Package ‘ehaGoF’

August 11, 2020

Type Package
Title Calculates Goodness of Fit Statistics
Version 0.1.1
Author Alper Gulbe [cre],
        Ecevit Eyduran [aut]
Maintainer Alper Gulbe <alper.gulbe@igdir.edu.tr>
Description Calculates 15 different goodness of fit criteria. These are; standard deviation ratio (SDR), coefficient of variation (CV), relative root mean square error (RRMSE), Pearson's correlation coefficients (PC), root mean square error (RMSE), performance index (PI), mean error (ME), global relative approximation error (RAE), mean relative approximation error (MRAE), mean absolute percentage error (MAPE), mean absolute deviation (MAD), coefficient of determination (R-squared), adjusted coefficient of determination (adjusted R-squared), Akaike’s information criterion (AIC), corrected Akaike’s information criterion (CAIC), Mean Square Error (MSE), Bayesian Information Criterion (BIC) and Normalized Mean Square Error (NMSE).

Imports graphics, stats
License GPL-2
Encoding UTF-8
LazyData FALSE
RoxygenNote 7.1.1
NeedsCompilation no
Repository CRAN
Date/Publication 2020-08-11 14:10:15 UTC

R topics documented:

  Goodness of Fit ................................................................. 2
  Goodness of Fit - Coefficient of Variation .............................. 4
  Goodness of Fit - Mean Absolute Percentage Error .................... 5
  Goodness of Fit - Pearson’s Correlation Coefficients ................. 7
  Goodness of fit - Relative Root Mean Square Error .................. 8
Description
Tests predicted and observed values for the goodness of fit with various criteria. The goodness of fit tests are used to test how well the model fits. Measures of goodness of fit typically summarize the argument between targets or observed values and the values expected or predicted under the model in question.

Usage
GoF(Observations, Predicts, nTermInAppr = 2, ndigit = 3, RMSE = TRUE, RRMSE = TRUE, SDR = TRUE, CV = TRUE, PC = TRUE, PI = TRUE, ME = TRUE, RAE = TRUE, MRAE = TRUE, MAPE = TRUE, MAD = TRUE, RSq = TRUE, ARSq = TRUE, AIC = TRUE, CAIC = TRUE)
Arguments

Arguments

- **Observations**: Observed values or target vector.
- **Predicts**: Predicted values. Values produced or fitted by approximation or regression.
- **nTermInAppr**: Number of terms used in approximation or regression model. Generally 2 for simple linear model. Default is 2.
- **ndigit**: Number of digits in decimal places. Default is 3.
- **RMSE**: Whether to show Root Mean Square Error statistics. Default is TRUE.
- **RRMSE**: Whether to show Relative Root Mean Square Error statistics. Default is TRUE.
- **SDR**: Whether to show Standard Deviation Ratio statistics. Default is TRUE.
- **CV**: Whether to show Coefficient of Variance statistics. Default is TRUE.
- **PC**: Whether to show Pearson’s Correlation Coefficients statistics. Default is TRUE.
- **PI**: Whether to show Performance Index statistics. Default is TRUE.
- **ME**: Whether to show Mean Error statistics. Default is TRUE.
- **RAE**: Whether to show Global Relative Approximation Error statistics. Default is TRUE.
- **MRAE**: Whether to show Modified Relative Approximation Error statistics. Default is TRUE.
- **MAPE**: Whether to show Mean Absolute Percentage Error statistics. Default is TRUE.
- **MAD**: Whether to show Mean Absolute Deviation statistics. Default is TRUE.
- **RSq**: Whether to show Coefficient of Determination (R-Squared) statistics. Default is TRUE.
- **ARSq**: Whether to show Adjusted Coefficient of Determination (Adjusted R-Squared) statistics. Default is TRUE. Warning: nTermInAppr must be supplied.
- **AIC**: Whether to show Akaike’s Information Criterion statistics. Default is TRUE. Warning: nTermInAppr must be supplied.
- **CAIC**: Whether to show Corrected Akaike’s Information Criterion statistics. Default is TRUE. Warning: nTermInAppr must be supplied.

Author(s)

Prof. Dr. Ecevit Eyduran, TA. Alper Gulbe

References

Examples

# dummy inputs, independent variable
# integers from 0 to 9
inputs <- 0:9

# dummy targets/observed values, dependent variable
# a product of 2*times inputs minus 5 with some normal noise
targets <- -5 + inputs*2 + rnorm(10)

# linear regression model
model<-lm(targets~inputs)

# About the model
summary(model)

# Number of Terms
n = length(model$coefficients)

# model's predicted values against targets
predicted<-model$fitted.values

# using library ehaGoF for goodness of fit.
library(ehaGoF)

# Goodness of fit statistics
GoF(targets, predicted, nTermInAppr=n)

Goodness of Fit - Coefficient of Variation

Coefficient of Variation.

