Package ‘edina’

October 13, 2022

Title Bayesian Estimation of an Exploratory Deterministic Input, Noisy and Gate Model

Version 0.1.1

Description Perform a Bayesian estimation of the exploratory deterministic input, noisy and gate (EDINA) cognitive diagnostic model described by Chen et al. (2018) <doi:10.1007/s11336-017-9579-4>.

URL https://github.com/tmsalab/edina

BugReports https://github.com/tmsalab/edina/issues

License GPL (>= 2)

Depends R (>= 3.5.0)

Imports Rcpp, ggplot2, jjb, reshape2

LinkingTo Rcpp, RcppArmadillo, rgen

Suggests simcdm

LazyData true

RoxygenNote 7.1.0

Encoding UTF-8

Language en-US

NeedsCompilation yes

Author James Joseph Balamuta [aut, cre, cph]
 (<https://orcid.org/0000-0003-2826-8458>),
 Steven Andrew Culpepper [aut, cph]
 (<https://orcid.org/0000-0003-4226-6176>),
 Jeffrey A. Douglas [aut]

Maintainer James Joseph Balamuta <balamut2@illinois.edu>

Repository CRAN

Date/Publication 2020-03-25 13:50:15 UTC
\textbf{R topics documented:}

\begin{itemize}
 \item \texttt{as_q_matrix} .. 2
 \item \texttt{autoplot.auto_edina} .. 3
 \item \texttt{auto_edina} .. 4
 \item \texttt{best_model} .. 6
 \item \texttt{BIC._edina} .. 7
 \item \texttt{DIC} .. 8
 \item \texttt{edina} .. 8
 \item \texttt{extract_q_matrix} ... 10
 \item \texttt{model_selection_graph} 11
 \item \texttt{parameter_evolution_graph} 12
 \item \texttt{PPP} .. 12
 \item \texttt{print.auto_edina} .. 13
 \item \texttt{print.edina} .. 14
 \item \texttt{print._q_matrix} ... 14
 \item \texttt{print.summary_auto_edina} 15
 \item \texttt{print.summary_edina} 16
 \item \texttt{q_graph} ... 16
 \item \texttt{q_matrix} .. 17
 \item \texttt{summary.auto_edina} 18
 \item \texttt{summary.edina} .. 19
\end{itemize}

\textbf{Index} 20

\begin{itemize}
 \item \texttt{as_q_matrix} \textit{Coerce data.frame and matrix classes to Q Matrix.}
\end{itemize}

\textbf{Description}

\texttt{as_q_matrix} acts as an alias.

\textbf{Usage}

\begin{verbatim}
 \texttt{as_q_matrix(x, \ldots)}

 ## S3 method for class 'data.frame'
 \texttt{as_q_matrix(x, \ldots)}

 ## S3 method for class 'matrix'
 \texttt{as_q_matrix(x, \ldots)}

 ## Default S3 method:
 \texttt{as_q_matrix(x, \ldots)}
\end{verbatim}

\textbf{Arguments}

\begin{itemize}
 \item \texttt{x} \hspace{1cm} Either a \texttt{data.frame} or \texttt{matrix}.
 \item \texttt{\ldots} \hspace{1cm} Not used
\end{itemize}
Value

A `q_matrix` object.

See Also

`q_matrix()`

Examples

```r
# Q matrix values
x = matrix(c(1, 0, 0, 1), nrow = 2)

# Construct class
q_mat = as_q_matrix(x)
```

Description

Presents either the fitting of model heuristics or the evolution of parameters on a graph

Usage

```r
## S3 method for class 'auto_edina'
autoplot(
  object,
  type = c("selection", "guessing", "slipping", "evolution"),
  ...
)
```

Arguments

- `object` An `auto_edina` object.
- `type` Kind of graph to display. Valid types: "selection" or "evolution".
- `...` Not used.

Value

A ggplot2 object.

