Package ‘ed50’

April 23, 2019

Type Package
Title Estimate ED50 and Its Confidence Interval
Version 0.1.1
Author Yongbo Gan, Zhijian Yang, Wei Mei
Maintainer Yongbo Gan <yongbogan@whu.edu.cn>
Description Functions of five estimation method for ED50 (50 percent effective dose) are provided, and they are respectively Dixon-Mood method (1948) <doi:10.2307/2280071>, Choi's original turning point method (1990) <doi:10.2307/2531453> and it's modified version given by us, as well as logistic regression and isotonic regression. Besides, the package also supports comparison between two estimation results.
Imports stats, boot, utils
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
NeedsCompilation no
Repository CRAN
Date/Publication 2019-04-23 07:50:06 UTC

R topics documented:

 bootBC.ci .. 2
 bootIsotonicRegression 2
 bootIsotonicResample 3
 compare .. 4
 estimate .. 4
 generateData .. 5
 groupS ... 6
 groupSN .. 7
 gTableOrigin 8
 preparePava .. 8
bootBC.ci
Estimate Confidence Interval of ED50 Using Isotonic Regression

Description
Estimate confidence interval of ED50 using isotonic regression based on bootstrap method.

Usage
bootBC.ci(tObserved, tBoot, conf = 0.95)

Arguments
- tObserved: the vector of observed statistics.
- tBoot: The matrix with R rows each of which is a bootstrap replicate of the statistics.
- conf: Confidence level.

Examples
library(ed50)
library(boot)
pavaData <- preparePava(groupS)
bootResult <- boot(data = groupS,
 statistic = bootIsotonicRegression,
 R = 10,
 sim = 'parametric',
 ran.gen = bootIsotonicResample,
 mle = list(baselinePava = pavaData,
 firstDose = 2.5,
 PROBABILITY.GAMMA = 0.5),
 baselinePava = pavaData,
 PROBABILITY.GAMMA = 0.5)
bootBC.ci(tObserved = bootResult$@3,
 tBoot = bootResult$[3],
 conf = 0.95)

bootIsotonicRegression
Isotonic Regression Function

Description
Function of isotonic regression.
Usage

```r
go.bootIsotonicResample(data, PROBABILITY.GAMMA = 0.5, baselinePava)
```

Arguments

- **data**: the same dataframe called by the boot function.
- **PROBABILITY.GAMMA**: the target effect probability in the BCD experiment; default = 0.5 and need not be specified.
- **baselinePava**: the dataframe prepared by the function `preparePava`.

Examples

```r
library(ed50)
pavaData <- preparePava(groupS)
bootIsotonicRegression(data = groupS, PROBABILITY.GAMMA = 0.5, baselinePava = pavaData)
```

bootIsotonicResample *The resample function of isotonic regression*

Description

The function is designed as an argument for the boot function of the Canty Bootstrap package.

Usage

```r
bootIsotonicResample(data, mle)
```

Arguments

- **data**: Original experiment data.
- **mle**: A list of additional arguments to be used by `bootIsotonicResample`.

Examples

```r
library(ed50)
pavaData <- preparePava(groupS)
bootIsotonicResample(data = groupS, mle = list(baselinePava = pavaData, firstDose = 2.5, PROBABILITY.GAMMA = 0.5))
```
compare

Compare ED50 Estimation of Independent Two-sample Case

Description

Test the statistical difference of two independent estimation results of ED50.

Usage

```r
compare(group1, group2, alpha = 0.05)
```

Arguments

- `group1`: A list object of ED50 estimation.
- `group2`: Another list object of ED50 estimation to be compared with.
- `alpha`: The significant level of test. 0.05 is the default value.

Value

The difference between two groups of ED50 estimation in terms of statistical significance.

References

Examples

```r
library(ed50)
ans1 <- estimate(groupS$doseSequence, groupS$responseSequence, method = 'ModTurPoint')
ans2 <- estimate(groupSN$doseSequence, groupSN$responseSequence, method = 'Dixon-Mood')
compare(ans1, ans2)
```

estimate

Estimate ED50

Description

Estimate 50 percent effective dose using different methods.