Description

Calculates and returns goodness of fit - coefficient of variation (CV).

Usage

gofCV(Obs, Prd, dgt=3)

Arguments

<table>
<thead>
<tr>
<th>Obs</th>
<th>Observed or measured values or target vector.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prd</td>
<td>Predicted or fitted values by the model. Values produced by approximation or regression.</td>
</tr>
<tr>
<td>dgt</td>
<td>Number of digits in decimal places. Default is 3.</td>
</tr>
</tbody>
</table>

Value

CoefficientOfVariation

Goodness of fit - coefficient of variation (CV).
Author(s)

Prof. Dr. Ecevit Eyduran, TA. Alper Gulbe

References

Comparison of Different Data Mining Algorithms for Prediction of Body Weight From Several Morphological Measurements in Dogs - S Celik, O Yilmaz

Examples

# dummy inputs, independent variable
# integers from 0 to 19
inputs <- 0:19

# dummy targets/observed values, dependent variable
# a product of 2*times inputs minus 5 with some normal noise
targets <- -5 + inputs*1.2 + rnorm(20)

# linear regression model
model<-lm(targets~inputs)

# model's predicted values against targets
predicted<-model$fitted.values

# using library ehaGoF for goodness of fit.
library(ehaGoF)

# Goodness of fit - coefficient of variation (CV)
gofCV(targets, predicted)

Goodness of Fit - Mean Absolute Percentage Error

Mean Absolute Percentage Error

Description

Calculates and returns the goodness of fit criterion: mean absolute percentage error (MAPE), a.k.a. mean absolute percentage deviation or MAPD.

Usage

gofMAPE(Obs, Prd, dgt=3)

Arguments

Obs  Observed values or targets.
Prd  Predicted or expected values produced by the model.
dgt  Number of digits in decimal places. Default is 3.
**Details**

Mean absolute percentage error (MAPE) is a measure of prediction accuracy of a forecasting method in statistics. It is commonly used as a loss function for regression problems and in model evaluation, for its very intuitive interpretation in terms of relative error. It usually expresses accuracy as a percentage.

**Value**

MAPE  
Mean absolute percentage error (MAPE) of given set.

**Note**

For more information look at these papers:

Rob J. Hyndman, Anne B. Koehler, Another look at measures of forecast accuracy, International Journal of Forecasting, Volume 22, Issue 4, 2006, Pages 679-688, ISSN 0169-2070,

Arnaud de Myttenaere, Boris Golden, Bénédicte Le Grand, Fabrice Rossi, Mean Absolute Percentage Error for regression models, Neurocomputing, Volume 192, 2016, Pages 38-48, ISSN 0925-2312,

**Author(s)**

Prof. Dr. Ecevit Eyduran, TA. Alper Gulbe

**References**


Prediction of Selected Reproductive Traits of Indigenous Harnai Sheep under the Farm Management System via various Data Mining Algorithms - Daniel Zaborski, Muhammad Ali, Ecevit Eyduran, Wilhelm Grzesiak, Mohammad Masood Tariq, Ferhat Abbas, Abdul Waheed, Cem Tirink - Pakistan journal of zoology, 2019

Comparison of Different Data Mining Algorithms for Prediction of Body Weight From Several Morphological Measurements in Dogs - S Celik, O Yilmaz

**Examples**

```r
# dummy inputs, independent variable
# integers from 0 to 9
inputs <- 0:9

# dummy targets/observed values, dependent variable
# a product of 2*times inputs minus 5 with some normal noise
targets <- -5 + inputs*2 + rnorm(10)

# linear regression model
model<-lm(targets~inputs)
```
# model's predicted values against targets
predicted<-model$fitted.values

# using library ehaGoF for goodness of fit.
library(ehaGoF)

# Goodness of fit - mean absolute percentage error statistics
gofMAPE(targets, predicted)

---

**Goodness of Fit - Pearson’s Correlation Coefficients**

*Pearson’s Correlation Coefficients*

**Description**

Calculates and returns Pearson’s correlation coefficients (PC).

**Usage**

gofPC(Obs, Prd, dgt = 3)

**Arguments**

- **Obs**  
  Observed or measured values or target vector.
- **Prd**  
  Predicted or fitted values by the model. Values produced by approximation or regression.
- **dgt**  
  Number of digits in decimal places. Default is 3.

