Package ‘ecpc’

March 23, 2022

Type Package
Title Flexible Co-Data Learning for High-Dimensional Prediction
Version 3.0
Date 2022-03-22
Author Mirrelijn M. van Nee [aut, cre],
Lodewyk F.A. Wessels [aut],
Mark A. van de Wiel [aut]
Maintainer Mirrelijn M. van Nee <m.vannee@amsterdamumc.nl>
Depends R (>= 3.5.0)
Imports glmnet, stats, Matrix, gglasso, mvtnorm, CVXR, multiridge (>= 1.5), survival, pROC, mgcv, pracma, JOPS, quadprog
Suggests Rsolnp, expm, foreach, doParallel, parallel, ggplot2, ggraph, igraph, scales, dplyr, magrittr, nnls
Description Fit linear, logistic and Cox survival regression models penalised with adaptive multi-group ridge penalties.
The multi-group penalties correspond to groups of covariates defined by (multiple) co-data sources.
Group hyperparameters are estimated with an empirical Bayes method of moments, penalised with an extra level of hyper shrinkage.
Various types of hyper shrinkage may be used for various co-data.
Co-data may be continuous or categorical.
The method accommodates inclusion of unpenalised covariates, posterior selection of covariates and multiple data types.
The model fit is used to predict for new samples.
The name ‘ecpc’ stands for Empirical Bayes, Co-data learnt, Prediction and Covariate selection.
License GPL (>= 3)
RoxygenNote 7.1.1
NeedsCompilation no
Repository CRAN
Date/Publication 2022-03-23 01:00:05 UTC
ecpc-package

R topics documented:

ecpc-package ... 2
createCon ... 3
createGroupset ... 4
createS .. 7
createZforGroupset .. 8
createZforSplines ... 9
cv.ecpc .. 10
eccc .. 11
hierarchicalLasso ... 18
obtainHierarchy .. 19
postSelect .. 20
produceFolds .. 22
simDat .. 23
splitMedian ... 24
visualiseGroupset ... 25
visualiseGroupsetweights 26
visualiseGroupweights .. 27

Index 29

ecpc-package Flexible Co-Data Learning for High-Dimensional Prediction

Description

Fit linear, logistic and Cox survival regression models penalised with adaptive multi-group ridge penalties. The multi-group penalties correspond to groups of covariates defined by (multiple) co-data sources. Group hyperparameters are estimated with an empirical Bayes method of moments, penalised with an extra level of hyper shrinkage. Various types of hyper shrinkage may be used for various co-data. Co-data may be continuous or categorical. The method accommodates inclusion of unpunished covariates, posterior selection of covariates and multiple data types. The model fit is used to predict for new samples. The name 'ecpc' stands for Empirical Bayes, Co-data learnt, Prediction and Covariate selection. See Van Nee et al. (2020) <arXiv:2005.04010>.

Details

The DESCRIPTION file:

Package: eccc
Type: Package
Title: Flexible Co-Data Learning for High-Dimensional Prediction
Version: 3.0
Date: 2022-03-22
Authors@R: c(person(c("Mirrelijn","M."), "van Nee", role = c("aut","cre"), email = "m.vannee@amsterdamumc.nl"), person(c("Lodewyk","F.A."), "Wessels", role = "aut"), person(c("Mark","A."), "van de Wiel", role = "aut"))
Author: Mirrelijn M. van Nee [aut, cre], Lodewyk F.A. Wessels [aut], Mark A. van de Wiel [aut]
Maintainer: Mirrelijn M. van Nee <m.vannee@amsterdamumc.nl>
createCon

Depends: R (>= 3.5.0)
Imports: glmnet, stats, Matrix, gglasso, mvtnorm, CVXR, multiridge (>= 1.5), survival, pROC, pracma, JOPS, ggm
Suggests: Rsolnp, expm, foreach, doParallel, parallel, ggplot2, ggraph, igraph, scales, dplyr, magrittr, nnls
Description: Fit linear, logistic and Cox survival regression models penalised with adaptive multi-group ridge penalties. This package is intended to support co-data learning, empirical Bayes, prediction, and covariate selection. See Van Nee et al. (2020) <arXiv:2005.04010>.
License: GPL (>= 3)
RoxygenNote: 7.1.1

Index of help topics:

createCon Create a list of constraints for co-data weight estimation
createGroupset Create a group set (groups) of variables
createS Create a generalised penalty matrix
createZforGroupset Create a co-data matrix Z for a group set
createZforSplines Create a co-data matrix Z of splines
cv.ecpc Cross-validation for 'ecpc'
cepc Fit adaptive multi-group ridge GLM with hypershrinkage
eccpc-package Flexible Co-Data Learning for High-Dimensional Prediction
hierarchicalLasso Fit hierarchical lasso using LOG penalty
obtainHierarchy Obtain hierarchy
postSelect Perform posterior selection
produceFolds Produce folds
simDat Simulate data
splitMedian Discretise continuous data in multiple granularities
visualiseGroupset Visualise a group set
visualiseGroupsetweights Visualise estimated group set weights
visualiseGroupweights Visualise estimated group weights

See epc for example code.

Author(s)

Mirrelijn M. van Nee [aut, cre], Lodewyk F.A. Wessels [aut], Mark A. van de Wiel [aut]
Maintainer: Mirrelijn M. van Nee <m.vannee@amsterdamumc.nl>
createGroupset

Description
Create a list of constraints to be used by `ecpc` in estimating G co-data weights. Combine constraints with p-splines to estimate shape-constrained functions, e.g. positive, monotone increasing and/or convex functions.

Usage
```r
createCon(G, shape = "positive+monotone.i+convex")
```

Arguments
- `G` Number of co-data weights that should be estimated subject to constraints.
- `shape` Common type of shapes, including 'positive', 'monotone.i' ('monotone.d') for monotonically increasing (decreasing), 'convex' ('concave'), or any combination thereof by attaching multiple with a '+' sign.

