Package ‘eefAnalytics’

May 18, 2023

Type Package

Title Robust Analytical Methods for Evaluating Educational Interventions using Randomised Controlled Trials Designs

Version 1.1.1

Author Germaine Uwimpuhwe, Akansha Singh, Dimitris Vallis, Steve Higgins, ZhiMin Xiao, Ewoud De Troyer and Adetayo Kasim

Maintainer Germaine Uwimpuhwe <germaine.uwimpuhwe@durham.ac.uk>

Description Analysing data from evaluations of educational interventions using a randomised controlled trial design. Various analytical tools to perform sensitivity analysis using different methods are supported (e.g. frequentist models with bootstrapping and permutations options, Bayesian models). The included commands can be used for simple randomised trials, cluster randomised trials and multisite trials. The methods can also be used more widely beyond education trials. This package can be used to evaluate other intervention designs using Frequentist and Bayesian multilevel models.

Imports lme4, mvtnorm, graphics, stats, rstanarm, ggplot2, methods

License AGPL (>= 3)

Encoding UTF-8

RoxygenNote 7.2.0

Suggests knitr, rmarkdown, testthat

VignetteBuilder knitr

LazyData true

URL https://github.com/germaine86/eefAnalytics

BugReports https://github.com/germaine86/eefanalytics/issues

NeedsCompilation no

Repository CRAN

Date/Publication 2023-05-18 10:00:05 UTC
R topics documented:

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ComparePlot</td>
<td>2</td>
</tr>
<tr>
<td>crtBayes</td>
<td>4</td>
</tr>
<tr>
<td>crtData</td>
<td>6</td>
</tr>
<tr>
<td>crtFREQ</td>
<td>7</td>
</tr>
<tr>
<td>mstBayes</td>
<td>10</td>
</tr>
<tr>
<td>mstData</td>
<td>12</td>
</tr>
<tr>
<td>mstFREQ</td>
<td>13</td>
</tr>
<tr>
<td>plot.eefAnalytics</td>
<td>15</td>
</tr>
<tr>
<td>print.eefAnalytics</td>
<td>18</td>
</tr>
<tr>
<td>srtBayes</td>
<td>19</td>
</tr>
<tr>
<td>srtFREQ</td>
<td>21</td>
</tr>
<tr>
<td>summary.eefAnalytics</td>
<td>24</td>
</tr>
</tbody>
</table>

Description

It generates bar plot that compares the effect size from eefAnalytics' methods.

Usage

```r
ComparePlot(
  eefAnalyticsList,
  group,
  Conditional = TRUE,
  ES_Total = TRUE,
  modelNames
)
```

Arguments

- **eefAnalyticsList**

 A list of eefAnalytics S3 objects from eefAnalytics package.

- **group**

 A string/scalar value indicating which intervention to plot. This must be one of the values of intervention variable excluding the control group. For a two arm trial, the maximum number of values to consider is 1 and 2 for three arm trial.

- **Conditional**

 A logical value to indicate whether to plot conditional effect size. The default is Conditional=TRUE, otherwise Conditional=FALSE should be specified for plot based on unconditional effect size. Conditional variance is total or residual variance a multilevel model with fixed effects, whilst unconditional variance is total variance or residual variance from a multilevel model with only intercept as fixed effect.
ES_Total A logical value indicating whether to plot the effect size based on total variance or within school variance. The default is \texttt{ES_Total=TRUE}, to plot effect size using total variance. \texttt{ES_Total=FALSE} should be specified for effect size based on within school or residuals variance.

\smallskip

\texttt{modelName} a string factor containing the names of model to compare. See examples below.

\section*{Details}

\texttt{ComparePlot} produces a bar plot which compares the effect sizes and the associated confidence intervals from the different models. For a multilevel model, it shows the effect size based on residual variance and total variance.