**Value**

*PearsonCorrelation*  
Pearson’s correlation coefficients (PC)

**Author(s)**

Prof. Dr. Ecevit EYDURAN, TA. Alper GULBE

**References**


Examples

```r
# dummy inputs, independent variable
# integers from 0 to 19
inputs <- 0:19

# dummy targets/observed values, dependent variable
# a product of 2*times inputs minus 5 with some normal noise
targets <- -5 + inputs*1.2 + rnorm(20)

# linear regression model
model <- lm(targets ~ inputs)

# model's predicted values against targets
predicted <- model$fitted.values

# using library ehaGoF for goodness of fit.
library(ehaGoF)

gofPC(targets, predicted)
```

Goodness of fit - Relative Root Mean Square Error

**Relative Root Mean Square Error**

Description

Calculates and returns relative root mean square error (RRMSE) of the model. The ratio of the mean of square root of residuals squared to the mean of observed values.

Usage

```r
gofRRMSE(Obs, Prd, dgt = 3)
```

Arguments

- **Obs**: Observed values or target vector.
- **Prd**: Predicted values. Values produced by approximation or regression.
- **dgt**: Number of digits in decimal places. Default is 3.

Details

RRMSE is calculated by dividing RMSE by the mean of observed values.

Value

- **RelativeRootMeanSquareError**: Relative root mean square error (RRMSE) of given set.
Note


Author(s)

Prof. Dr. Ecevit Eyduran, TA. Alper Gulbe

References


Indirect Estimation of Structural Parameters in South African Forests Using MISR-HR and LiDAR Remote Sensing Data - Precious Nokuthula Wistebaar Mahlangu, Renaud Mathieu, Konrad Wessels, Laven Naidoo, Michel M Verstraete, Gregory P Asner, Russell Main

Examples

```r
# Input values, independent variable
input <- 0:4

# Target vector, observed values, dependent variable
target <- c(1.9, 4.1, 5.89, 7.9, 10.01)

# Simple linear regression, target across input like: target = a * input + b,
# where a and b are coefficients.
model <- lm(target~input)

# Information about the model
summary(model)

# Values predicted by the model
predicted <- predict(model)

# using library ehaGoF for goodness of fit
library(ehaGoF)
goFRRMSE(target, predicted)
```
Description

Calculates and returns root mean square error (RMSE).

Usage

gofRMSE(Obs, Prd, dgt = 3)

Arguments

Obs     Observed or measured values or target vector.
Prd     Predicted or fitted values by the model. Values produced by approximation or regression.
dgt     Number of digits in decimal places. Default is 3.

Value

RootMeanSquareError
Root mean square error (RMSE)

Author(s)

Prof. Dr. Ecevit Eyduran, TA. Alper Gulbe

References

Comparison of the Predictive Capabilities of Several Data Mining Algorithms and Multiple Linear Regression in the Prediction of Body Weight by Means of Body Measurements in the Indigenous Beetal Goat of Pakistan - Ecevit Eyduran, Daniel Zaborski, Abdul Waheed, Senol Celik, Koksal Karadas, Wilhelm Grzesiak

Prediction of Selected Reproductive Traits of Indigenous Harnai Sheep under the Farm Management System via various Data Mining Algorithms - Daniel Zaborski, Muhammad Ali, Ecevit Eyduran, Wilhelm Grzesiak, Mohammad Masood Tariq, Ferhat Abbas, Abdul Waheed, Cem Tirink - Pakistan journal of zoology, 2019

Examples

# dummy inputs, independent variable
# integers from 0 to 19
inputs <- 0:19

# dummy targets/observed values, dependent variable
# a product of 2*times inputs minus 5 with some normal noise
targets <- -5 + inputs*1.2 + rnorm(20)

# linear regression model
model<-lm(targets~inputs)

# model's predicted values against targets
predicted<-model$fitted.values

# using library ehaGoF for goodness of fit.
library(ehaGoF)

# Goodness of fit - root mean square error (RMSE)
gofRMSE(targets, predicted)

Goodness of Fit - Standard Deviation Ratio

Description

Calculates and returns standard deviation ratio (SDR).

Usage

gofSDR(Obs, Prd, dgt=3)

Arguments

Obs Observed values or target vector.
Prd Predicted values. Values produced by approximation or regression.
dgt Number of digits in decimal places. Default is 3.

Value

StandardDeviationRatio

Standard deviation ratio (SDR) of given set.