Value
A list of the form `list(M.ineq = M.ineq, b.ineq = b.ineq)` with the matrix `M.ineq` and vector `b.ineq` containing the inequality constraints corresponding to the given shape.

See Also
The relation between the prior variance and co-data may be estimated with a shape-constrained spline, see `createZforSplines` and `createS` for creating a spline basis and difference penalty matrix for a co-data variable. See `ecpc` for an example.

Examples
```r
# create constraints for positivity
Con1 <- createCon(G=10, shape="positive")
# create constraints for positive and monotonically increasing weights
Con2 <- createCon(G=10, shape="positive+monotone.i")
```

createGroupset

Create a group set (groups) of variables

Description
Create a group set (groups) of variables for categorical co-data (factor, character or boolean input), or for continuous co-data (numeric). Continuous co-data is discretised in non-overlapping groups.

Usage
```r
createGroupset(values,index=NULL,grsize=NULL,ngroup=10,
   decreasing=TRUE,uniform=FALSE,minGroupSize = 50)
```
createGroupset

Arguments

values Factor, character or boolean vector for categorical co-data, or numeric vector for continuous co-data values.

index Index of the covariates corresponding to the values supplied. Useful if part of the co-data is missing/seperated and only the non-missing/remaining part should be discretised.

gsize Numeric. Size of the groups. Only relevant when values is a numeric vector and uniform=TRUE.

ngroup Numeric. Number of the groups to create. Only relevant when values is a numeric vector and gsize is NOT specified.

decreasing Boolean. If TRUE then values is sorted in decreasing order.

uniform Boolean. If TRUE the group sizes are as equal as possible.

minGroupSize Numeric. Minimum group size. Only relevant when values is a numeric vector and uniform=FALSE.

Details

This function is derived from CreatePartition from the GRRidge-package, available on Bioconductor. Note that the function name and some variable names have been adapted to match terminology used in other functions in the ecpc-package.

A convenience function to create group sets of variables from external information that is stored in values. If values is a factor then the levels of the factor define the groups. If values is a character vector then the unique names in the character vector define the groups. If values is a Boolean vector then the group set consists of two groups for True and False. If values is a numeric vector, then groups contain the variables corresponding to gsize consecutive values of values. Alternatively, the group size is determined automatically from ngroup. If uniform=FALSE, a group with rank r is of approximate size $\text{mingr} \times (r^f)$, where $f>1$ is determined such that the total number of groups equals ngroup. Such unequal group sizes enable the use of fewer groups (and hence faster computations) while still maintaining a good ‘resolution’ for the extreme values in values. About decreasing: if smaller values mean ‘less relevant’ (e.g. test statistics, absolute regression coefficients) use decreasing=TRUE, else use decreasing=FALSE, e.g. for p-values. If index is defined, then the group set will use these variable indices corresponding to the values. Useful if the group set should be made for a subset of all variables.

Value

A list with elements that contain the indices of the variables belonging to each of the groups.

Author(s)

Mark A. van de Wiel

See Also

Instead of discretising continuous co-data in a a fixed number of groups, they may be discretised adaptively to learn a discretisation that fits the data well, see: splitMedian.
Examples

#SOME EXAMPLES ON SMALL NR OF VARIABLES

#EXAMPLE 1: group set based on known gene signature (boolean vector)
genset <- sapply(1:100, function(x) paste("Gene", x))
signature <- sapply(seq(1,100,by=2), function(x) paste("Gene", x))
SignatureGroupset <- createGroupset(genset%in%signature) #boolean vector

#EXAMPLE 2: group set based on factor variable
Genetype <- factor(sapply(rep(1:4,25), function(x) paste("Type", x)))
TypeGroupset <- createGroupset(Genetype)

#EXAMPLE 3: group set based on continuous variable, e.g. p-value
pvals <- rbeta(100,1,4)

#Creating a group set of 10 equally-sized groups, corresponding to increasing p-values.
PvGroupset <- createGroupset(pvals, decreasing=FALSE, uniform=TRUE, ngroup=10)

#Alternatively, create a group set of 5 unequally-sized groups,
#with minimal size at least 10. Group size
#increases with less relevant p-values.
Recommended when nr of variables is large.
PvGroupset2 <- createGroupset(pvals, decreasing=FALSE, uniform=FALSE, ngroup=5, minGroupSize=10)

#EXAMPLE 4: group set based on subset of variables,
e.g. p-values only available for 50 genes.
genset <- sapply(1:100, function(x) paste("Gene", x))
subsetgenes <- sort(sapply(sample(1:100,50), function(x) paste("Gene", x)))
index <- which(genset%in%subsetgenes)
pvals50 <- rbeta(50,1,6)

#Returns the group set for the subset based on the indices of
#the variables in entire genset.
PvGroupsetSubset <- createGroupset(pvals50, index=index, decreasing=FALSE, uniform=TRUE, ngroup=5)

#append list with group containing the covariate indices for missing p-values
PvGroupsetSubset <- c(PvGroupsetSubset, list("missing"=which(!(genset%in%subsetgenes))))

#EXAMPLE 5: COMBINING GROUP SETS

#Combines group sets into one list with named components.
#This can be used as input for the ecpc() function.
GroupsetsAll <- list(signature=SignatureGroupset, type = TypeGroupset,
pval = PvGroupset, pvalsSubset=PvGroupsetSubset)

#NOTE: if one aims to use one group set only, then this should also be
provided in a list as input for the ecpc() function.
createS

GroupsetsOne <- list(signature=SignatureGroupset)

createS Create a generalised penalty matrix

Description

Create a generalised penalty matrix which can be used as hypershrinkage for co-data matrix Z.

Usage

createS(orderPen=2, G=10, categorical=FALSE)

Arguments

- orderPen: The order of the difference penalty. If 0, then a ridge penalty matrix is returned.
- G: Number of co-data variables to be penalised.
- categorical: If TRUE, a block correlation matrix is returned.