See Also

`auto_edina()`, `best_model()`, `model_selection_graph()`, `parameter_evolution_graph()`
Examples

if(requireNamespace("simcdm", quietly = TRUE)) {

 # Set a seed for reproducibility
 set.seed(1512)

 # Setup data simulation parameters
 N = 2 # Number of Examinees / Subjects
 J = 10 # Number of Items
 K = 2 # Number of Skills / Attributes

 # Note:
 # Sample size and attributes have been reduced to create a minimally
 # viable example that can be run during CRAN's automatic check.
 # Please make sure to have a larger sample size...

 # Assign slipping and guessing values for each item
 ss = gs = rep(.2, J)

 # Simulate an identifiable Q matrix
 Q = simcdm::sim_q_matrix(J, K)

 # Simulate subject attributes
 subject_alphas = simcdm::sim_subject_attributes(N, K)

 # Simulate items under the DINA model
 items_dina = simcdm::sim_dina_items(subject_alphas, Q, ss, gs)

 # Requires at least 15 seconds of execution time.
 # Three EDINA models will be fit with increasing number of attributes.
 model_set_edina = auto_edina(items_dina, k = 2:4)

 # Visualize results results
 autoplot(model_set_edina, type = "selection")

 # Equivalent to:
 model_selection_graph(model_set_edina)

 # View model parameters
 autoplot(model_set_edina, type = "guessing")

 # Or directly call with:
 parameter_evolution_graph(model_set_edina, type = "guessing")
}

auto_edina

Auto EDINA model selection routine
Description

Automatically select an appropriate K dimension for a Q matrix under the Exploratory Deterministic Input, Noise And gate (EDINA) Model.

Usage

auto_edina(data, k = 2:4, burnin = 10000, chain_length = 20000)

Arguments

data: Binary responses to assessments in matrix form with dimensions $N \times J$.

k: Number of Attribute Levels as a positive integer.

burnin: Number of Observations to discard on the chain.

chain_length: Length of the MCMC chain

Value

An auto_edina object that contains:

- edina_models: A list containing all estimated edina model objects.
- criterions: Information criterions calculated for each model
- k_checked: Varying k dimensions checked.
- j: Number of Items

See Also

autoplot.auto_edina(), best_model(), model_selection_graph(), parameter_evolution_graph()

Examples

if(requireNamespace("simcdm", quietly = TRUE)) {

 # Set a seed for reproducibility
 set.seed(1512)

 # Setup data simulation parameters
 N = 15 # Number of Examinees / Subjects
 J = 10 # Number of Items
 K = 2 # Number of Skills / Attributes

 # Note:
 # Sample size and attributes have been reduced to create a minimally
 # viable example that can be run during CRAN's automatic check.
 # Please make sure to have a larger sample size...

 # Assign slipping and guessing values for each item
 ss = gs = rep(.2, J)

 # Simulate an identifiable Q matrix
Q = simcdm::sim_q_matrix(J, K)

Simulate subject attributes
subject_alphas = simcdm::sim_subject_attributes(N, K)

Simulate items under the DINA model
items_dina = simcdm::sim_dina_items(subject_alphas, Q, ss, gs)

Requires at least 15 seconds of execution time.
Three EDINA models will be fit with increasing number of attributes.
model_set_edina = auto_edina(items_dina, k = 2:4)

Display results
model_set_edina

Retrieve criterion table
table = summary(model_set_edina)

Extract "best model"
best_model(model_set_edina)

best_model

Extract the Best Model

Description

Extracts the best model from the auto_*() search procedure.

Usage

best_model(x, ...)

S3 method for class 'auto_edina'
best_model(x, ic = c("ppp", "bic", "dic"), ...)

Arguments

- **x**:
 - An auto_edina object
- **...**:
 - Not used.
- **ic**:
 - Information criterion name. Default "ppp".

Value

An edina model object corresponding to the smallest value of requested information criterion.
BIC.edina

See Also

- DIC.edina()
- BIC.edina()
- PPP.edina()

BIC.edina

Bayesian Information Criterion (BIC)

Description

Calculate BIC for EDINA models.