Author(s)

Prof. Dr. Ecevit Eyduran, TA. Alper Gülbe
References


Prediction of Selected Reproductive Traits of Indigenous Harnai Sheep under the Farm Management System via various Data Mining Algorithms - Daniel Zaborski, Muhammad Ali, Ecevit Eyduran, Wilhelm Grzesiak, Mohammad Masood Tariq, Ferhat Abbas, Abdul Waheed, Cem Tirink - Pakistan journal of zoology, 2019

Comparison of Different Data Mining Algorithms for Prediction of Body Weight From Several Morphological Measurements in Dogs - S Celik, O Yilmaz

Examples

```r
# Should be DIRECTLY executable !! ----
#--==> Define data, use random,
#--or do  help(data=index) for the standard data sets.

# Input values, independent variable
input <- 0:4

# Target vector, observed values
target <- c(1.9, 4.1, 5.89, 7.9, 10.01)

# Simple linear regression target across input like target = a * input + b,
model <- lm(target~input)

# Information about the model
summary(model)

# Values predicted by the model
predicted <- predict(model)

# using library ehaGoF for goodness of fit.
gofSDR(target, predicted)
```

Description

Calculates and returns adjusted coefficient of determination (adjusted R-squared).
Goodness of Fit : Adjusted Coefficient of Determination (Adjusted R-Squared)

Usage

gofACoD(Obs, Prd, nTermInAppr = 2, dgt = 3)

Arguments

- **Obs**: Observed or measured values or target vector.
- **Prd**: Predicted or fitted values by the model. Values produced by approximation or regression.
- **nTermInAppr**: Number of terms in approximation or regression models formula, interception included. For simple linear regression with one independent variable is simply 2. Default is 2.
- **dgt**: Number of digits in decimal places. Default is 3.

Value

**AdjustedCoefficientofDetermination**

Goodness of fit - adjusted coefficient of determination (adjusted R-squared)

Author(s)

Prof. Dr. Ecevit Eyduran, TA. Alper Gulbe

References

Comparison of Different Data Mining Algorithms for Prediction of Body Weight From Several Morphological Measurements in Dogs - S Celik, O Yilmaz.

A new decision tree based algorithm for prediction of hydrogen sulfide solubility in various ionic liquids - Reza Soleimani, Amir Hossein Saeedi Dehaghani, Alireza Bahadori.

Examples

# dummy inputs, independent variable
# integers from 0 to 19
inputs <- 0:19

# dummy targets/observed values, dependent variable
# a product of 2*times inputs minus 5 with some normal noise
targets <- -5 + inputs*1.2 + rnorm(20)

# linear regression model
model<-lm(targets~inputs)

# About the model
summary(model)

# Number of Terms
n = length(model$coefficients)

# model's predicted values against targets
predicted<-model$fitted.values
Goodness of Fit : Adjusted R-Squared

# using library ehaGoF for goodness of fit.
library(ehaGoF)

# Goodness of fit : adjusted coefficient of determination (adjusted R-squared)
gofACoD(targets, predicted, dgt=4,nTermInAppr=n)

---

Goodness of Fit : Adjusted R-Squared

*Adjusted R-Squared (Adjusted Coefficient of Determination)*

Description

Calculates and returns adjusted coefficient of determination (adjusted R-squared).

Usage

gofARSq(Obs, Prd, nTermInAppr = 2, dgt = 3)

Arguments

- **Obs**: Observed or measured values or target vector.
- **Prd**: Predicted or fitted values by the model. Values produced by approximation or regression.
- **nTermInAppr**: Number of terms in approximation or regression models formula, interception included. For simple linear regression with one independent variable is simply 2. Default is 2.
- **dgt**: Number of digits in decimal places. Default is 3.

Value

- **ARsquared**: Goodness of fit - adjusted coefficient of determination (adjusted R-squared)

Author(s)

Prof. Dr. Ecevit Eyduran, TA. Alper Gulbe

References

Comparison of Different Data Mining Algorithms for Prediction of Body Weight From Several Morphological Measurements in Dogs - S Celik, O Yilmaz.

A new decision tree based algorithm for prediction of hydrogen sulfide solubility in various ionic liquids - Reza Soleimani, Amir Hossein Saeedi Dehaghani, Alireza Bahadori.
Examples

```r
# dummy inputs, independent variable
# integers from 0 to 99
inputs <- 0:99

# dummy targets/observed values, dependent variable
# a product of 2*times inputs minus 5 with some normal noise
targets <- -5 + inputs*1.2 + rnorm(100)

# linear regression model
model<-lm(targets~inputs)

# About the model
summary(model)

# Number of Terms
n = length(model$coefficients)

# model's predicted values against targets
predicted<-model$fitted.values

# using library ehaGoF for goodness of fit.
library(ehaGoF)

gofARSq(targets, predicted, dgt=4, nTermInAppr=n)
```

Goodness of Fit : Akaike’s Information Criterion

**Akaike’s Information Criterion**

**Description**

Calculates and returns Akaike’s information criterion (AIC).

**Usage**

`gofAIC(Obs, Prd, nTermInAppr=2, dgt = 3)`

**Arguments**

- **Obs**: Observed or measured values or target vector.
- **Prd**: Predicted or fitted values by the model. Values produced by approximation or regression.
- **nTermInAppr**: Number of terms in approximation or regression models formula, including interception. For simple linear regression with one independent variable is simply 2. Default is 2.
- **dgt**: Number of digits in decimal places. Default is 3.
**Goodness of Fit : Akaike’s Information Criterion**

**Value**

Akaike's Information Criterion (AIC)

**Note**

When $n/k$ is not greater than 40, where $n$ is the number of observations and $k$ is the number of terms in approximation, Corrected Akaike’s Information Criterion (gofCAIC) is used.