Value

A (GxG)-dimensional penalty matrix.

References

See for an introduction on p-splines and difference penalties:

See Also

A difference penalty may be applied for p-spline basis functions created with `createZforSplines` or for categorical co-data created with `createZforGroupset`.

Examples

S1 <- createS(orderPen=2, G=10) # second difference penalty matrix
S2 <- createS(orderPen=0, G=10) # zeroth order defined as ridge penalty matrix
S3 <- createS(G=10, categorical=TRUE) # difference penalty for unordered categorical groups
createZforGroupset

Create a co-data matrix Z for a group set

Description

Create a co-data matrix Z for a group set as obtained for instance with createGroupset.

Usage

createZforGroupset(groupset, p=NULL)

Arguments

groupset A list with G elements that contain the indices of the variables belonging to each of the groups.
p Number of covariates in total. If not given, taken as maximum index in 'groupset'. But in cases where some covariates are left unpenalised, the total number of covariates may be larger.

Value

A $(p \times G)$-dimensional co-data matrix.

See Also

createGroupset

Examples

```
#Group set: G random groups
G <- 5  #number of groups
p <- 300  #number of covariates from which last 10 left unpenalised
#sample random categorical co-data:
categoricalRandom <- as.factor(sample(1:G,(p-10),TRUE))
#make group set, i.e. list with G groups
groupsetRandom <- createGroupset(categoricalRandom)
Zcat <- createZforGroupset(groupsetRandom,p=p)
```
createZforSplines

Create a co-data matrix Z of splines

Description

Create a co-data matrix Z of spline basis functions for a continuous co-data variable.

Usage

```r
createZforSplines(values, G=10, bdeg=3, index=NULL, p=NULL)
```

Arguments

- `values`: A vector with continuous co-data values.
- `G`: Number of B-splines.
- `bdeg`: Degree of the B-spline basis functions.
- `index`: Index of the covariates corresponding to the values supplied. Useful when part of the co-data is missing/separated and only the non-missing/remaining part should be modelled with splines.
- `p`: Number of covariates in total. If not given, taken as length of `values`. But in cases where some covariates are left unpenalised, the total number of covariates may be larger.

Value

A $(p \times G)$-dimensional co-data matrix.

References

See for an introduction on p-splines:

See Also

Use `createS` to create a difference penalty for p-splines.

Examples

```r
# create co-data with random normally distributed values for 100 covariates
values <- rnorm(n=100)
# suppose that there is one additional covariate (the first) that should not be modelled
ind <- 2:101
p <- 101
Z <- createZforSplines(values=values, G=10, index=ind, p=p)
```
Cross-validation for 'ecpc'

Description

Cross-validates 'ecpc' and returns model fit, summary statistics and cross-validated performance measures.

Usage

```r
cv.ecpc(Y, X, type.measure = c("MSE", "AUC"), outerfolds = 10,
        lambdas = NULL, ncores = 1, balance = TRUE, silent = FALSE, ...)
```

Arguments

- `Y`: Response data; n-dimensional vector (n: number of samples) for linear and logistic outcomes, or `Surv` object for Cox survival.
- `X`: Observed data; (nxp)-dimensional matrix (p: number of covariates) with each row the observed high-dimensional feature vector of a sample.
- `type.measure`: Type of cross-validated performance measure returned.
- `outerfolds`: Number of cross-validation folds.
- `lambdas`: A vector of global ridge penalties for each fold; may be given, else estimated.
- `ncores`: Number of cores; if larger than 1, the outer cross-validation folds are processed in parallel over ‘ncores’ clusters.
- `balance`: (logistic, Cox) Should folds be balanced in response?
- `silent`: Should output messages be suppressed (default FALSE)?
- `...`: Additional arguments used in `ecpc`.

Value

A list with the following elements:

- `ecpc.fit`: List with the ecpc model fit in each fold.
- `dfPred`: Data frame with information about out-of-bag predictions.
- `dfGrps`: Data frame with information about estimated group and group set weights across folds.
- `dfCVM`: Data frame with cross-validated performance metric.

See Also

Visualise cross-validated group set weights with `visualiseGroupsetweights` or group weights with `visualiseGroupweights`.
Examples

Simulate toy data

```r
p <- 300 # number of covariates
n <- 100 # sample size training data set
n2 <- 100 # sample size test data set

# simulate all betas i.i.d. from beta_k ~ N(mean=0, sd=sqrt(0.1)):
muBeta <- 0 # prior mean
varBeta <- 0.1 # prior variance
indT1 <- rep(1, p) # vector with group numbers all 1 (all simulated from same normal distribution)

# simulate test and training data sets:
Dat <- simDat(n, p, n2, muBeta, varBeta, indT1, sigma = 1, model = 'linear')
str(Dat) # Dat contains centered observed data, response data and regression coefficients
```

Make co-data group sets

```r
G <- 5 # number of groups

categoricalRandom <- as.factor(sample(1:G, p, TRUE))

# make group set, i.e. list with G groups:
groupsetRandom <- createGroupset(categoricalRandom)
```

Cross-validate ecpc

```r
tic <- proc.time()[[3]]
cv.fit <- cv.ecpc(type.measure = "MSE", outerfolds = 2,
Y = Dat$Y, X = Dat$Xctd,
groupsets = list(groupsetRandom),
groupsets.grouplvl = list(NULL),
hypershinkage = c("none"),
model = "linear", maxsel = c(5, 10, 15, 20))
toc <- proc.time()[[3]] - tic
```

str(cv.fit$ecpc.fit) # list containing the model fits on the folds
str(cv.fit$dfPred) # data frame containing information on the predictions
str(cv.fit$dfCVM) # data frame with the cross-validated performance for ecpc

Fit adaptive multi-group ridge GLM with hypershrinkage

```r
ecpc
```

ecpc

Fit adaptive multi-group ridge GLM with hypershrinkage
Description

Fits a generalised linear (linear, logistic) or Cox survival model, penalised with adaptive co-data learnt ridge penalties. The ridge penalties correspond to normal prior variances which are regressed on (multiple) co-data sources, e.g. for categorical co-data, each group of variables obtains a group-specific ridge penalty. Co-data weights are estimated with an empirical Bayes method of moments, penalised with an extra level of hypershrinkage and possibly constrained by linear constraints. Various types of hypershrinkage may be used for various co-data, including overlapping groups, hierarchical groups and continuous co-data. P-splines may be used to estimate the relation between the prior variance and continuous co-data variables. This may be combined with linear constraints to estimate shape-constrained functions.

