Package ‘edgebundle’

November 22, 2022

Title Algorithms for Bundling Edges in Networks and Visualizing Flow and Metro Maps

Version 0.4.1

BugReports https://github.com/schochastics/edgebundle/issues

License MIT + file LICENSE

Suggests testthat (>= 2.0.0), network, tidygraph

Config/testthat/edition 2

Encoding UTF-8

LazyData true

RoxygenNote 7.2.1

LinkingTo Rcpp

Imports Rcpp, igraph, reticulate, interp

Depends R (>= 3.5)

NeedsCompilation yes

Author David Schoch [aut, cre] (<https://orcid.org/0000-0003-2952-4812>)

Maintainer David Schoch <david@schochastics.net>

Repository CRAN

Date/Publication 2022-11-22 07:00:02 UTC

R topics documented:

- cali2010
- convert_edges
- edge_bundle_force
- edge_bundle_hammer
- edge_bundle_path
- edge_bundle_stub
- install_bundle_py
- metro_berlin
- metro_multicriteria
- tnss_dummies
- tnss_smooth
- tnss_tree
- us_flights
- us_migration

Description

A dataset containing the number of people who migrated from California to other US states

Usage

cali2010

Format

igraph object

Source

https://www.census.gov/data/tables/time-series/demo/geographic-mobility/state-to-state-migration.html
Description
converts edges of an igraph/network/tidygraph object into format useable for edge bundling

Usage
convert_edges(object, coords)

Default S3 method:
convert_edges(object, coords)

S3 method for class 'igraph'
convert_edges(object, coords)

S3 method for class 'network'
convert_edges(object, coords)

S3 method for class 'tbl_graph'
convert_edges(object, coords)

Arguments
object graph object
coords coordinates of vertices

Value
data frame of edges with coordinates

Author(s)
David Schoch

description
forces directed edge bundling

Description
Implements the classic edge bundling by Holten.
Usage

```r
edge_bundle_force(
  object,
  xy,
  K = 1,
  C = 6,
  P = 1,
  S = 0.04,
  P_rate = 2,
  I = 50,
  I_rate = 2/3,
  compatibility_threshold = 0.6,
  eps = 1e-08
)
```

Arguments

- `object`: a graph object (igraph/network/tbl_graph)
- `xy`: coordinates of vertices
- `K`: spring constant
- `C`: number of iteration cycles
- `P`: number of initial edge divisions
- `S`: initial step size
- `P_rate`: rate of edge divisions
- `I`: number of initial iterations
- `I_rate`: rate of iteration decrease per cycle
- `compatibility_threshold`: threshold for when edges are considered compatible
- `eps`: accuracy

Details

This is a re-implementation of https://github.com/upphiminn/d3.ForceBundle. Force directed edge bundling is slow (O(E^2)).

see [online](https://github.com/upphiminn/d3.ForceBundle) for plotting tips

Value

- `data.frame` containing the bundled edges

Author(s)

David Schoch
References

See Also

edge_bundle_hammer, edge_bundle_stub, edge_bundle_path

Examples

library(igraph)
g <- graph_from_edgelist(matrix(c(1,12,2,11,3,10,4,9,5,8,6,7),ncol = 2,byrow = TRUE),FALSE)
xy <- cbind(c(rep(0,6),rep(1,6)),c(1:6,1:6))
edge_bundle_force(g,xy)

data.frame containing the bundled edges
edge_bundle_path

Description

Implements edge-path bundling.

Usage

edge_bundle_path(g, xy, max_distortion = 2, weight_fac = 2, segments = 20)

Arguments

g an igraph object
xy coordinates of vertices
max_distortion maximum distortion
weight_fac edge weight factor
segments number of subdivisions of edges

Details

This is a re-implementation of https://github.com/mwallinger-tu/edge-path-bundling
see online for plotting tips

Value

data.frame containing the bundled edges

Author(s)

David Schoch

References

Description

Implements the stub edge bundling by Nocaj and Brandes

Usage

```
edge_bundle_stub(
  object,
  xy,
  alpha = 11,
  beta = 75,
  gamma = 40,
  t = 0.5,
  tshift = 0.5
)
```

Arguments

- `object`: a graph object (igraph/tbl_graph). Does not support network objects
- `xy`: coordinates of vertices
- `alpha`: maximal angle (in degree) between consecutive edges in a bundle
- `beta`: angle (in degree) at which to connect two stubs
- `gamma`: maximal overall angle (in degree) of an edge bundle
- `t`: numeric between 0 and 1. control point location
- `tshift`: numeric between 0 and 1. The closer to one, the longer the bigger bundle

Details

see online for plotting tips

Value

data.frame containing the bundled edges
install_bundle_py

install python dependencies for hammer bundling

description
install datashader and scikit-image

usage
install_bundle_py(method = "auto", conda = "auto")
Arguments

| method | Installation method (by default, "auto" automatically finds a method that will work in the local environment, but note that the "virtualenv" method is not available on Windows) |
| conda | Path to conda executable (or "auto" to find conda using the PATH and other conventional install locations) |

Description

Subway network of Berlin

A dataset containing the subway network of Berlin

Usage

```r
metro_berlin
```

Format

igraph object

References

Arguments

object	original graph
xy	initial layout of the original graph
l	desired multiple of grid point spacing. (l*gr determines desired edge length)
gr	grid spacing. (l*gr determines desired edge length)
w	weight vector for criteria (see details)
bsize	number of grid points a station can move away from its original position

Description

Metro Map Layout

Metro map layout based on multicriteria optimization

Usage

```r
metro_multicriteria(object, xy, l = 2, gr = 0.0025, w = rep(1, 5), bsize = 5)
```
Details

The function optimizes the following five criteria using a hill climbing algorithm:

- **Angular Resolution Criterion**: The angles of incident edges at each station should be maximized, because if there is only a small angle between any two adjacent edges, then it can become difficult to distinguish between them.