**Author(s)**

Prof. Dr. Ecevit Eyduran, TA. Alper Gulbe

**References**

Comparison of the Predictive Capabilities of Several Data Mining Algorithms and Multiple Linear Regression in the Prediction of Body Weight by Means of Body Measurements in the Indigenous Beetal Goat of Pakistan - Ecevit Eyduran, Daniel Zaborski, Abdul Waheed, Senol Celik, Koksal Karadas, Wilhelm Grzesiak.


**Examples**

```r
# dummy inputs, independent variable
# integers from 0 to 99
inputs <- 0:99

# dummy targets/observed values, dependent variable
# a product of 2*times inputs minus 5 with some normal noise
targets <- -5 + inputs*1.2 + rnorm(100)

# linear regression model
model<-lm(targets~inputs)

# About the model
summary(model)

# Number of Terms
n = length(model$coefficients)

# model's predicted values against targets
predicted<-model$fitted.values

# using library ehaGoF for goodness of fit.
library(ehaGoF)

# Goodness of fit : Akaike's information criterion (AIC)
gofAIC(targets, predicted, dgt=4, nTermInAppr=n)
```
**Description**

Calculates and returns coefficient of determination (R-squared).

**Usage**

gofCoD(Obs, Prd, dgt = 3)

**Arguments**

- **Obs**: Observed or measured values or target vector.
- **Prd**: Predicted or fitted values by the model. Values produced by approximation or regression.
- **dgt**: Number of digits in decimal places. Default is 3.

**Value**

Coefficient of Determination

Goodness of fit - coefficient of determination (R-squared)

**Author(s)**

Prof. Dr. Ecevit Eyduran, TA. Alper Gulbe

**References**

Comparison of Different Data Mining Algorithms for Prediction of Body Weight From Several Morphological Measurements in Dogs - S Celik, O Yilmaz.

A new decision tree based algorithm for prediction of hydrogen sulfide solubility in various ionic liquids - Reza Soleimani, Amir Hossein Saeedi Dehaghani, Alireza Bahadori.

**Examples**

```r
# dummy inputs, independent variable  
# integers from 0 to 99  
inputs <- 0:99

# dummy targets/observed values, dependent variable  
# a product of 2*times inputs minus 5 with some normal noise  
targets <- -5 + inputs*1.2 + rnorm(100)

# linear regression model  
model<-lm(targets~inputs)
```
# About the model
summary(model)

# model's predicted values against targets
predicted<-model$fitted.values

# using library ehaGoF for goodness of fit.
library(ehaGoF)

# Goodness of fit: coefficient of determination (R-squared)
gofCoD(targets, predicted)

---

**Goodness of Fit: Corrected Akaike’s Information Criterion**

*Corrected Akaike’s Information Criterion*

**Description**

Calculates and returns corrected Akaike’s information criterion.

**Usage**

gofCAIC(Obs, Prd, nTermInAppr = 2, dgt = 3)

**Arguments**

- **Obs**: Observed or measured values or target vector.
- **Prd**: Predicted or fitted values by the model. Values produced by approximation or regression.
- **nTermInAppr**: Number of terms in approximation or regression models formula, interception included. For simple linear regression with one independent variable is simply 2. Default is 2.
- **dgt**: Number of digits in decimal places. Default is 3.

**Value**

CorrectedAkaikesInformationCriterion

Goodness of fit - corrected Akaike’s information criterion (cAIC)

**Note**

When $n/k$ is greater than 40, where $n$ is the number of observations and $k$ is the number of terms in approximation, Akaike’s Information Criterion (gofAIC) is used.

**Author(s)**

Prof. Dr. Ecevit Eyduran, TA. Alper Gulbe
Goodness of Fit : Global Relative Approximation Error

References

Comparison of the Predictive Capabilities of Several Data Mining Algorithms and Multiple Linear Regression in the Prediction of Body Weight by Means of Body Measurements in the Indigenous Beetal Goat of Pakistan - Ecevit Eyduran, Daniel Zaborski, Abdul Waheed, Senol Celik, Koksal Karadas, Wilhelm Grzesiak.