Usage

```r
ecpc(Y, X, 
Z=NULL, paraPen=NULL, paraCon=NULL, intrcpt.bam=TRUE, bam.method="ML", 
groupsets=NULL, groupsets.grouplvl = NULL, hypershrinkage=NULL, 
unpen = NULL, intrcpt = TRUE, model=c("linear","logistic","cox"), 
postselection = "elnet,dense", maxsel = 10, 
lambda = NULL, fold = 10, sigmasq = NaN, w = NaN, 
nslits = 100, weights = TRUE, profplotRSS = FALSE, Y2 = NaN, X2 = NaN, 
compare = TRUE, mu = FALSE, normalise = FALSE, silent = FALSE, 
datablocks = NULL, est_beta_method=c("glmnet","multiridge"))
```

Arguments

- **Y**: Response data; n-dimensional vector (n: number of samples) for linear and logistic outcomes, or `Surv` object for Cox survival.
- **X**: Observed data; (nxp)-dimensional matrix (p: number of covariates) with each row the observed high-dimensional feature vector of a sample.
- **Z**: List with m co-data matrices. Each element is a (pxG)-dimensional co-data matrix containing co-data on the p variables. Co-data should either be provided in ‘Z’ or ‘groupsets’.
- **paraPen**: A list with generalised ridge penalty matrices used as hypershrinkage in estimating co-data weights, e.g. `list("Z2" = list("S1" = M1,"S2"= M2))` when the second co-data source given in ‘Z’ should be penalised by a penalty matrix ‘M1’ and ‘M2’. The names of the elements of the list should be equal to ‘Zi’ where ‘i’ matches the index of the co-data matrix. The list elements should again be lists with elements ‘Si’ for i=1,2,... different generalised ridge penalty matrices. Same as the argument ‘paraPen’ used in bam of ‘mgcv’.
- **paraCon**: A list with linear inequality and or equality constraints used in estimating co-data weights, e.g. `list("Z2" = list("M.ineq" = M1,"b.ineq"= b.ineq,"M.eq" = M2,"b.eq"= b.eq))`. The names of the elements of the list should be equal to ‘Zi’ where ‘i’ matches the index of the co-data matrix. The list elements should again be lists with elements ‘M.ineq’, ‘b.ineq’ for inequality constraints and ‘M.eq’, ‘b.eq’ for equality constraints, similar to the arguments used in lsqlincon of ‘pracma’.
intrcpt.bam Should an intercept be included in the co-data model? Is used only when ‘Z’ is provided, for which the function bam of ‘mgcv’ is used to fit a generalised additive model.

bam.method When ‘Z’ is provided, ‘bam.method’ indicates the method used in bam of ‘mgcv’ to estimate the hyperpenalties corresponding to the generalised ridge penalty matrices given in ‘paraPen’.

groupsets Co-data group sets; list with m (m: number of group sets) group sets. Each group set is a list of all groups in that set. Each group is a vector containing the indices of the covariates in that group.

groupsets.grouplvl (optional) Group sets on group level used in hypershrinkage; list of m elements (corresponding to ‘groupsets’), with NULL if there is no structure on group level, or with a list of groups containing the indices of groups of covariates in that group. May be used for hierarchical groups and to adaptively discretise continuous co-data, see obtainHierarchy.

hypershrinkage Type of shrinkage that is used on the group level; vector of m strings indicating the shrinkage type (or penalty) that is used for each of the m group sets. String may be of the simple form “type1”, or “type1,type2”, in which type1 is used to select groups and type2 to estimate the group weights of the selected groups. Possible hypershrinkage types are:

- "none", "ridge", "lasso", "hierLasso", "lasso,ridge", "hierLasso,ridge"
- "none" for no hypershrinkage, "ridge" (default), "lasso" and "hierLasso" (hierarchical lasso using a latent overlapping group lasso penalty) for group selection possibly be combined with ridge shrinkage.

unpen Unpenalised covariates; vector with indices of covariates that should not be penalised.

intrcpt Should an intercept be included? Included by default for linear and logistic, excluded for Cox for which the baseline hazard is estimated.

model Type of model for the response; linear, logistic or Cox.

postselection Type of posterior selection method used to obtain a parsimonious model of maxsel covariates, or FALSE if no parsimonious model is needed. Possible options are "elnet,dense" (default), "elnet,sparse", "BRmarginal,dense", "BRmarginal,sparse" or "DSS".

maxsel Maximum number of covariates to be selected a posteriori, in addition to all unpenalised covariates. If maxsel is a vector, multiple parsimonious models are returned.

lambda Global ridge penalty; if given, numeric value to fix the global ridge penalty and equivalently, the global prior variance. When not given, for linear, by default "ML" is used for estimation for maximum marginal likelihood estimation and "CV" for other models for cross-validation.

fold Number of folds used in inner cross-validation to estimate global ridge penalty lambda.

sigmasq (linear model only) If given, noise level is fixed \(Y \sim N(X\beta, \text{sd}=\sqrt{\text{sigmasq}}) \).

w Group set weights: m-dimensional vector. If given, group set weights are fixed.
nsplits Number of splits used in the Residual Sum of Squares (RSS) criterion to estimate the optimal hyperlambda.

weights Should weights be used in hypershrinkage to correct for group size (default TRUE)?

profplotRSS Should a profile plot of the residual sum of squares (RSS) criterium be shown?

