plot.Indicator

Visualize Indicator objects

Description

Plots for objects from `gaugeIndicator` are produced.

Usage

```r
## S3 method for class 'Indicator'
plot(x, y,
     ...)  
```

Arguments

- **x**
 - `tibble`. Data set of indicators such as that produced by `gaugeIndicator`.

- **y**
 - `character`. A color palette. If this is missing or the suggest `viridis` is not installed then `terrain.colors` is implemented.

- **...**
 - Graphical arguments:
 - `type`: what type of plot should be drawn: "s" for stacked bar plots (default), or "b" for box plots,
 - `cex`: adjustment of sizes for most text values,
 - `xlab`, and `ylab`: titles for the x and y axes,
 - `main`: a text of the main title,
 - `sub`: a text for the sub title,
 - `labels`: a string or numeric sequence for the x-axis labels,
 - `fill`: a text for the legend title
Examples

```
## RasterBrick of structural Essential Biodiversity Variables
## covering the extent of a location in the northern Amazon basin
## (Colombia) is imported:
path. <- system.file('amazon.grd', package = 'ecochange')
amazon <- brick(path.)

## Changes in layers of tree-canopy cover (TC) are computed by
## processing the 'amazon' brick:
def <- echanges(amazon, eco = 'TC',
                change = 'lossyear',
                eco_range = c(1, 80),
                get_unaffected = TRUE,
                binary_output = FALSE,
                mc.cores = 2)

## Function 'gaugeIndicator' is used to compute ecosystem areas
## (default metric = 'area_ha'):
am_areas <- gaugeIndicator(def,
                           mc.cores = 2)

## A plot of the 'am_areas' object
plot.Indicator(am_areas,
               cex = 1.5,
               xlab = 'Year',
               ylab = 'Area (ha)',
               main = 'Ecosystem changes',
               sub = 'Northern amazon',
               fill = 'Forest cover (%)')
```

Description

This function integrates ecosystem remote sensing products and produces raster-data sections with the cell values enclosed in a region of interest.

Usage

```
rsp2ebv(ps = NULL, ...,
        lyrs = NULL, path,
        sr, ofr = c(30, 30),
```
mc.cores = round(detectCores() * 0.6, 0))

Arguments

ps
SpatialPolygonsDataFrame; or sf; or character; or NULL. Region of interest. This can be whether 1) a polygon geometry; or 2) the name of a GADM unit (see getGADM); or 3) a NULL value. Default NULL makes the function to print a list of GADM units.

lyrs
character. Remote-sensing products. Default NULL makes the function to print a list of Downloadable data, see listGP.

path
character. Path name indicating where the variables are stored. If missing then a folder named as 'ecochange' created in a current temporary directory is used.

sr
character. PROJ.4 description of the target coordinate reference system. If missing then the target layers are projected to metric system UTM.

ofr
numeric. c(xres,yres). Output file resolution (in target georeferenced units). Default c(30,30) m2.

mc.cores
numeric. The number of cores. Default uses around 60 percent of the cores.

Details

This function implements 'sf::gdal_utils' so it assumes the user's machine has a valid GDAL installation.

Value

Class echanges.

Author(s)

Wilson Lara Henao <wilarhen@gmail.com> [aut, cre], Victor Gutierrez-Velez [aut], Ivan Gonzalez [ctb], Maria C. Londono [ctb]

References

Examples

```r
## A Global Surface Water layer ('seasonality') covering the extent of a Colombian municipality Cartagena del Chaira is formatted into an spatial EBV:
load(system.file('ccchaira_roi.RData', package = 'ecochange'))

rsp_cchaira <- getrsp(ccchaira roi, 
  lyrs = 'seasonality', mc.cores = 2, path = tempdir())

file.exists(rsp_cchaira)

season_cchaira <- rsp2ebv(ccchaira_roi, 
  lyrs = 'seasonality', path = tempdir())
```

Sample Indicator
Sample Biodiversity indicator

Description

This function divides into fixed-size grids each of the scenes of a stack of ecosystem-spatial data and samples a biodiversity indicator by every grid. To compute biodiversity indicators at the class and landscape levels, see `gaugeIndicator`

Usage

```r
sampleIndicator(ps = NULL, 
... metric = "condent", 
  classes = 5, min = 1, 
  max = 100, side, 
  smp_lsm = list(level = "landscape"), 
  mc.cores = round(detectCores() * 0.6, 0))
```

Arguments

- `ps`
 SpatialPolygonsDataFrame or RasterStack. Polygon geometry used to produce ecosystem-change maps via the implementation of `echanges` or the stack of ecosystem-change maps.