\section*{Value}

Returns a bar plot to compare the different methods. The returned figure can be further modified as any \texttt{ggplot}

\section*{Examples}

\begin{verbatim}
if(interactive()){

data(mstData)

outputSRT <- srtFREQ(Posttest~ Intervention + Prettest,
 intervention = "Intervention", data = mstData)

outputSRTBoot <- srtFREQ(Posttest~ Intervention + Prettest,
 intervention = "Intervention",nBoot=1000, data = mstData)

outputMST <- mstFREQ(Posttest~ Intervention + Prettest,
 random = "School", intervention = "Intervention", data = mstData)

outputMSTBoot <- mstFREQ(Posttest~ Intervention + Prettest,
 random = "School", intervention = "Intervention",
 nBoot = 1000, data = mstData)

outputSRTbayes <- srtBayes(Posttest~ Intervention + Prettest,
 intervention = "Intervention",
 nsim = 2000, data = mstData)

comparing different results
\end{verbatim}
crtBayes

Bayesian analysis of cluster randomised education trials using Vague Priors.

Description

crtBayes performs analysis of cluster randomised education trials using a multilevel model under a Bayesian setting, assuming vague priors.

Usage

crtBayes(
 formula,
 random,
 intervention,
 baseln,
 adaptD,
 nsim = 2000,
 condopt,
 uncopt,
 data,
 threshold = 1:10/10,
 ...
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>formula</td>
<td>the model to be analysed is of the form y ~ x1+x2+.... Where y is the outcome variable and Xs are the independent variables.</td>
</tr>
<tr>
<td>random</td>
<td>a string variable specifying the "clustering variable" as contained in the data. See example below.</td>
</tr>
<tr>
<td>intervention</td>
<td>a string variable specifying the "intervention variable" as appearing in the formula and the data. See example below.</td>
</tr>
<tr>
<td>baseln</td>
<td>A string variable allowing the user to specify the reference category for intervention variable. When not specified, the first level will be used as a reference.</td>
</tr>
<tr>
<td>adaptD</td>
<td>As this function uses rstanarm, this term provides the target average proposal acceptance probability during Stan’s adaptation period. Default is NULL.</td>
</tr>
<tr>
<td>nsim</td>
<td>number of MCMC iterations per chain. Default is 2000.</td>
</tr>
</tbody>
</table>
condopt additional arguments of `stan_glm` to be passed only to the conditional model specification (for example, defining priors only for the conditional model, etc.).

uncopt additional arguments of `stan_glm` to be passed only to the unconditional model specification (for example, defining priors only for the unconditional model, etc.).

data data frame containing the data to be analysed.

threshold a scalar or vector of pre-specified threshold(s) for estimating Bayesian posterior probability such that the observed effect size is greater than or equal to the threshold(s).

... additional arguments of `stan_lmer` to be passed both to the conditional and unconditional model specifications.

Value

S3 object; a list consisting of

- **Beta**: Estimates and credible intervals for variables specified in the model. Use `summary.eefAnalytics` to get Rhat and effective sample size for each estimate.
- **ES**: Conditional Hedges’ g effect size and its 95% credible intervals.
- **covParm**: A vector of variance decomposition into between cluster variance (Schools) and within cluster variance (Pupils). It also contains intra-cluster correlation (ICC).
- **SchEffects**: A vector of the estimated deviation of each school from the intercept.
- **ProbES**: A matrix of Bayesian Posterior Probabilities such that the observed effect size is greater than or equal to a pre-specified threshold(s).
- **Model**: A `stan_glm` object used in ES computation, this object can be used for convergence diagnostic.
- **Unconditional**: A list of unconditional effect sizes, covParm and ProbES obtained based on between and within cluster variances from the unconditional model (model with only the intercept as a fixed effect).

Examples

```r
if(interactive()){

data(crtData)

#----------------------------------------------------------------------
## Bayesian analysis of cluster randomised trials  ##
#----------------------------------------------------------------------
output <- crtBayes(Posttest~ Intervention+Prettest,random="School",
                   intervention="Intervention",nsim=2000,data=crtData)

### Fixed effects
beta <- output$Beta
beta
```

```r
### Effect size
ES1 <- output$ES
ES1

### Covariance matrix
covParm <- output$covParm
covParm

### plot random effects for schools
plot(output)

### plot posterior probability of an effect size to be bigger than a pre-specified threshold
plot(output, group=1)

### define priors for explanatory variables
my_prior <- normal(location = c(0, 6), scale = c(10, 1))

### specify the priors for the conditional model only
output2 <- crtBayes(Posttest ~ Prettest + Intervention, random = "School",
                     intervention = "Intervention", nsm = 2000, data = crtData, condopt = list(prior = my_prior))

### Fixed effects
beta2 <- output2$Beta
beta2

### Effect size
ES2 <- output2$ES
ES2

-----------------------------------------------------------------------------------------
## Bayesian analysis of cluster randomised trials using informative priors for treatment ##
-----------------------------------------------------------------------------------------
```

crtData

Cluster Randomised Trial Data.