Y2 (optional) Independent response data to compare with predicted response.

X2 (optional) Independent observed data for which response is predicted.

compare Should an ordinary ridge model be fitted to compare with?

mu Should group prior means be included (default FALSE)?

normalise Should group variances be normalised to sum to 1 (default FALSE)?

silent Should output messages be suppressed (default FALSE)?

datablocks (optional) for multiple data types, the corresponding blocks of data may be given in datablocks; a list of B vectors of the indices of covariates in ‘X’ that belong to each of the B data blocks. Unpenalised covariates should not be given as separate block, but can be omitted or included in blocks with penalised covariates. Each datatype obtains a datatype-specific ‘tauglobal’ as in multiridge.

est_beta_method Package used for estimating regression coefficients, either "glmnet" or "multiridge".

Value

A list with the following elements:

beta Estimated regression coefficients; p-dimensional vector.

intercept If included, the estimated intercept; scalar.

tauglobal Estimated global prior variance; scalar (or vector with datatype-specific global prior variances when multiple ‘datablocks’ are given).)

gammatilde Estimated group weights before truncating negative weights to 0; vector of dimension the total number of groups.

gamma Final estimated group weights; vector of dimension the total number of groups.

w Estimated group set weights; m-dimensional vector.

penalties Estimated multi-group ridge penalties; p-dimenisonal vector.

hyperlambdas Estimated hyperpenalty parameters used in hypershrinkage; m-dimensional vector.

Ypred If independent test set ‘X2’ is given, predictions for the test set.

MSEecpc If independent test set ‘X2’, ‘Y2’ is given, mean squared error of the predictions.

sigmahat (linear model) Estimated sigma^2.

If ’compare’=TRUE, ordinary ridge estimates and predictions are given. If in addition multiple ‘datablocks’ are given, the estimates and predictions for multiridge penalty are given;

betaridge Estimated regression coefficients for ordinary ridge (or multiridge) penalty.
interceptridge Estimated intercept for ordinary ridge (or multiridge) penalty.
lambdaridge Estimated (multi)ridge penalty.
Ypredridge If independent test set 'X2' is given, ordinary ridge (or multiridge) predictions
for the test set.
MSEridge If independent test set 'X2', 'Y2' is given, mean squared error of the ordinary
ridge (or multiridge) predictions.

If posterior selection is performed;

betaPost Estimated regression coefficients for parsimonious models. If 'maxsel' is a vec-
tor, 'betaPost' is a matrix with each column the vector estimate corresponding
to the maximum number of selected covariates given in 'maxsel'.
interceptPost Estimated intercept coefficient for parsimonious models.
YpredPost If independent test set 'X2' is given, posterior selection model predictions for
the test set.
MSEPost If independent test set 'X2', 'Y2' is given, mean squared error of the posterior
selection model predictions.

Author(s)

Mirrelijn van Nee, Lodewyk Wessels, Mark van de Wiel

References

Van Nee, Mirrelijn M., Lodewyk FA Wessels, and Mark A. van de Wiel. "Flexible co-data learning

Van de Wiel, Mark A., Mirrelijn M. van Nee, and Armin Rauschenberger. "Fast cross-validation

Examples

Simulate toy data#

p<-300 #number of covariates
n<-100 #sample size training data set
n2<-100 #sample size test data set

#simulate all betas i.i.d. from beta_k~N(mean=0,sd=sqrt(0.1)):
muBeta<-0 #prior mean
varBeta<-0.1 #prior variance
indT1<-rep(1,p) #vector with group numbers all 1 (all simulated from same normal distribution)

#simulate test and training data sets:
Dat<-simDat(n,p,n2,muBeta,varBeta,indT1,sigma=1,model='linear')
str(Dat) #Dat contains centered observed data, response data and regression coefficients

""
Provide co-data in group sets.
Group set 1: G random groups
G <- 5 # number of groups
Sample random categorical co-data:
categoricalRandom <- as.factor(sample(1:G, p, TRUE))
Make group set, i.e. list with G groups:
groupsetRandom <- createGroupset(categoricalRandom)

Group set 2: informative hierarchical group set
continuousCodata <- abs(Dat$beta) # Use the magnitude of beta as continuous co-data
Use adaptive discretisation to find a good discretisation of the continuous co-data;
Discretise in groups of covariates of various sizes:
groupsetHierarchical <- splitMedian(values=continuousCodata, index = 1:p,
 minGroupSize = 50, split = "both")
And obtain group set on group level that defines the hierarchy:
hierarchy.grouplevel <- obtainHierarchy(groupset = groupsetHierarchical)
Visualise hierarchical groups:
visualiseGroupset(Groupset = groupsetHierarchical, groupset.grouplvl = hierarchy.grouplevel)

or in co-data matrices
Setting 1: some transformations of informative, continuous co-data
Z1 <- cbind(continuousCodata, sqrt(continuousCodata))

Setting 2: splines for informative continuous
Z2 <- createZforSplines(values=continuousCodata)
S1.Z2 <- createS(orderPen=2, G=dim(Z2)[2]) # Create difference penalty matrix
Con2 <- createCon(G=dim(Z2)[2], shape="positive+monotone.i") # Create constraints

Setting 3: 5 random groups
Z3 <- createZforGroupset(groupsetRandom, p=p)
S1.Z3 <- createS(G=dim(Z3)[2], categorical = TRUE) # Create difference penalty matrix
Con3 <- createCon(G=dim(Z3)[2], shape="positive") # Create constraints