Usage

```r
## S3 method for class 'edina'
BIC(object, ...)
```

Arguments

- `object`:
 - An `edina` object
- `...`:
 - Not used.

Value

The BIC value of the given model.

BIC Computation Procedure

$$BIC = -2 \log p\left(\mathbf{y}|\hat{\theta}\right) + (k + 2) \cdot j + 2^k \cdot \log(n)$$

See Also

- PPP.edina()
- DIC.edina()
- PPP.edina()
- DIC.edina()
DIC

Deviance Information Criterion (DIC)

Description

Calculate DIC for EDINA models.

Usage

DIC(object, ...)

Arguments

object An edina object
...

Value

The DIC value of the given model.

DIC Computation Procedure

\[
DIC = -2 \left(\log p \left(y | \hat{\theta} \right) - 2 \left(\log p \left(y | \hat{\theta} \right) - \frac{1}{N} \sum_{n=1}^{N} \log p \left(y | \theta_s \right) \right) \right)
\]

See Also

PPP.edina(), BIC.edina()

edinad

EDINA Estimation Routine

Description

Performs the Exploratory Deterministic Input, Noise and Gate Model (EDINA) estimation on a given data set with a prespecified k value.

Usage

edinad(data, k = 3, burnin = 10000, chain_length = 20000)
Arguments

data Binary responses to assessments in matrix form with dimensions $N \times J$.

k Number of Attribute Levels as a positive integer.

burnin Number of Observations to discard on the chain.

chain_length Length of the MCMC chain

Value

An edina object that contains:

- coefficients: Estimated coefficients of the model fit
- loglike_summed: Summed log-likelihood
- loglike_pmean: Mean of log-likelihood
- pi_classes: Latent classes
- avg_q: Estimated Averaged Q Matrix
- est_q: Estimated Dichotomous Q Matrix
- or_tested: Odds Ratio used in the model selection.
- sample_or: Odds Ratio for the sample.
- n: Number of Observations
- j: Number of Items
- k: Number of Traits
- burnin: Amount of iterations to discard
- chain_length: Amount of iterations to retain.
- timing: Duration of the run
- dataset_name: Name of the data set used in estimation.

See Also

auto_edina(), summary.edina(), print.edina()

Examples

if(requireNamespace("simcdm", quietly = TRUE)) {

 # Set a seed for reproducibility
 set.seed(1512)

 # Setup data simulation parameters
 N = 1 # Number of Examinees / Subjects
 J = 10 # Number of Items
 K = 2 # Number of Skills / Attributes

 # Note:
 # Sample size and attributes have been reduced to create a minimally
 # viable example that can be run during CRAN's automatic check.
Please make sure to have a larger sample size...

Assign slipping and guessing values for each item
ss = gs = rep(.2, J)

Simulate an identifiable Q matrix
Q = simcdm::sim_q_matrix(J, K)

Simulate subject attributes
subject_alphas = simcdm::sim_subject_attributes(N, K)

Simulate items under the DINA model
items_dina = simcdm::sim_dina_items(subject_alphas, Q, ss, gs)

Compute the edina model
edina_model = edina(items_dina, k = K)

Display results
edina_model

Provide a summary overview
summary(edina_model)

extract_q_matrix
Extract Q Matrix

Description
Given a modeling object, extract the Q Matrix

Usage

```r
extract_q_matrix(x, ...)
```

S3 method for class 'q_matrix'
```r
extract_q_matrix(x, ...)
```

S3 method for class 'edina'
```r
extract_q_matrix(x, binary = TRUE, ...)
```

Default S3 method:
```r
extract_q_matrix(x, ...)
```

Arguments

- **x**: An edina or q_matrix object
- **...**: Additional parameters
binary

A boolean to indicate whether the Q matrix is shown in dichotomous form or in an estimated form.

Value

A matrix that is either dichotomous or estimated depending on the value of the binary parameter.