Description

A cluster randomised trial dataset containing 22 schools. The data contains a random sample of test data of pupils and not actual trial data.

Format

A data frame with 265 rows and 5 variables
Details

- Posttest: posttest scores
- Prettest: prettest scores
- Intervention: the indicator for intervention groups in a two arm trial, coded as 1 for intervention group and 0 for control group.
- Intervention2: a simulated indicator for intervention groups in a three arm trial.
- School: numeric school identifier

crtFREQ

Analysis of Cluster Randomised Education Trials using Multilevel Model under a Frequentist Setting.

Description

crtFREQ performs analysis of cluster randomised education trials using a multilevel model under a frequentist setting.

Usage

```r
crtFREQ(
  formula,
  random,
  intervention,
  baseln,
  nPerm,
  nBoot,
  type,
  ci,
  seed,
  data
)
```

Arguments

- **formula**: the model to be analysed is of the form y ~ x1+x2+.... Where y is the outcome variable and Xs are the independent variables.
- **random**: a string variable specifying the "clustering variable" as contained in the data. See example below.
- **intervention**: a string variable specifying the "intervention variable" as appearing in the formula and the data. See example below.
- **baseln**: A string variable allowing the user to specify the reference category for intervention variable. When not specified, the first level will be used as a reference.
- **nPerm**: number of permutations required to generate a permutated p-value.
- **nBoot**: number of bootstraps required to generate bootstrap confidence intervals.
type method of bootstrapping including case re-sampling at student level "case(1)",
case re-sampling at school level "case(2)", case re-sampling at both levels "case(1,2)"
and residual bootstrapping using "residual". If not provided, default will be case
re-sampling at student level.

ci method for bootstrap confidence interval calculations; options are the Basic
(Hall's) confidence interval "basic" or the simple percentile confidence interval
"percentile". If not provided default will be percentile.

seed seed required for bootstrapping and permutation procedure, if not provided de-
fault seed will be used.

data data frame containing the data to be analysed.

Value
S3 object; a list consisting of

- Beta: Estimates and confidence intervals for variables specified in the model.
- ES: Conditional Hedges' g effect size and its 95% confidence intervals. If nBoot is not spec-
ified, 95% confidence intervals are based on standard errors. If nBoot is specified, they are
non-parametric bootstrapped confidence intervals.
- covParm: A vector of variance decomposition into between cluster variance (Schools) and
within cluster variance (Pupils). It also contains intra-cluster correlation (ICC).
- SchEffects: A vector of the estimated deviation of each school from the intercept.
- Perm: A "nPerm x 2w" matrix containing permutated effect sizes using residual variance and
total variance. "w" denotes number of intervention. "w=1" for two arm trial and "w=2" for
three arm trial excluding the control group. It is produced only when nPerm is specified.
- Bootstrap: A "nBoot x 2w" matrix containing the bootstrapped effect sizes using residual
variance (Within) and total variance (Total). "w" denotes number of intervention. "w=1" for
two arm trial and "w=2" for three arm trial excluding the control group. It is only produced
when nBoot is specified.
- Unconditional: A list of unconditional effect sizes, covParm, Perm and Bootstrap obtained
based on variances from the unconditional model (model with only the intercept as a fixed
effect).

