Package ‘eff2’

September 30, 2021

Type Package

Title Efficient Least Squares for Total Causal Effects

Version 1.0.1

Author Richard Guo [aut, cre] (<https://orcid.org/0000-0002-2081-7398>)

Maintainer Richard Guo <ricguo@uw.edu>

Description Estimate a total causal effect from observational data under linearity and causal sufficiency. The observational data is supposed to be generated from a linear structural equation model (SEM) with independent and additive noise. The underlying causal DAG associated the SEM is required to be known up to a maximally oriented partially directed graph (MPDAG), which is a general class of graphs consisting of both directed and undirected edges, including CPDAGs (i.e., essential graphs) and DAGs. Such graphs are usually obtained with structure learning algorithms with added background knowledge. The program is able to estimate every identified effect, including single and multiple treatment variables. Moreover, the resulting estimate has the minimal asymptotic covariance (and hence shortest confidence intervals) among all estimators that are based on the sample covariance.

License MIT + file LICENSE

URL https://github.com/richardkwo/eff2

BugReports https://github.com/richardkwo/eff2/issues

Depends R (>= 3.5.0)

Imports pcalg (>= 2.6), RBGL, igraph

Suggests knitr, rmarkdown, testthat, qgraph

VignetteBuilder knitr

RoxygenNote 7.1.2

Encoding UTF-8

LazyData true

NeedsCompilation no

Repository CRAN

Date/Publication 2021-09-30 20:40:02 UTC
Description

Estimate a total causal effect from observational data under linearity and causal sufficiency. The observational data is supposed to be generated from a linear structural equation model (SEM) with independent and additive noise. The underlying causal DAG associated the SEM is required to be known up to a maximally oriented partially directed graph (MPDAG), which is a general class of graphs consisting of both directed and undirected edges, including CPDAGs (i.e., essential graphs) and DAGs. Such graphs are usually obtained with structure learning algorithms with added background knowledge. The program is able to estimate every identified effect, including single and multiple treatment variables. Moreover, the resulting estimate has the minimal asymptotic covariance (and hence shortest confidence intervals) among all estimators that are based on the sample covariance.

Details

Use `estimateEffect` to estimate a total effect.

Use `isIdentified` to determine if a total effect can be identified.

Usage

```r
estimateEffect(data, x, y, amat, bootstrap = FALSE)
```
estimateEffect

Arguments

data a data frame consisting of iid observational data
x (integer) positions of treatment variables in the adjacency matrix; can be a single-
 ton (single treatment) or a vector (multiple treatments)
y (integer) position of the outcome variable in the adjacency matrix
amat adjacency matrix representing a DAG, CPDAG or MPDAG
bootstrap If TRUE, will estimate the standard error covariance with bootstrap (default: FALSE)

Details

Adjacency matrix amat represents the graphical information of the underlying causal DAG (directed
acyclic graph). The causal DAG should be contained by the graph represented by amat, which can
be a DAG, CPDAG (essential graph), or more generally, an MPDAG (maximally oriented partially
directed acyclic graph).

Matrix amat is coded with the convention of amatType:

- amat[i,j]=0 and amat[j,i]=1 means $i \rightarrow j$
- amat[i,j]=1 and amat[j,i]=0 means $i \leftarrow j$
- amat[i,j]=1 and amat[j,i]=1 means $i \leftrightarrow j$
- amat[i,j]=0 and amat[j,i]=0 means $i \perp j$

amat can be learned from observational data with a structure learning algorithm; see pc, ges and
LINGAM. Additional background knowledge can also be incorporated with addBgKnowledge.

Value

A vector of the same length as x. If bootstrap=TRUE, return a list of (effect, se.cov).

See Also

isIdentified is called for determining if an effect can be identified. See also adjustment, ida,
and jointIda for other estimators.

Examples

data("ex1")
result <- estimateEffect(ex1$data, c(5,3), 7, ex1$amat.cpdag, bootstrap=TRUE)
print(result$effect)
print(result$effect - 1.96 * sqrt(diag(result$se.cov)))
print(result$effect + 1.96 * sqrt(diag(result$se.cov)))
compare with truth
print(ex1$true.effects)

Not run:
throws an error because the effect is not identified
estimateEffect(ex1$data, 3, 7, ex1$amat.cpdag)

End(Not run)
ex1
An example of 10 variables simulated from a linear SEM

Description
An example of 10 variables simulated from a linear SEM

Usage
ex1

Format
A list containing:
- x treatment variables
- y outcome variable
- true.effects the true total effect of x on y
- B the coefficient matrix of the SEM
- amat.dag the adjacency matrix of the causal DAG
- amat.cpdag the adjacency matrix of the CPDAG of the causal DAG, representing the Markov equivalence class of the DAG.
- data 500 iid samples generated under student-t errors

isIdentified
Check if a total causal effect is identified

Description
The total causal effect from x to y is identified if and only if there is no possibly causal path from x to y that starts with an undirected edge.

Usage
isIdentified(amat, x, y, type = "pdag")

Arguments
amat adjacency matrix. See estimateEffect for its coding.
- x (integer) positions of treatment variables in the adjacency matrix
- y (integer) positions of outcome variables in the adjacency matrix
- type string specifying the type of graph of amat. It can be DAG (type='dag') or MPDAG/CPDAG (type='pdag').
isIdentified

Value

TRUE if identified, FALSE if not.

References

See Also

estimateEffect

Examples

data("ex1")
identified
isIdentified(ex1$amat.cpdag, c(3, 5), 7)
not identified
isIdentified(ex1$amat.cpdag, 3, 7)
isIdentified(ex1$amat.cpdag, c(3, 5), 10)
Index

* datasets
 ex1, 4

addBgKnowledge, 3
adjustment, 3
amatType, 3

eff2, 2
estimateEffect, 2, 2, 4, 5
ex1, 4

ges, 3

ida, 3
isIdentified, 2, 3, 4

jointIda, 3
LINGAM, 3

pc, 3