See Also

q_matrix(), as_q_matrix(), edina(), auto_edina()

Examples

Q matrix values
x = matrix(c(1, 0, 0, 1), nrow = 2)

Show Q matrix structure
Q = q_matrix(x)

Retrieve Q matrix
extract_q_matrix(Q)

model_selection_graph

View Model Selection Statistics Across Models

Description

Displays information about the value of each model information criterion for a given model across the dimensions the Q matrix is estimated.

Usage

model_selection_graph(x, ...)

Arguments

x An auto_edina or auto_errum object.
...

Not used

Value

A ggplot2 object

See Also

autoplot.auto_edina()
Description
Displays the slipping and guessing parameter changes for each model across the dimensions the Q matrix is estimated.

Usage
parameter_evolution_graph(x, ...)
Arguments
 x An auto_edina or auto_errum object.
 ... Not used

Value
A ggplot2 object

See Also
autoplot.auto_edina()

PPP Posterior Predictive Probabilities (PPPs)

Description
Computes posterior predictive probabilities (PPPs) based on the odds ratios for each pair of items.

Usage
PPP(object, ...)
S3 method for class 'edina'
PPP(object, alpha = 0.05, ...)

Arguments
 object An edina object
 ... Not used.
 alpha Defining region to indicate the level of extremeness the data must before the model is problematic.
Details

PPPs that smaller than 0.05 or greater than 0.95 tend to be extreme and evidence of misfit. As a result, this is more of a heuristic metric.

Value

The PPP value given the specified alpha value.

PPP Computation Procedure

1. simulate observed responses $Y^{(r)}$ using model parameters from iteration r of the MCMC sampler
2. computing the odds ratio for each pair of items at iteration r as
 \[
 OR^{(r)} = \frac{n_{11}^{(r)} n_{00}^{(r)}}{n_{10}^{(r)} n_{01}^{(r)}}
 \]
 , where $n_{11}^{(r)}$ is the frequency of ones on both variables at iteration r, $n_{10}^{(r)}$ is the frequency of ones on the first item and zeros on the second at iteration r, etc.; and
3. computing PPPs for each item pair as the proportion of generated $OR^{(r)}$'s that exceeded elements of the observed odds ratios.

print.auto_edina

Description

Custom print method for displaying the results of the Auto EDINA method.

Usage

```r
## S3 method for class 'auto_edina'
print(x, ...)
```

Arguments

- `x` An auto_edina object
- `...` Additional values passed onto the print.data.frame method.

Value

None.

The function provides a side-effect of displaying the overview of computed results across all models estimated.
print.edina

Printing out the EDINA Object

Description

Custom print method for computing the EDINA.

Usage

```r
## S3 method for class 'edina'
print(x, binary = FALSE, ...)
```

Arguments

<table>
<thead>
<tr>
<th>x</th>
<th>An edina object</th>
</tr>
</thead>
<tbody>
<tr>
<td>binary</td>
<td>Boolean to indicate whether the Q matrix is shown in dichotomous form or in an estimated form.</td>
</tr>
<tr>
<td>...</td>
<td>Additional methods passed onto the print.matrix method.</td>
</tr>
</tbody>
</table>

Value

None.

The function provides a side-effect of displaying the overview of the model estimated.

print.q_matrix

Printing out a Q Matrix Object

Description

Custom print method for the Q Matrix Object.

Usage

```r
## S3 method for class 'q_matrix'
print(x, ...)  
```

Arguments

<table>
<thead>
<tr>
<th>x</th>
<th>An q_matrix object</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>Additional methods passed onto the print.matrix method.</td>
</tr>
</tbody>
</table>

Value

An invisible matrix without the q_matrix class displayed as a part of the output displayed.
See Also

q_matrix(), as_q_matrix()

Examples

Q matrix values
x = matrix(c(1, 0, 0, 1), nrow = 2)

Show Q matrix structure
q_matrix(x)

Description

Custom method for displaying the results of the `summary(auto_edina)`.

Usage

```r
## S3 method for class 'summary_auto_edina'
print(x, ...)
```

Arguments

- `x` A `summary_auto_edina` object
- `...` Additional values passed onto the `print.data.frame` method.