Fit ecpc on group sets.
Fit ecpc for the two group sets, with ridge hypershrinkage for group set 1,
and hierarchical lasso and ridge for group set 2.
tic <- proc.time()[[3]]
fit <- ecpc(Y=Dat$Y, X=Dat$Xctd, groupsets=list(groupsetRandom, groupsetHierarchical),
groupsets.grouplvl=list(NULL, hierarchy.grouplevel),
hypershrinkage=c("ridge", "hierLasso, ridge"),
model="linear", maxsel=c(5, 10, 15, 20),
Y2=Dat$Y2, X2=Dat$X2ctd)
toc <- proc.time()[[3]]-tic

fit$tauglobal # estimated global prior variance
fit$gamma # estimated group weights (concatenated for the group sets)
c(fit$MSEecpc, fit$MSEridge) # mean squared error on test set for ecpc and ordinary ridge
fit$MSEPost # MSE on the test set of ecpc after posterior selection

#--------------------
..or on co-data matrices
#--------------------

fit ecpc for the three co-data matrices with following penalty matrices and constraints
note: can also be fitted without paraPen and/or paraCon
Z.all <- list(Z1=Z1, Z2=Z2, Z3=Z3)
paraPen.all <- list(Z2=list(S1=S1.Z2), Z3=list(S1=S1.Z3))
paraCon <- list(Z2=Con2, Z3=Con3)
tic <- proc.time()[[3]]
fit <- ecpc(Y=Dat$Y, X=Dat$Xctd, Z = Z.all, paraPen = paraPen.all, paraCon = paraCon,
model="linear", maxsel=c(5,10,15,20), Y2=Dat$Y2, X2=Dat$X2ctd)
toc <- proc.time()[[3]]-tic

fit$tauglobal # estimated global prior variance
fit$gamma # estimated group weights (concatenated for the co-data sources)
fit$gamma0 # estimated co-data intercept

plot contribution of one co-data source
i <- 1
groupsetNO <- c(unlist(sapply(1:length(Z.all),function(i) rep(i,dim(Z.all[[i]])[2]))))
vk <- as.vector(Z.all[[i]]%*%fit$gamma[groupsetNO==i])*fit$tauglobal
plot(continuousCodata,vk)

summary(fit$beta) # estimated regression coefficients
summary(fit$betaPost) # estimated regression coefficients after posterior selection

c(fit$MSEecpc, fit$MSEridge) # mean squared error on test set for ecpc and ordinary ridge
fit$MSEPost # MSE on the test set of ecpc after posterior selection

#--------------------
Fit ecpc for multiple datatypes
#--------------------

rankBeta<-order(abs(Dat$beta)) # betas ranked in order of magnitude

with multiple datatypes (given in datablocks) and informative groups
fit2 <- ecpc(Y=Dat$Y, X=Dat$Xctd[,rankBeta], groupsets=list(list(1:75,76:150,151:225,226:300)),
groupsets.grouplvl=list(NULL),
hypershrinkage=c("none"),
model="linear", maxsel=c(5,10,15,20),
Y2=Dat$Y2, X2=Dat$X2ctd[,rankBeta],
datablocks = list(1:floor(p/2),(floor(p/2)+1):p))
hierarchicalLasso

Fit hierarchical lasso using LOG penalty

Description

Fits a linear regression model penalised with a hierarchical lasso penalty, using a latent overlapping group (LOG) lasso penalty.

Usage

```r
hierarchicalLasso(X, Y, groupset, lambda=NULL)
```

Arguments

- `X`: nxp matrix with observed data
- `Y`: nx1 vector with response data
- `groupset`: list with hierarchical group indices
- `lambda`: Scalar. Penalty parameter for the latent overlapping group penalty.

Details

The LOG penalty can be used to impose hierarchical constraints in the estimation of regression coefficients (Yan, Bien et al. 2007), e.g. a group of covariates (child node in the hierarchical tree) may be selected only if another group is selected (parent node in the hierarchical tree). This function uses the simple implementation for the LOG penalty described in (Jacob, Obozinski and Vert, 2009). Faster and more scalable algorithms may be available but not yet used in this package.

Value

A list with the following elements;

- `betas`: Estimated regression coefficients.
- `a0`: Estimated intercept.
- `lambdarange`: Range of penalty parameter used for CV (if lambda was not given).
- `lambda`: Estimated penalty parameter.
- `group.weights`: Fixed group weights used in the LOG-penalty.

References

Examples

Simulate toy data
p<-60 # number of covariates
n<-30 # sample size training data set
n2<-100 # sample size test data set

simulate all betas i.i.d. from beta_k~N(mean=0,sd=sqrt(0.1)):
muBeta<-c(0,0) # prior mean
varBeta<-c(0.0001,0.1) # prior variance
vector with group numbers all 1 (all simulated from same normal distribution)
indT1<-rep(c(1,2),each=p/2)

simulate test and training data sets:
Dat<-simDat(n,p,n2,muBeta,varBeta,indT1,sigma=1,model="Var linear")
str(Dat) # Dat contains centered observed data, response data and regression coefficients

hierarchical grouping: e.g. covariates (p/4+1):(p/2) can only be selected when covariates 1:(p/4) are selected
groupset <- list(1:(p/2),(p/2+1):p,1:(p/4),(3*p/4+1):p)

Fit hierarchical lasso, perform CV to find optimal lambda penalty
res <- hierarchicalLasso(X=Dat$Xctd,Y=Dat$Y,groupset = groupset)
res$lambdarange
plot(res$betas)

Fit hierarchical lasso for fixed lambda
res2 <- hierarchicalLasso(X=Dat$Xctd,Y=Dat$Y,groupset = groupset,lambda=res$lambdarange[2])
plot(res2$betas)

obtainHierarchy Obtain hierarchy

Description

This function obtains the group set on group level that defines the hierarchy; if a group of covariates g is a subset of group h, then group h is an ancestor of group g (higher up in the hierarchy). This hierarchy is used in adaptively discretising continuous co-data.

Usage

obtainHierarchy(groupset, penalty = "LOG")

Arguments

groupset Group set of groups of covariates with nested groups.
penalty Default: "LOG" for a latent overlapping group approach (currently the only option in ecpc)
Details

We use the latent overlapping group (LOG) lasso penalty to define the hierarchical constraints as described in (Yan, Bien et al. 2007); for each group \(g \) of covariates, we make a group on group level with group number \(g \) and the group numbers of its ancestors in the hierarchical tree. This way, group \(g \) can be selected if and only if all its ancestors are selected. This function assumes that if group \(g \) is a subset of group \(h \), then group \(h \) is an ancestor of group \(g \). Note that this assumption does not necessarily hold for all hierarchies. The group set on group level should then be coded manually.