Examples

if(interactive()){

 data(crtData)

 ###
 # MLM analysis of cluster randomised trials + 1.96SE #
 ###

 output1 <- crtFREQ(Posttest~ Intervention+Prettest,random="School",
 intervention="Intervention",data=crtData)

 ### Fixed effects
beta <- output1$Beta
beta

Effect size
ES1 <- output1$ES
ES1

Covariance matrix
covParm <- output1$covParm
covParm

plot random effects for schools
plot(output1)

##
MLM analysis of cluster randomised trials
with residual bootstrap confidence intervals
##
output2 <- crtFREQ(Posttest~ Intervention+Prettest,random="School", intervention="Intervention",nBoot=1000,type="residual",data=crtData)

Effect size
ES2 <- output2$ES
ES2

plot bootstrapped values
plot(output2, group=1)

###
MLM analysis of cluster randomised trials with permutation p-value##
###
output3 <- crtFREQ(Posttest~ Intervention+Prettest,random="School", intervention="Intervention",nPerm=1000,data=crtData)

Effect size
ES3 <- output3$ES
ES3

plot permutated values
plot(output3, group=1)
}
Description

`mstBayes` performs analysis of multisite randomised education trials using a multilevel model under a Bayesian setting assuming vague priors.

Usage

```r
mstBayes(
  formula,
  random,
  intervention,
  baseln,
  adaptD,
  nsim = 2000,
  condopt,
  uncopt,
  data,
  threshold = 1:10/10,
  ...
)
```

Arguments

- **formula**: the model to be analysed is of the form `y ~ x1+x2+...`. Where `y` is the outcome variable and `Xs` are the independent variables.
- **random**: a string variable specifying the "clustering variable" as contained in the data. See example below.
- **intervention**: a string variable specifying the "intervention variable" as appearing in the formula and the data. See example below.
- **baseln**: A string variable allowing the user to specify the reference category for intervention variable. When not specified, the first level will be used as a reference.
- **adaptD**: As this function uses rstanarm, this term provides the target average proposal acceptance probability during Stan’s adaptation period. Default is NULL.
- **nsim**: number of MCMC iterations per chain. Default is 2000.
- **condopt**: additional arguments of `stan_glm` to be passed only to the conditional model specification (for example, defining priors only for the conditional model, etc.).
- **uncopt**: additional arguments of `stan_glm` to be passed only to the unconditional model specification (for example, defining priors only for the unconditional model, etc.).
- **data**: data frame containing the data to be analysed.
threshold a scalar or vector of pre-specified threshold(s) for estimating Bayesian posterior probability that the observed effect size is greater than or equal to the threshold(s).

... additional arguments of `stan_lmer` to be passed both to the conditional and unconditional model specifications.

Value

S3 object; a list consisting of

- **Beta**: Estimates and credible intervals for variables specified in the model. Use `summary.eefAnalytics` to get Rhat and effective sample size for each estimate.
- **ES**: Conditional Hedges’ g effect size and its 95% credible intervals.
- **covParm**: A list of variance decomposition into between cluster variance-covariance matrix (schools and school by intervention) and within cluster variance (Pupils). It also contains intra-cluster correlation (ICC).
- **SchEffects**: A vector of the estimated deviation of each school from the intercept and intervention slope.
- **ProbES**: A matrix of Bayesian posterior probabilities such that the observed effect size is greater than or equal to a pre-specified threshold(s).
- **Model**: A `stan_glm` object used in ES computation, this object can be used for convergence diagnostic.
- **Unconditional**: A list of unconditional effect sizes, covParm and ProbES obtained based on between and within cluster variances from the unconditional model (model with only the intercept as a fixed effect).

Examples

```r
if(interactive()){

data(mstData)

# Bayesian analysis of multisite randomised trials
output <- mstBayes(Posttest ~ Intervention+Prettest, random="School",
                   intervention="Intervention", nsim=2000, data=mstData)

### Fixed effects
beta <- output$Beta
beta

### Effect size
ES1 <- output$ES
ES1

### Covariance matrix
covParm <- output$covParm
```
plot random effects for schools
plot(output)

plot posterior probability of an effect size to be bigger than a pre-specified threshold
plot(output, group=1)

megamultisite trial dataset using informative priors for treatment

define priors for explanatory variables
my_prior <- normal(location = c(0,6), scale = c(10,1))

specify the priors for the conditional model only
output2 <- mstBayes(Posttest~ Prettest+Intervention, random="School", intervention="Intervention",nsim=2000, data=mstData, condopt=list(prior=my_prior))

Fixed effects
beta2 <- output2$Beta
beta2

Effect size
ES2 <- output2$ES
ES2

mstData

Description
A multisite trial dataset containing 54 schools. This data contains a random sample of test data of pupils and not actual trial data.