Examples

```r
# dummy inputs, independent variable
# integers fron 0 to 79
inputs <- 0:79

# dummy targets/observed values, dependent variable
# a product of 2*times inputs minus 5 with some normal noise
targets <- -5 + inputs*1.2 + rnorm(80)

# linear regression model
model<-lm(targets~inputs)

# About the model
summary(model)

# Number of Terms
n = length(model$coefficients)

# model's predicted values against targets
predicted<-model$fitted.values

# using library ehaGoF for Goodness of Fit function (GoF)
library(ehaGoF)

gofCAIC(targets, predicted, dgt=4, nTermInAppr=n)
```

Goodness of Fit : Global Relative Approximation Error

**Global Relative Approximation Error**

Description

Calculates and returns global relative approximation error (RAE).

Usage

gofRAE(Obs, Prd, dgt = 3)
Goodness of Fit: Global Relative Approximation Error

Arguments

<table>
<thead>
<tr>
<th>Arg</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs</td>
<td>Observed or measured values or target vector.</td>
</tr>
<tr>
<td>Prd</td>
<td>Predicted or fitted values by the model. Values produced by approximation or regression.</td>
</tr>
<tr>
<td>dgt</td>
<td>Number of digits in decimal places. Default is 3.</td>
</tr>
</tbody>
</table>

Value

- RelativeApproximationError
  - Global relative approximation error (RAE)

Author(s)

Prof. Dr. Ecevit Eyduran, TA. Alper Gulbe

References

Comparison of the Predictive Capabilities of Several Data Mining Algorithms and Multiple Linear Regression in the Prediction of Body Weight by Means of Body Measurements in the Indigenous Beetal Goat of Pakistan - Ecevit Eyduran, Daniel Zaborski, Abdul Waheed, Senol Celik, Koksal Karadas, Wilhelm Grzesiak.


Comparison of Different Data Mining Algorithms for Prediction of Body Weight From Several Morphological Measurements in Dogs - S Celik, O Yilmaz.

The Connection Dependent Threshold Model for Finite Sources - A Generalization of the Engset Multirate Loss Model - Ioannis D. Moscholios and Michael D. Logothetis.

Examples

```r
# dummy inputs, independent variable
# integers from 0 to 99
inputs <- 0:99

# dummy targets/observed values, dependent variable
# a product of 2*times inputs minus 5 with some normal noise
targets <- -5 + inputs*1.2 + rnorm(100)

# linear regression model
model <- lm(targets ~ inputs)

# About the model
summary(model)

# model's predicted values against targets
predicted <- model$fitted.values
```
Goodness of Fit : Mean Absolute Deviation

# using library ehaGoF for goodness of fit.
library(ehaGoF)

# Goodness of fit : global relative approximation error (RAE)
gofRAE(targets, predicted)

Goodness of Fit : Mean Absolute Deviation

*Mean Absolute Deviation*

**Description**
Calculates and returns mean absolute deviation (MAD).

**Usage**
gofMAD(Obs, Prd, dgt = 3)

**Arguments**
- **Obs**: Observed or measured values or target vector.
- **Prd**: Predicted or fitted values by the model. Values produced by approximation or regression.
- **dgt**: Number of digits in decimal places. Default is 3.

**Value**
MeanAbsoluteDeviation
Goodness of fit - mean absolute deviation (MAD)

**Author(s)**
Prof. Dr. Ecevit Eyduran, TA. Alper Gulbe

**References**
Comparison of the Predictive Capabilities of Several Data Mining Algorithms and Multiple Linear Regression in the Prediction of Body Weight by Means of Body Measurements in the Indigenous Beetal Goat of Pakistan - Ecevit Eyduran, Daniel Zaborski, Abdul Waheed, Senol Celik, Koksal Karadas, Wilhelm Grzesiak.


Comparison of Different Data Mining Algorithms for Prediction of Body Weight From Several Morphological Measurements in Dogs - S Celik, O Yilmaz.
Examples

# dummy inputs, independent variable
# integers from 0 to 99
inputs <- 0:99

# dummy targets/observed values, dependent variable
# a product of 2*times inputs minus 5 with some normal noise
targets <- -5 + inputs*1.2 + rnorm(100)

# linear regression model
model<-lm(targets~inputs)

# model's predicted values against targets
predicted<-model$fitted.values

# using library ehaGoF for Goodness of Fit function (GoF)
library(ehaGoF)

# Goodness of Fit : Mean Absolute Deviation
gofMAD(targets, predicted, dgt=4)

Goodness of Fit : Mean Error

*Mean Error*

Description

Calculates and returns mean error (ME).