Value

A group set on group level defining the hierarchy.

References

See Also

`splitMedian` to obtain a group set of nested groups for continuous co-data.

Examples

```r
cont.codata <- seq(0,1,length.out=20) #continuous co-data
#only split at lower continous co-data group
groupset <- splitMedian(values=cont.codata,split="lower",minGroupSize=5)
#obtain groups on group level defining the hierarchy
groupset.grouplvl <- obtainHierarchy(groupset)
```

postSelect

Perform posterior selection

Description

Given data and estimated parameters from a previously fit multi-group ridge penalised model, perform posterior selection to find a parsimonious model.

Usage

```r
postSelect(X, Y, beta, intrcpt = 0, penfctr, postselection = c("elnet,dense", "elnet,sparse","BRmarginal,dense","BRmarginal,sparse","DSS"), maxsel = 30, penalties, model=c("linear","logistic","cox"), tauglobal, sigmahat = 1, muhatp = 0, X2 = NaN, Y2 = NaN,silent=FALSE)
```
Arguments

- **X**: Observed data: data of p penalised and unpenalised covariates on n samples; (nxp)-dimensional matrix.
- **Y**: Response data; n-dimensional vector (linear, logistic) or `Surv` object (Cox survival).
- **beta**: Estimated regression coefficients from the previously fit model.
- **intrcpt**: Estimated intercept from the previously fit model.
- **penfctr**: As in glmnet penalty.factor; p-dimensional vector with a 0 if covariate is not penalised, 1 if covariate is penalised.
- **postselection**: Posterior selection method to be used.
- **maxsel**: Maximum number of covariates to be selected a posteriori, in addition to all unpenalised covariates. If maxsel is a vector, multiple parsimonious models are returned.
- **penalties**: Estimated multi-group ridge penalties for all penalised covariates from the previously fit model; vector of length the number of penalised covariates.
- **model**: Type of model for the response.
- **tauglobal**: Estimated global prior variance from the previously fit model.
- **sigmahat**: (linear model only) estimated variance parameter from the previously fit model.
- **muhatp**: (optional) Estimated multi-group prior means for the penalised covariates from the previously fit model.
- **X2**: (optional) Independent observed data.
- **Y2**: (optional) Independent response data.
- **silent**: Should output messages be suppressed (default FALSE)?

Value

A list with the following elements:

- **betaPost**: Estimated regression coefficients for parsimonious models. If ‘maxsel’ is a vector, ‘betaPost’ is a matrix with each column the vector estimate corresponding to the maximum number of selected covariates given in ‘maxsel’.
- **a0**: Estimated intercept coefficient for parsimonious models.
- **YpredPost**: If independent test set ‘X2’ is given, posterior selection model predictions for the test set.
- **MSEPost**: If independent test set ‘X2’, ‘Y2’ is given, mean squared error of the posterior selection model predictions.

Examples

```R
# Simulate toy data #
```

`postSelect` 21
produceFolds

Produce folds for cross-validation.

Usage

produceFolds(nsam, outerfold, response, model = c("logistic","cox","other"),
balance = TRUE)

Arguments

nsam Number of samples
outerfold Number of folds.
response Response data.
model Type of model for the response.
balance Should folds be balanced in response?
Value

A list with ‘outerfold’ elements containing a vector of sample indices in each fold.

Examples

```r
n<-100
outerfold <- 10

#linear model
resp <- rnorm(n)
folds <- produceFolds(nsam=n, outerfold=outerfold, response=resp)

#logistic model: keep 0/1 balanced across folds
resp <- as.factor(rnorm(n)>0.5)
folds <- produceFolds(nsam=n, outerfold=outerfold, response=resp, balance = TRUE)
```

simDat

Simulate data

Description

Simulate toy data with linear or logistic response.

Usage

```r
simDat(n, p, n2 = 20, muGrp, varGrp, indT, sigma = 1,
model = c("linear","logistic"), flag = FALSE)
```

Arguments

- **n**
 Number of samples for the training set.
- **p**
 Number of covariates.
- **n2**
 Number of independent samples for the test set.
- **muGrp**
 Prior mean for different groups.
- **varGrp**
 Prior variance for different groups.
- **indT**
 True group index of each covariate; p-dimensional vector.
- **sigma**
 Variance parameter for linear model.
- **model**
 Type of model.
- **flag**
 Should linear predictors and true response be plotted?
Value

A list with

- `beta` - Simulated regression coefficients
- `Xctd` - Simulated observed data for training set
- `Y` - Simulated response data for test set
- `X2ctd` - Simulated observed data for test set
- `Y2` - Simulated response data for test set

Examples

```r
n<-10
p<-30
#simulate beta from two normal distributions; beta_k ~ N(mu_k,tau^2_k)
muGrp <- c(0,0.1) #mean (mu_1,mu_2)
varGrp <- c(0.05,0.01) #variance (tau^2_1,tau^2_2)
#group number of each covariate; first half in group 1, second half in group 2
indT <- rep(c(1,2),each=15)
dataLin <- simDat(n, p, n2 = 20, muGrp, varGrp, indT, sigma = 1, model = "linear", flag = TRUE)
dataLog <- simDat(n, p, n2 = 20, muGrp, varGrp, indT, model = "logistic", flag = TRUE)
```

splitMedian

Discretise continuous data in multiple granularities

Description

Discretise continuous co-data by making groups of covariates of various size. The first group is the group with all covariates. Each group is then recursively split in two at the median co-data value, until some user-specified minimum group size is reached. The discretised groups are used for adaptive discretisation of continuous co-data.