Format
A data frame with 210 rows and 5 variables

Details
- Posttest: posttest scores
- Prettest: prettest scores
- Intervention: the indicator for the intervention groups in a two arm trial, coded as 1 for intervention group and 0 for control group.
- Intervention2: a simulated indicator for intervention groups in a three arm trial.
- School: numeric school identifier

mstFREQ

Analysis of Multisite Randomised Education Trials using Multilevel Model under a Frequentist Setting.

Description

mstFREQ performs analysis of multisite randomised education trials using a multilevel model under a frequentist setting.

Usage

```r
mstFREQ(
  formula,
  random,
  intervention,
  baseln,
  nPerm,
  data,
  type,
  ci,
  seed,
  nBoot
)
```

Arguments

- **formula**: the model to be analysed is of the form y ~ x1+x2+.... Where y is the outcome variable and Xs are the independent variables.
- **random**: a string variable specifying the "clustering variable" as contained in the data. See example below.
- **intervention**: a string variable specifying the "intervention variable" as appearing in the formula and the data. See example below.
- **baseln**: A string variable allowing the user to specify the reference category for intervention variable. When not specified, the first level will be used as a reference.
- **nPerm**: number of permutations required to generate permuted p-value.
- **data**: data frame containing the data to be analysed.
- **type**: method of bootstrapping including case re-sampling at student level "case(1)", case re-sampling at school level "case(2)", case re-sampling at both levels "case(1,2)" and residual bootstrapping using "residual". If not provided, default will be case re-sampling at student level.
ci method for bootstrap confidence interval calculations; options are the Basic (Hall's) confidence interval "basic" or the simple percentile confidence interval "percentile". If not provided default will be percentile.

seed seed required for bootstrapping and permutation procedure, if not provided default seed will be used.

nBoot number of bootstraps required to generate bootstrap confidence intervals.

Value

S3 object; a list consisting of

- Beta: Estimates and confidence intervals for variables specified in the model.
- ES: Conditional Hedge's g effect size (ES) and its 95% confidence intervals. If nBoot is not specified, 95% confidence intervals are based on standard errors. If nBoot is specified, they are non-parametric bootstrapped confidence intervals.
- covParm: A list of variance decomposition into between cluster variance-covariance matrix (schools and school by intervention) and within cluster variance (Pupils). It also contains intra-cluster correlation (ICC).
- SchEffects: A vector of the estimated deviation of each school from the intercept and intervention slope.
- Perm: A "nPerm x 2w" matrix containing permutated effect sizes using residual variance and total variance. "w" denotes number of intervention. "w=1" for two arm trial and "w=2" for three arm trial excluding the control group. It is produced only when nPerm is specified.
- Bootstrap: A "nBoot x 2w" matrix containing the bootstrapped effect sizes using residual variance (Within) and total variance (Total). "w" denotes number of intervention. "w=1" for two arm trial and "w=2" for three arm trial excluding the control group. It is only produced when nBoot is specified.
- Unconditional: A list of unconditional effect sizes, covParm, Perm and Bootstrap obtained based on variances from the unconditional model (model with only the intercept as a fixed effect).

Examples

if(interactive()){

data(mstData)

###
MLM analysis of multisite trials + 1.96SE
###

output1 <- mstFREQ(Posttest~ Intervention+Prettest,random="School", intervention="Intervention",data=mstData)

Fixed effects
beta <- output1$Beta
beta
Effect size
ES1 <- output1$ES
ES1

Covariance matrix
covParm <- output1$covParm
covParm

plot random effects for schools
plot(output1)

##
MLM analysis of multisite trials
with residual bootstrap confidence intervals
##
output2 <- mstFREQ(Posttest~ Intervention+Prettest,random="School", intervention="Intervention",nBoot=1000,type="residual",data=mstData)

tp <- output2$Bootstrap
Effect size
ES2 <- output2$ES
ES2

plot bootstrapped values
plot(output2, group=1)

###
MLM analysis of multisite trials with permutation p-value##
###
output3 <- mstFREQ(Posttest~ Intervention+Prettest,random="School", intervention="Intervention",nPerm=1000,data=mstData)

ES3 <- output3$ES
ES3

plot permutated values
plot(output3, group=1)

plot.eefAnalytics

A plot method for an eefAnalytics S3 object obtained from the eefAnalytics package.
Description

Plots different figures based on output from eefAnalytics package.