Value

None.

The function provides a side-effect of displaying the overview of computed results across all models estimated.
print.summary_edina Printing out the Summary EDINA Object

Description

Custom print method for displaying the EDINA model summary information.

Usage

S3 method for class 'summary_edina'
print(x, binary = FALSE, ...)

Arguments

x A summary_edina object
binary Boolean to indicate whether the Q matrix is shown in dichotomous form or in an estimated form.
... Past onto the print.data.frame method.

Value

None.
The function provides a side-effect of displaying the overview of the model estimated.

q_graph Graph Q Matrix

Description

Provides a heatmap approach to showing the estimated binary or averaged values of the Q Matrix.

Usage

q_graph(x, ...)

S3 method for class 'auto_edina'
q_graph(x, binary = TRUE, ic = c("ppp", "bic", "dic"), ...)

S3 method for class 'edina'
q_graph(x, binary = TRUE, ...)

S3 method for class 'matrix'
q_graph(x, ...)

S3 method for class 'q_matrix'
q_graph(x, ...)
q_matrix

Arguments

x Either an edina, auto_edina, or q_matrix object.

... Additional parameters not used

binary Boolean to indicate if a classified Q (dichotomous by decision rule) or an estimate Q (non-dichotomous) or should be shown. Default: TRUE.

ic Information criterion name. Default "ppp".

Value

A ggplot2 object with a heatmap overview of the estimated Q matrix.

Examples

q = q_matrix(matrix(c(1, 0, 1, 1, 0, 1), ncol = 3))
q_graph(q)

q_matrix Create a Q Matrix Object

Description

Provides a way to create an object as a "q_matrix".

Usage

q_matrix(x)

Arguments

x Either a data.frame or matrix.

Value

A q_matrix object.

See Also

as_q_matrix()
Examples

Q matrix values
x = matrix(c(1, 0, 0, 1), nrow = 2)

Q matrix wrapper
q_mat = q_matrix(x)

Data Frame encoding of Q
q_df = data.frame(
 k1 = c(1, 0),
 k2 = c(0, 1)
)

Create a Q matrix
q_mat = q_matrix(q_df)

summary.auto_edina Summarize auto_edina model data

Description

Custom method for displaying the results of the auto_edina.

Usage

S3 method for class 'auto_edina'
summary(object, ...)

Arguments

object An auto_edina object
...

Value

The original auto_edina object with an added class of summary.auto_edina.
Summary

Summarize the EDINA Object

Description

Provide a more detailed view inside of edina model object.

Usage

```r
## S3 method for class 'edina'
summary(object, alpha = 0.05, ...)
```

Arguments

- `object`: An edina object
- `alpha`: Defining region to indicate the level of extremeness the data must before the model is problematic.
- `...`: Not used.

Value

A summary object that includes everything in the original `edina()` object and:

- `model_fit`: Matrix of model fit summary statistics.
- `alpha`: Alpha-value used to compute PPP()s.
Index

as_q_matrix, 2
as_q_matrix(), 11, 15, 17
auto_edina, 4
auto_edina(), 3, 9, 11
autoplot.auto_edina, 3
autoplot.auto_edina(), 5, 11, 12

best_model, 6
best_model(), 3, 5
BIC.edina, 7
BIC.edina(), 7, 8

DIC, 8
DIC.edina(), 7

edina, 8
edina(), 11, 19
extract_q_matrix, 10

model_selection_graph, 11
model_selection_graph(), 3, 5

parameter_evolution_graph, 12
parameter_evolution_graph(), 3, 5

PPP, 12
PPP(), 19
PPP.edina(), 7, 8
print.auto_edina, 13
print.edina, 14
print.edina(), 9
print.q_matrix, 14
print.summary_auto_edina, 15
print.summary_edina, 16

q_graph, 16
q_matrix, 17
q_matrix(), 3, 11, 15

summary.auto_edina, 18
summary.edina, 19
summary.edina(), 9