Usage

```r
estimate(doseSequence, doseResponse, confidence = 0.95,
method = c("Dixon-Mood", "Choi", "ModTurPoint", "Logistic",
"Isotonic"), tpCiScale = 2.4/qnorm(0.975), boot.n = 10000)
```
Arguments

doseSequence A sequence of doses given in order
doseResponse A sequence of response results shown in order
certainty The confidence level of interval estimate
method The method used to estimate ED50, there are five methods here, respectively Dixon-Mood, Choi (Choi’s Original Turning Point), ModTurPoint (Modified Turning Point), Logistic (Logistic Regression) and Isotonic (Isotonic Regression). The default is Dixon-Mood.
tpCiScale The scale level to enlarge the confidence interval estimated by Modified Turning Point Method. The default value is \(2.4/\text{qnorm}(0.975)\).
boot.n The number of boot process if Logistic method is chosen to estimate ED50.

Value

A list of estimation result consisting of method of estimation, ED50 estimate, standard error of ED50 estimate, confidence level and estimate of confidence interval.

References

Examples

```r
library(ed50)
estimate(groups\$doseSequence, groups\$responseSequence, method = 'Dixon-Mood')
estimate(groups\$doseSequence, groups\$responseSequence, method = 'Logistic', boot.n = 1000)
```

Description

The function is used to generate simulation data of up-and-down experiment, and provide three cases that tolerance distribution obeys normal, triangle or chi-square distribution.

Usage

generateData(number, useTurPoint = FALSE, start, doseStep = 1,
distribution = c("Normal", "Triangle", "Chi-square"), normalMean = 0,
normalStd = 1, triMean = 0, triWidth = 2, chiDegree = 1)
Arguments

- **number**: The number of experiments in a trial.
- **useTurPoint**: A logical value indicating whether the parameter **number** refers to the amount of turning points. The default value is `FALSE`.
- **start**: The first dose level given in this trail.
- **doseStep**: A fix value that represents the difference between two adjacent dose levels.
- **distribution**: The tolerance distribution, including normal, triangle and chi-square distribution, and the default distribution is N(0, 1).
- **normalMean**: Parameter mean of normal distribution, the default value is 0.
- **normalStd**: Parameter std of normal distribution, the default value is 1.
- **triMean**: Parameter mean of triangle distribution, the default value is 0.
- **triWidth**: Parameter width of triangle distribution, the default value is 2.
- **chiDegree**: Parameter degree of freedom of chi-square distribution, the default value is 1.

Value

A data frame.

Examples

```r
library(ed5P)
generateData(number = 20, start = 2, doseStep = 0.2, distribution = 'Normal')
generateData(number = 40, start = 2, doseStep = 0.2, distribution = 'Chi-square')
```

groupS

A Real Experiment Dose Data

Description

A group of real experiment data based on up-and-down method.

Usage

`groupS`

Format

A data of 36 samples and 2 variables:

- **responseSequence**: A value of 0 or 1 indicating the experiment outcome. 0 refers to a failure outcome while 1 refers to a success.
- **doseSequence**: The dose given in each experiment.
Source

The data is from the article in the references below.

References

<table>
<thead>
<tr>
<th>groupSN</th>
<th>A Real Experiment Dose Data</th>
</tr>
</thead>
</table>

Description

A group of real experiment data based on up-and-down method.

Usage

groupSN

Format

A data of 38 samples and 2 variables:

- responseSequence A value of 0 or 1 indicating the experiment outcome. 0 refers to a failure outcome while 1 refers to a success.
- doseSequence The dose given in each experiment.

Source

The data is from the article in the references below.

References

preparePava

gTableOrigin

G Table

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A table containing parameter G used in Dixon-Mood method.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>gTableOrigin</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>A data table containing 3 columns:</td>
</tr>
<tr>
<td>Ratio The ratio of dose step and estimate standard error</td>
</tr>
<tr>
<td>G1 The value of parameter G when the estimate of ED50 falls on a dose level</td>
</tr>
<tr>
<td>G2 The value of parameter G when the estimate of ED50 falls between two dose levels</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>The table is obtained from Figure 2 in the reference below</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>References</th>
</tr>
</thead>
</table>

preparePava

Covert Data Using PAVA Algorithm

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covert data using PAVA algorithm, the result is used for isotonic regression estimation.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>preparePava(data)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td>data A data frame of dose experiments.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>library(ed50)</td>
</tr>
<tr>
<td>preparePava(groupS)</td>
</tr>
<tr>
<td>preparePava(groupSN)</td>
</tr>
</tbody>
</table>
Index

*Topic **datasets**
 - groupS, 6
 - groupSN, 7
 - gTableOrigin, 8

bootBC.ci, 2
bootIsotonicRegression, 2
bootIsotonicResample, 3

compare, 4

estimate, 4

generateData, 5
groupS, 6
groupSN, 7
gTableOrigin, 8

preparePava, 8