Usage

```r
## S3 method for class 'eefAnalytics'
plot(x, group, Conditional = TRUE, ES_Total = TRUE, slope = FALSE, ...)
```

Arguments

- **x**: an output object from the eefAnalytics package.
- **group**: a string/scalar value indicating which intervention to plot. This must be one of the values of intervention variable excluding the control group. For a two arm trial, the maximum number of values to consider is 1 and 2 for three arm trial.
- **Conditional**: a logical value to indicate whether to plot the conditional effect size. The default is Conditional=TRUE, otherwise Conditional=FALSE should be specified for plot based on the unconditional effect size. Conditional variance is total or residual variance from a multilevel model with fixed effects, whilst unconditional variance is total variance or residual variance from a multilevel model with only intercept as fixed effect.
- **ES_Total**: A logical value indicating whether to plot the effect size based on total variance or within school variance. The default is ES_Total=TRUE, to plot the effect size using total variance. ES_Total=FALSE should be specified for the effect size based on within school or residuals variance.
- **slope**: A logical value indicating whether to return the plot of random intercept (default is slope=FALSE), return other school-by-intervention interaction random slope (s) is slope=TRUE. This argument is suitable only for mstBayes and mstFREQ functions.
- **...**: arguments passed to `plot.default`

Details

Plot produces a graphical visualisation depending on which model is fitted:

- For `srtFREQ()`, plot can only be used when nBoot or nPerm is specified to visualise the distribution of bootstrapped or permuted values.
- For `crtFREQ()` or `mstFREQ()`, plot shows the distribution of random intercepts when group=NULL. It produces histogram of permuted or bootstrapped values when group is specified and either nBoot or nPerm is also specified.

Value

Returns relevant plots for each model.
Examples

if(interactive()){

 #### read data
 data(mstData)
 data(crtData)

 #### SRT ####

 #### Bootstrapped
 outputSRTBoot <- srtFREQ(Posttest~ Intervention + Prettest,
 intervention = "Intervention", nBoot=1000, data = mstData)
 plot(outputSRTBoot,group=1)

 #### Permutation
 outputSRTPerm <- srtFREQ(Posttest~ Intervention + Prettest,
 intervention = "Intervention", nPerm=1000, data = mstData)
 plot(outputSRTPerm,group=1)

 #### MST ####

 #### Random intercepts
 outputMST <- mstFREQ(Posttest~ Intervention + Prettest,
 random = "School", intervention = "Intervention", data = mstData)
 plot(outputMST)

 #### Bootstrapped
 outputMSTBoot <- mstFREQ(Posttest~ Intervention + Prettest,
 random = "School", intervention = "Intervention",
 nBoot = 1000, data = mstData)
 plot(outputMSTBoot)
 plot(outputMSTBoot,group=1)

 #### Permutation
 outputMSTPerm <- mstFREQ(Posttest~ Intervention + Prettest,
 random = "School", intervention = "Intervention",
 nPerm = 1000, data = mstData)
 plot(outputMSTPerm)
 plot(outputMSTPerm,group=1)
CRT

Random intercepts

```r
outputCRT <- crtFREQ(Posttest ~ Intervention + Prettest, random = "School",
                      intervention = "Intervention", data = crtData)
plot(outputCRT)
```

Bootstrapped

```r
outputCRTBoot <- crtFREQ(Posttest ~ Intervention + Prettest, random = "School",
                          intervention = "Intervention", nBoot = 1000, data = crtData)
plot(outputCRTBoot, group = 1)
```

Permutation

```r
outputCRTPerm <- crtFREQ(Posttest ~ Intervention + Prettest, random = "School",
                          intervention = "Intervention", nPerm = 1000, data = crtData)
plot(outputCRTPerm, group = 1)
```

print.eefAnalytics

Print for a fitted model represented by an eefAnalytics object.