Usage

```r
splitMedian(values, index=NULL, depth=NULL, minGroupSize = 50, first = TRUE, split = c("both","lower","higher"))
```

Arguments

- `values` - Vector with the continuous co-data values to be discretised.
- `index` - Index of the covariates corresponding to the values supplied. Useful if part of the continuous co-data is missing and only the non-missing part should be discretised.
visualiseGroupset

Visualise a group set

Description

Visualises a group set in a graph, with directed edges indicating the hierarchy.

Usage

`visualiseGroupset(Groupset, groupweights, groupset.grouplvl, nodeSize = 10, ls = 1)`
Arguments

Groupset
List of G groups of covariates.

groupweights
(optional) vector with G group weights; if given, group weights are visualised too.

groupset.grouplvl
List of G groups defining a hierarchy.

nodeSize
Size of the nodes in the visualisation; scalar.

ls
Line size; scalar.

Value

A ggplot object.

See Also

visualiseGroupsetweights to plot estimated group set weights. and visualiseGroupweights to plot estimated group weights.

Examples

```r
#groups without hierarchical constraints
groupset <- list("Group1"=c(1:20),"Group2"=c(15,30))
visualiseGroupset(groupset, c(0.5,2))

#hierarchical groups
cont.codata <- seq(0,1,length.out=20) #continuous co-data
#only split at lower continous co-data group
hierarchicalgroupset <- splitMedian(values=cont.codata, split="lower", minGroupSize=5)
#obtain groups on group level defining the hierarchy
groupset.grouplvl <- obtainHierarchy(hierarchicalgroupset)
visualiseGroupset(hierarchicalgroupset, groupset.grouplvl=groupset.grouplvl)
```

visualiseGroupsetweights

Visualise estimated group set weights

Description

Plot group set weights from multiple cross-validation folds.

Usage

```r
visualiseGroupsetweights(dfGrps, GroupsetNames, hist = FALSE, boxplot = TRUE,
                         jitter = TRUE, ps = 1.5, width = 0.5)
```
visualiseGroupweights

Arguments

dfGrps Data frame containing the following variables; 'Groupset': factor with group set names; 'Groupset.weight': group set weight of each group set; 'Fold': number indicating which fold in the cross-validation is used.

GroupsetNames Vector with names of the group sets.
hist Should histogram be plotted?
boxplot Should boxplot be used or points?
jitter Should group set weights be jittered?
ps Point size.
width Width of jitter.

Value

Plot in ggplot object.

See Also

visualiseGroupset to visualise group sets and visualiseGroupweights to plot estimated group weights.

Examples

dfGrps <- data.frame(Groupset=rep(c(1,2),each=10),
 Groupset.weight=c(rnorm(10,0,0.01),rnorm(10,1,0.05)),
 Fold=rep(1:10,2))
GroupsetNames <- c("Groupset1","Groupset2")
visualiseGroupsetweights(dfGrps, GroupsetNames, hist = FALSE, boxplot = TRUE,jitter=TRUE)

visualiseGroupweights Visualise estimated group weights

Description

Plot group weights from multiple cross-validation folds.

Usage

visualiseGroupweights(dfGrps, Groupset, groupset.grouplvl, values,
 widthBoxplot = 0.05, boxplot = TRUE, jitter = TRUE,
 ps = 1.5, ls = 1)
Arguments

- **dfGrps**: Data frame containing the following variables: 'Group': factor with group names; 'Group.weight': group weight of each group; 'Fold': number indicating which fold in the cross-validation is used.

- **Groupset**: List of G elements containing covariate indices for each group

- **groupset.grouplvl** (optional): groups on group level, e.g. defining a hierarchical structure.

- **values** (optional): values of continuous co-data. If given, group weights are plotted against these value.

- **widthBoxplot**: Width of boxplot.

- **boxplot**: Should a boxplot be plotted?

- **jitter**: Should point estimates be jittered?

- **ps**: Point size.

- **ls**: Line size.

Value

Plot in ggplot object.

See Also

- `visualiseGroupset` to visualise group sets and `visualiseGroupsetweights` to plot estimated group set weights.

Examples

```r
# discrete groups
groupset1 <- list(1:20, 21:40)
dfGrps1 <- data.frame(Group=as.factor(rep(c(1,2),each=10)),
                      Group.weight=c(rnorm(10,0.5,0.01),rnorm(10,2,0.05)),
                      Fold=rep(1:10,2))
visualiseGroupweights(dfGrps1, Groupset=groupset1)

# continuous co-data groups
cont.codata <- seq(0,1,length.out=40)  # continuous co-data
# only split at lower continuous co-data group
groupset2 <- splitMedian(values=cont.codata, split="lower", minGroupSize=10)
# obtain groups on group level defining the hierarchy
groupset.grouplvl <- obtainHierarchy(groupset2)

dfGrps2 <- data.frame(Group=as.factor(rep(1:length(groupset2),each=10)),
                      Group.weight=c(rnorm(10*length(groupset2),1,0.01)),
                      Fold=rep(1:10,length(groupset2)))

visualiseGroupweights(dfGrps2, Groupset=groupset2, groupset.grouplvl=groupset.grouplvl)

# plot group weights per leaf group in the hierarchical tree
visualiseGroupweights(dfGrps2, Groupset=groupset2, groupset.grouplvl=groupset.grouplvl,
                      values=cont.codata)
```
Index

createCon, 3
createGroupset, 4, 8
createS, 4, 7, 9
createZforGroupset, 7, 8
createZforSplines, 4, 7, 9
cv.ecpc, 10

eccc, 3, 4, 10, 11
eccpc-package, 2

hierarchialLasso, 18

obtainHierarchy, 13, 19, 25

postSelect, 20
produceFolds, 22

simDat, 23
splitMedian, 5, 20, 24
Surv, 10, 12, 21

visualiseGroupset, 25, 27, 28
visualiseGroupsetweights, 10, 26, 26, 28
visualiseGroupweights, 10, 26, 27, 27