- `metric`
 character. The name of an indicator other than ecosystem extent. This can be cohesion ('cohesion'), conditional entropy ('condent'), perimeter-area fractal dimension ('pafrac'), among others, see package `list_lsm`. Default 'condent'.

- `classes`
 numeric; or NULL. Number of evenly spaced classes used to reclassify the layers. Default 5. If NULL then the layers are not reclassified.
sampleIndicator

min numeric. If classes != NULL then minimum cell value in the layers. Default 1
max numeric. If classes != NULL then maximum cell value in the layers. Default 100
side numeric. Side of the sampling grid (m). If missing the function tries to find a
grid size the samples at least a grid with a non-NA value of the indicator.
smp_lsm List. Additional arguments in sample_lsm
mc.cores numeric. The number of cores. Default uses 60 percent of the cores.

Value

Class echanges

Author(s)

Wilson Lara Henao <wilarhen@gmail.com> [aut, cre], Victor Gutierrez-Velez [aut], Ivan Gonzalez [ctb], Maria C. Londono [ctb]

References

Examples

```r
## RasterBrick of structural Essential Biodiversity Variables
## covering the extent of a location in the northern Amazon basin
## (Colombia) is imported:
path. <- system.file('amazon.grd', package = 'ecochange')
amazon <- brick(path.)

## Changes in layers of tree-canopy cover (TC) in the 'amazon'
## brick are computed:
def <- echanges(amazon, eco = 'TC',
    change = 'lossyear',
    eco_range = c(1,80),
    get_unaffected = TRUE,
    binary_output = FALSE,
    mc.cores = 2)

plot.echanges(amazon)

## Function 'sampleIndicator' is implemented to sample a metric of
```
conditional entropy (default):

```r
def_condent <- sampleIndicator(def, side = 400, mc.cores = 2)
```

```r
plot.echanges(def_condent, cex = 1.5)
```

tabuleRaster

Fast tabulation of pixel values

Description

This function generates frequency tables for scenes in ecosystem remote sensing products by wrapping `rasterDT`. The function is mapped by `gaugeIndicator` to optimize computation of ecosystem extents.

Usage

```r
tabuleRaster(layer = "",
             del0 = TRUE, useNA = "no",
             n256 = FALSE)
```

Arguments

- `layer` character. File path to an ERSP scene.
- `del0` logical. Remove the 0-count categories.
- `useNA` logical. Include NA values. This argument is passed to `rasterDT::freqDT`.
- `n256` logical. Do the raster contains less than 256 unique values?

Value

data.frame.

Author(s)

Wilson Lara Henao <wilarhen@gmail.com> [aut, cre], Victor Gutierrez-Velez [aut], Ivan Gonzalez [ctb], Maria C. Londono [ctb]

Examples

```r
tabuleRaster(raster(volcano), n256 = FALSE)
```
Index

calculate_lsm, 6

cellStats, 2

character, 12

EBVstats, 2, 12
echanges, 2, 3, 5, 6, 13, 17

gadm, 7
gaugeIndicator, 5, 14, 17, 19
getGADM, 7, 8, 10, 16
getrsp, 8, 10, 11, 16
getWRS, 10

list_lsm, 6, 17
listGP, 8, 11, 16

plot.EBVstats, 12
plot.echanges, 13
plot.Indicator, 14

rasterDT, 19
rsp2ebv, 4, 6, 13, 15, 17

sample_lsm, 18
sampleIndicator, 2, 5, 13, 17

tabuleRaster, 6, 19
terrain.colors, 13, 14
tibble, 12, 14