Description

Print for a fitted model represented by an eefAnalytics object.

Usage

```r
## S3 method for class 'eefAnalytics'
print(x, ...)  
```

Arguments

- `x`: Object of class eefAnalytics
- `...`: Additional arguments of `print`

Value

Print conditional and unconditional effect sizes.
srtBayes

Analysis of Simple Randomised Education Trials using Bayesian Linear Regression Model with Vague Priors.

Description

srtBayes performs analysis of educational trials under the assumption of independent errors among pupils using Bayesian framework with Stan. This can also be used with schools as fixed effects.

Usage

srtBayes(
 formula,
 intervention,
 baseln,
 adaptD,
 nsim = 2000,
 condopt,
 uncopt,
 data,
 threshold = 1:10/10,
 ...
)

Arguments

formula The model to be analysed is of the form $y \sim x_1 + x_2 + \ldots$. Where y is the outcome variable and Xs are the independent variables.

intervention A string variable specifying the "intervention variable" as appearing in the formula and the data. See example below.

baseln A string variable allowing the user to specify the reference category for intervention variable. When not specified, the first level will be used as a reference.

adaptD As this function uses rstanarm, this term provides the target average proposal acceptance probability during Stan’s adaptation period. Default is NULL.

nsim number of MCMC iterations per chain. Default is 2000.

condopt additional arguments of stan_glm to be passed only to the conditional model specification (for example, defining priors only for the conditional model, etc.).

uncopt additional arguments of stan_glm to be passed only to the unconditional model specification (for example, defining priors only for the unconditional model, etc.).

data Data frame containing the data to be analysed.

threshold a scalar or vector of pre-specified threshold(s) for estimating Bayesian posterior probability such that the observed effect size is greater than or equal to the threshold(s).

... Additional arguments of stan_glm to be passed both to the conditional and unconditional model specifications.
Value

S3 object; a list consisting of

- Beta: Estimates and credible intervals for the variables specified in the model. Use `summary.eefAnalytics` to get Rhat and effective sample size for each estimate.
- ES: Conditional Hedges’ g effect size and its 95% credible intervals.
- sigma2: Residual variance.
- ProbES: A matrix of Bayesian posterior probabilities such that the observed effect size is greater than or equal to a pre-specified threshold(s).
- Model: A `stan_glm` object used in ES computation, this object can be used for convergence diagnostic.
- Unconditional: A list of unconditional effect sizes, sigma2 and ProbES obtained based on residual variance from the unconditional model (model with only the intercept as a fixed effect).

Examples

```r
if(interactive()){

data(mstData)

#*****************************************************************************
## Bayesian analysis of simple randomised trials ##
#*****************************************************************************

output <- srtBayes(Posttest~ Intervention+Prettest, intervention="Intervention",nsim=2000,data=mstData)

### Fixed effects
beta <- output$Beta
beta

### Effect size
ES1 <- output$ES
ES1

## Covariance matrix
covParm <- output$covParm
covParm

### plot random effects for schools
plot(output)

### plot posterior probability of an effect size to be bigger than a pre-specified threshold
plot(output,group=1)

#*****************************************************************************
## Bayesian analysis of simple randomised trials using informative priors for treatment ##
#*****************************************************************************
```
Definition of Priors for Explanatory Variables

```r
my_prior <- normal(location = c(0,6), scale = c(10,1))
```

Specify Priors for the Conditional Model Only

```r
output2 <- srtBayes(Posttest ~ Prettest + Intervention,
                     intervention="Intervention",
                     nsim=2000, data=mstData,
                     condopt=list(prior=my_prior))
```

Fixed Effects

```r
beta2 <- output2$Beta
beta2
```

Effect Size

```r
ES2 <- output2$ES
ES2
```

srtFREQ

Analysis of Simple Randomised Education Trial using Linear Regression Model.

Description

srtFREQ performs analysis of educational trials under the assumption of independent errors among pupils. This can also be used with schools as fixed effects.