- **Edge Length Criterion**: The edge lengths across the whole map should be approximately equal to ensure regular spacing between stations. It is based on the preferred multiple, L, of the grid spacing, g. The purpose of the criterion is to penalize edges that are longer than or shorter than Lg.

- **Balanced Edge Length Criterion**: The length of edges incident to a particular station should be similar.

- **Line Straightness Criterion**: (not yet implemented) Edges that form part of a line should, where possible, be co-linear either side of each station that the line passes through.

- **Octilinearity Criterion**: Each edge should be drawn horizontally, vertically, or diagonally at 45 degree, so we penalize edges that are not at a desired angle see online for more plotting tips.

Value

new coordinates for stations

Author(s)

David Schoch

References

Examples

```r
# the algorithm has problems with parallel edges
library(igraph)
g <- simplify(metro_berlin)
xy <- cbind(V(g)$lon,V(g)$lat)*100

# the algorithm is not very stable, try playing with the parameters
xy_new <- metro_multicriteria(g,xy,l = 2,gr = 0.5,w = c(100,100,1,1,100),bsize = 35)
```
tnss_dummies

Sample points for triangulated networks

Description

uses various sampling strategies to create dummy nodes for the tnss_tree

Usage

```r
tnss_dummies(
  xy,
  root,
  circ = TRUE,
  line = TRUE,
  diag = TRUE,
  grid = FALSE,
  rand = FALSE,
  ncirc = 9,
  rcirc = 2,
  nline = 10,
  ndiag = 50,
  ngrid = 50,
  nrand = 50
)
```

Arguments

- `xy` coordinates of "real" nodes
- `root` root node id
- `circ` logical. create circular dummy nodes around leafs.
- `line` logical. create dummy nodes on a straight line between root and leafs.
- `diag` logical. create dummy nodes diagonally through space.
- `grid` logical. create dummy nodes on a grid.
- `rand` logical. create random dummy nodes.
- `ncirc` numeric. number of circular dummy nodes per leaf.
- `rcirc` numeric. radius of circles around leaf nodes.
- `nline` numeric. number of straight line nodes per leaf.
- `ndiag` numeric. number of dummy nodes on diagonals.
- `ngrid` numeric. number of dummy nodes per dim on grid.
- `nrand` numeric. number of random nodes to create.

Value

coordinates of dummy nodes
tnss_smooth

Author(s)
David Schoch

Examples

dummy nodes for tree rooted in California
xy <- cbind(state.center$x, state.center$y)
xy_dummy <- tnss_dummies(xy, 4)

tnss_smooth
Smooth a Steiner tree

Description

Converts the Steiner tree to smooth paths

Usage

tnss_smooth(g, bw = 3, n = 10)

Arguments

g
Steiner tree computed with tnss_tree

bw
bandwidth of Gaussian Kernel

n
number of extra nodes to include per edge

Details

see see online for tips on plotting the result

Value

data.frame containing the smoothed paths

Author(s)
David Schoch

Examples

xy <- cbind(state.center$x, state.center$y)[!state.name%in%c("Alaska", "Hawaii")]
xy_dummy <- tnss_dummies(xy, root = 4)

gtree <- tnss_tree(cali2010, xy, xy_dummy, root = 4, gamma = 0.9)
tree_smooth <- tnss_smooth(gtree, bw = 10, n = 10)
tnss_tree

Create Steiner tree from real and dummy points

Description

creates an approximated Steiner tree for a flow map visualization

Usage

```r
tnss_tree(
  g,
  xy,
  xydummy,
  root,
  gamma = 0.9,
  epsilon = 0.3,
  elen = Inf,
  order = "random"
)
```

Arguments

g: original flow network (must be a one-to-many flow network, i.e star graph). Must have a weight attribute indicating the flow

xy: coordinates of "real" nodes

xydummy: coordinates of "dummy" nodes

root: root node id of the flow

gamma: edge length decay parameter

epsilon: percentage of points kept on a line after straightening with Visvalingam Algorithm

elen: maximal length of edges in triangulation

order: in which order shortest paths are calculated ("random","weight","near","far")

Details

Use `tnss_smooth` to smooth the edges of the tree

Value

approximated Steiner tree from dummy and real nodes as igraph object

Author(s)

David Schoch
References

Examples
xy <- cbind(state.center$x, state.center$y)[!state.name%in%c("Alaska", "Hawaii"),]
xy_dummy <- tnss_dummies(xy, root = 4)
gtree <- tnss_tree(cali2010, xy, xy_dummy, root = 4, gamma = 0.9)

us_flights

Flights within the US

Description
A dataset containing flights between US airports as igraph object

Usage
us_flights

Format
igraph object

Source
https://gist.github.com/mbostock/7608400/raw

us_migration

Migration within the US 2010-2019

Description
A dataset containing the number of people migrating between US states from 2010-2019

Usage
us_migration

Format
data.frame

Source
https://www.census.gov/data/tables/time-series/demo/geographic-mobility/state-to-state-migration.html
Index

* datasets
 cali2010, 2
 metro_berlin, 9
 us_flights, 14
 us_migration, 14

 cali2010, 2
 convert_edges, 3

 edge_bundle_force, 3, 6–8
 edge_bundle_hammer, 5, 5, 7, 8
 edge_bundle_path, 5, 6, 6, 8
 edge_bundle_stub, 5–7, 7

 install_bundle_py, 5, 8

 metro_berlin, 9
 metro_multicriteria, 9

 tnss_dummies, 11
 tnss_smooth, 12, 13
 tnss_tree, 12, 13

 us_flights, 14
 us_migration, 14