Usage

```
gofME(Obs, Prd, dgt = 3)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs</td>
<td>Observed or measured values or target vector.</td>
</tr>
<tr>
<td>Prd</td>
<td>Predicted or fitted values by the model. Values produced by approximation or regression.</td>
</tr>
<tr>
<td>dgt</td>
<td>Number of digits in decimal places. Default is 3.</td>
</tr>
</tbody>
</table>

Value

`MeanError` Goodness of fit - mean error (ME)

Author(s)

Prof. Dr. Ecevit Eyduran, TA. Alper Gulbe
References

Comparison of the Predictive Capabilities of Several Data Mining Algorithms and Multiple Linear Regression in the Prediction of Body Weight by Means of Body Measurements in the Indigenous Beetal Goat of Pakistan - Ecevit Eyduran, Daniel Zaborski, Abdul Waheed, Senol Celik, Koksal Karadas, Wilhelm Grzesiak.


Examples

```r
# dummy inputs, independent variable
# integers from 0 to 19
inputs <- 0:19

# dummy targets/observed values, dependent variable
# a product of 2*times inputs minus 5 with some normal noise
targets <- -5 + inputs*1.2 + rnorm(20)

# linear regression model
model<-lm(targets~inputs)

# About the model
summary(model)

# model's predicted values against targets
predicted<-model$fitted.values

# using library ehaGoF for goodness of fit.
library(ehaGoF)

gofME(targets, predicted)
```

Goodness of Fit : Mean Relative Approximation Error

Mean Relative Approximation Error

Description

Calculates and returns mean relative approximation error (MRAE).

Usage

gofMRAE(Obs, Prd, dgt = 3)
**Arguments**

- **Obs**: Observed values or target vector.
- **Prd**: Predicted values. Values produced by approximation or regression.
- **dgt**: Number of digits in decimal places. Default is 3.

**Value**

- **MeanRelativeApproximationError**: Goodness of fit - mean relative approximation error (MRAE)

**Author(s)**

Prof. Dr. Ecevit Eyduran, TA. Alper Gulbe

**References**


**Examples**

```r
# dummy inputs, independent variable
# integers from 0 to 19
inputs <- 0:19

# dummy targets/observed values, dependent variable
# a product of 2 times inputs minus 5 with some normal noise
targets <- -5 + inputs*1.2 + rnorm(20)