Usage

```r
srtFREQ(formula, intervention, baseln, nBoot, nPerm, ci, seed, data)
```

Arguments

- **formula**: the model to be analysed is of the form y~x1+x2+... Where y is the outcome variable and Xs are the independent variables.
- **intervention**: a string variable specifying the "intervention variable" as appearing in the formula and the data. See example below.
- **baseln**: A string variable allowing the user to specify the reference category for intervention variable. When not specified, the first level will be used as a reference.
- **nBoot**: number of bootstraps required to generate bootstrap confidence intervals.
- **nPerm**: number of permutations required to generate permutated p-value.
- **ci**: method for bootstrap confidence interval calculations; options are the Basic (Hall's) confidence interval "basic" or the simple percentile confidence interval "percentile". If not provided default will be percentile.
seed required for bootstrapping and permutation procedure, if not provided default seed will be used.

data frame containing the data to be analysed.

Value

S3 object; a list consisting of

- Beta: Estimates and confidence intervals for the variables specified in the model.
- ES: Conditional Hedges’g effect size and its 95% confidence intervals. If nBoot is not specified, 95% confidence intervals are based on standard errors. If nBoot is specified, they are non-parametric bootstrapped confidence intervals.
- sigma2: Residual variance.
- Perm: A "nPerm x w" matrix containing permutated effect sizes using residual variance. "w" denotes number of intervention. "w=1" for two arm trial and "w=2" for three arm trial excluding the control group. It is produced only if nPerm is specified.
- Bootstrap: A "nBoot x w" matrix containing the bootstrapped effect sizes using residual variance. "w" denotes number of intervention. "w=1" for two arm trial and "w=2" for three arm trial excluding the control group. It is produced only if nBoot is specified.
- Unconditional: A list of unconditional effect size, sigma2, Perm and Bootstrap obtained based on variances from the unconditional model (model with only intercept as fixed effect).

Examples

if(interactive()){

data(mstData)

Analysis of simple randomised trials using Hedges Effect Size#
Analysis of simple randomised trials using Hedges Effect Size with Permutation p-value#

output1 <- srtFREQ(Posttest~ Intervention+Prettest, intervention="Intervention",data=mstData)
ES1 <- output1$ES
ES1

output2 <- srtFREQ(Posttest~ Intervention+Prettest, intervention="Intervention",nPerm=1000,data=mstData)
ES2 <- output2$ES
ES2

plot permutated values
plot(output2, group=1)

(output3 <- srtFREQ(Posttest~ Intervention+Prettest, intervention="Intervention", nBoot=1000, ci="basic", data=mstData))

(ES3 <- output3$ES)

plot bootstrapped values

plot(output3, group=1)

(output4 <- srtFREQ(Posttest~ Intervention+Prettest+as.factor(School), intervention="Intervention", data=mstData))

(ES4 <- output4$ES)

Analysis of simple randomised trials using Hedges' effect size with schools as fixed effects

(output5 <- srtFREQ(Posttest~ Intervention+Prettest+as.factor(School), intervention="Intervention", nPerm=1000, data=mstData))

(ES5 <- output5$ES)

plot permutated values

plot(output5, group=1)

(output6 <- srtFREQ(Posttest~ Intervention+Prettest+as.factor(School), intervention="Intervention", nBoot=1000, data=mstData))
ES6 <- output6$ES
ES6

plot bootstrapped values

plot(output6, group=1)

summary.eefAnalytics
Summary for a fitted model represented by an eefAnalytics object.

Description

Summary for a fitted model represented by an eefAnalytics object.

Usage

```r
## S3 method for class 'eefAnalytics'
summary(object, ...)
```

Arguments

- `object`
 Object of class eefAnalytics

- `...`
 Additional arguments of `summary`

Value

Returns relevant summary including Rhat and effective sample sizes.
Index

ComparePlot, 2
.crtBayes, 4
crtData, 6
crtFREQ, 7
ggplot, 3
.mstBayes, 10
.mstData, 12
.mstFREQ, 13
.plot.default, 16
.plot.eefAnalytics, 15
.print, 18
.print.eefAnalytics, 18
.srtBayes, 19
.srtFREQ, 21
.stan.glm, 5, 10, 19
.stan.lmer, 5, 11
.summary, 24
.summary.eefAnalytics, 24