# linear regression model
model<-lm(targets~inputs)

# About the model
summary(model)

# model's predicted values against targets
predicted<-model$fitted.values

# using library ehaGoF for goodness of fit.
library(ehaGoF)

# Goodness of fit : mean relative approximation error (MRAE)
gofMRAE(targets, predicted)
```
Goodness of Fit: Performance Index

Description

Calculates and returns performance index (PI).

Usage

gofPI(Obs, Prd, dgt = 3)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs</td>
<td>Observed or measured values or target vector.</td>
</tr>
<tr>
<td>Prd</td>
<td>Predicted or fitted values by the model. Values produced by approximation or regression.</td>
</tr>
<tr>
<td>dgt</td>
<td>Number of digits in decimal places. Default is 3.</td>
</tr>
</tbody>
</table>

Value

PerformanceIndex

Goodness of fit: performance index (PI)

Author(s)

Prof. Dr. Ecevit Eyduuran, TA. Alper Gulbe

References

Prediction of Selected Reproductive Traits of Indigenous Harnai Sheep under the Farm Management System via various Data Mining Algorithms - Daniel Zaborski, Muhammad Ali, Ecevit Eyduuran, Wilhelm Grzesiak, Mohammad Masood Tariq, Ferhat Abbas, Abdul Waheed, Cem Tirink - Pakistan journal of zoology, 2019

Examples

# dummy inputs, independent variable
# integers from 0 to 19
inputs <- 0:19

# dummy targets/observed values, dependent variable
# a product of 2*times inputs minus 5 with some normal noise
targets <- -5 + inputs*1.2 + rnorm(20)

# linear regression model
model<-lm(targets~inputs)
Goodness of Fit : R-Squared

R-Squared (Coefficient of Determination)

Description

Calculates and returns R-squared (coefficient of determination).

Usage

gofRSq(Obs, Prd, dgt = 3)

Arguments

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs</td>
<td>Observed or measured values or target vector.</td>
</tr>
<tr>
<td>Prd</td>
<td>Predicted or fitted values by the model. Values produced by approximation or regression.</td>
</tr>
<tr>
<td>dgt</td>
<td>Number of digits in decimal places. Default is 3.</td>
</tr>
</tbody>
</table>

Value

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RSquared</td>
<td>Goodness of fit - coefficient of determination (R-squared)</td>
</tr>
</tbody>
</table>

Author(s)

Prof. Dr. Ecevit Eyduaran, TA. Alper Gulbe

References

Comparison of Different Data Mining Algorithms for Prediction of Body Weight From Several Morphological Measurements in Dogs - S Celik, O Yilmaz.

A new decision tree based algorithm for prediction of hydrogen sulfide solubility in various ionic liquids - Reza Soleimani, Amir Hossein Saeedi Dehaghani, Alireza Bahadori.
Examples

# dummy inputs, independent variable
# integers from 0 to 99
inputs <- 0:99

# dummy targets/observed values, dependent variable
# a product of 2*times inputs minus 5 with some normal noise
targets <- -5 + inputs*1.2 + rnorm(100)

# linear regression model
model<-lm(targets~inputs)

# About the model
summary(model)

# model's predicted values against targets
predicted<-model$fitted.values

# using library ehaGoF for goodness of fit.
library(ehaGoF)

# Goodness of fit : coefficient of determination (R-squared)
gofRSq(targets, predicted)
## Index

<table>
<thead>
<tr>
<th>GoF (Goodness of Fit)</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>gofACoD (Goodness of Fit : Adjusted Coefficient of Determination (Adjusted R-Squared))</td>
<td>12</td>
</tr>
<tr>
<td>gofAIC (Goodness of Fit : Akaike's Information Criterion)</td>
<td>15</td>
</tr>
<tr>
<td>gofARSq (Goodness of Fit : Adjusted R-Squared)</td>
<td>14</td>
</tr>
<tr>
<td>gofCAIC (Goodness of Fit : Corrected Akaike's Information Criterion)</td>
<td>18</td>
</tr>
<tr>
<td>gofCoD (Goodness of Fit : Coefficient of Determination (R-Squared))</td>
<td>17</td>
</tr>
<tr>
<td>gofCV (Goodness of Fit - Coefficient of Variation)</td>
<td>4</td>
</tr>
<tr>
<td>gofMAD (Goodness of Fit : Mean Absolute Deviation)</td>
<td>21</td>
</tr>
<tr>
<td>gofMAPE (Goodness of Fit - Mean Absolute Percentage Error)</td>
<td>5</td>
</tr>
<tr>
<td>gofME (Goodness of Fit : Mean Error)</td>
<td>22</td>
</tr>
<tr>
<td>gofMRAE (Goodness of Fit : Mean Relative Approximation Error)</td>
<td>23</td>
</tr>
<tr>
<td>gofPC (Goodness of Fit - Pearson's Correlation Coefficients)</td>
<td>7</td>
</tr>
<tr>
<td>gofPI (Goodness of Fit : Performance Index)</td>
<td>25</td>
</tr>
<tr>
<td>gofRAE (Goodness of Fit : Global Relative Approximation Error)</td>
<td>19</td>
</tr>
<tr>
<td>gofRMSE (Goodness of Fit - Root Mean Square Error)</td>
<td>10</td>
</tr>
<tr>
<td>gofRRMSE (Goodness of Fit - Relative Root Mean Square Error)</td>
<td>8</td>
</tr>
<tr>
<td>gofRSq (Goodness of Fit : R-Squared)</td>
<td>26</td>
</tr>
<tr>
<td>gofSDR (Goodness of Fit - Standard Deviation Ratio)</td>
<td>11</td>
</tr>
<tr>
<td>Goodness of Fit</td>
<td>2</td>
</tr>
<tr>
<td>Goodness of Fit - Coefficient of Variation</td>
<td>4</td>
</tr>
<tr>
<td>Goodness of Fit - Mean Absolute Percentage Error</td>
<td>5</td>
</tr>
<tr>
<td>Goodness of Fit - Pearson's Correlation Coefficients</td>
<td>7</td>
</tr>
<tr>
<td>Goodness of fit - Relative Root Mean Square Error</td>
<td>8</td>
</tr>
<tr>
<td>Goodness of Fit - Root Mean Square Error</td>
<td>10</td>
</tr>
<tr>
<td>Goodness of Fit - Standard Deviation Ratio</td>
<td>11</td>
</tr>
<tr>
<td>Goodness of Fit : Adjusted Coefficient of Determination (Adjusted R-Squared)</td>
<td>12</td>
</tr>
<tr>
<td>Goodness of Fit : Adjusted R-Squared</td>
<td>14</td>
</tr>
<tr>
<td>Goodness of Fit : Akaike's Information Criterion</td>
<td>15</td>
</tr>
<tr>
<td>Goodness of Fit : Coefficient of Determination (R-Squared)</td>
<td>17</td>
</tr>
<tr>
<td>Goodness of Fit : Corrected Akaike's Information Criterion</td>
<td>18</td>
</tr>
<tr>
<td>Goodness of Fit : Global Relative Approximation Error</td>
<td>19</td>
</tr>
<tr>
<td>Goodness of Fit : Mean Absolute Deviation</td>
<td>21</td>
</tr>
<tr>
<td>Goodness of Fit : Mean Error</td>
<td>22</td>
</tr>
<tr>
<td>Goodness of Fit : Mean Relative Approximation Error</td>
<td>23</td>
</tr>
<tr>
<td>Goodness of Fit : Performance Index</td>
<td>25</td>
</tr>
<tr>
<td>Goodness of Fit : R-Squared</td>
<td>26</td>
</tr>
</tbody>
</table>