Package ‘ei’

November 5, 2016

Version 1.3-3
Date 2016-11-04
Title Ecological Inference
Author Gary King <king@harvard.edu>, Molly Roberts <molly.e.roberts@gmail.com>
Maintainer James Honaker <zelig.kee@gmail.com>
Depends R (>= 2.5.0), eiPack
Imports mvtnorm, msm, tmvtnorm, ellipse, plotrix, MASS, ucminf,
cubature, mnormt, foreach, sp
Suggests rgl
License GPL (>= 2)
URL http://gking.harvard.edu/er,
http://gking.harvard.edu/eicamera/kirnroot.html
NeedsCompilation no
Repository CRAN
Date/Publication 2016-11-05 00:49:10

R topics documented:

bounds1 ... 2
census1910 .. 3
ei .. 3
ei.sim ... 5
eiread ... 6
eRXCsamples .. 7
fultongen ... 8
lavoteall ... 8
matproi ... 9
nj ... 10
plot.ei .. 10
Computes Analytical Bounds from Accounting Identity

Description

Returns analytical bounds from accounting identity on unknown table relationships beta_b, beta_w, from known, observed, table marginals, x, t (and sample size n).

Usage

bounds1(x, t, n)

Arguments

x vector of characteristics, e.g. percentage of blacks in each district
t vector of characteristics, e.g. percentage of people that voted in each district
n size of each observation, e.g. number of voters in each district

Author(s)

Gary King «email: king@harvard.edu» and Molly Roberts «email: molly.e.roberts@gmail.com»

References

Examples

data(census1910)
output<-bounds1(x=census1910$x, t=census1910$t, n=census1910$n)
Description

A dataset of aggregate literacy rates (t) and fraction of the population that is black (x), from the 1910 US Census. Each observation represents one county.

Usage
census1910

Format

A data frame containing 1030 observations.

Source

References

Description

ei is the main command in the package EI. It gives observation-level estimates (and various related statistics) of β_b^i and β_w^i given variables T_i and X_i ($i = 1, ..., n$) in this accounting identity: $T_i = \beta_b^i * X_i + \beta_w^i * (1 - X_i)$. Results are stored in an ei object, that can be read with summary() or eiread() and graphed in plot().

Usage
ei(formula, total = NULL, zb = 1, zw = 1, id = NA, data = NA, erho = 0.5, esigma = 0.5, ebeta = 0.5, ealphab = NA, ealphaw = NA, truth = NA, simulate = TRUE, covariate = NULL, lambda1 = 4, lambda2 = 2, covariate.prior.list = NULL, tune.list = NULL, start.list = NULL, sample = 1000, thin = 1, burnin = 1000, verbose = 0, ret.beta = "r", ret.mcmc = TRUE, usrfun = NULL)
Arguments

formula
A formula of the form $t x$ in the 2x2 case and $\text{cbind}(col1, col2, ...) \text{cbind}(row1, row2, ...)$ in the RxC case.

total
‘total’ is the name of the variable in the dataset that contains the number of individuals in each unit.

Zb
$p \times k^b$ matrix of covariates or the name of covariates in the dataset.

Zw
$p \times k^w$ matrix of covariates or the name of covariates in the dataset.

id
‘id’ is the name of the variable in the dataset that identifies the precinct. Used for ‘movie’ and ‘movieD’ plot functions.

data
data frame that contains the variables that correspond to formula. If using covariates and data is specified, data should also contain Zb and Zw.

erho
The standard deviation of the normal prior on ϕ_5 for the correlation. Default = 0.5.

esigma
The standard deviation of an underlying normal distribution, from which a half normal is constructed as a prior for both σ_b and σ_w. Default = 0.5

ebeta
Standard deviation of the "flat normal" prior on \bar{B}_b and \bar{B}_w. The flat normal prior is uniform within the unit square and dropping outside the square according to the normal distribution. Set to zero for no prior. Setting to positive values probabilistically keeps the estimated mode within the unit square. Default = 0.5

ealphab
cols(Zb) x 2 matrix of means (in the first column) and standard deviations (in the second) of an independent normal prior distribution on elements of α^b. If you specify Zb, you should probably specify a prior, at least with mean zero and some variance (default is no prior). (See Equation 9.2, page 170, to interpret α^b).

ealphaw
cols(Zw) x 2 matrix of means (in the first column) and standard deviations (in the second) of an independent normal prior distribution on elements of α^w. If you specify Zw, you should probably specify a prior, at least with mean zero and some variance (default is no prior). (See Equation 9.2, page 170, to interpret α^w).

truth
A length(t) x 2 matrix of the true values of the quantities of interest.

simulate
default = TRUE: see documentation in eiPack for options for RxC ei.

covariate
see documentation in eiPack for options for RxC ei.

lambda1
default = 4: see documentation in eiPack for options for RxC ei.

lambda2
default = 2: see documentation in eiPack for options for RxC ei.

covariate.prior.list
see documentation in eiPack for options for RxC ei.

tune.list
see documentation in eiPack for options for RxC ei.

start.list
see documentation in eiPack for options for RxC ei.

sample
default = 1000

thin
default = 1

burnin
default = 1000
ei.sim

- **Verbose**: default = 0: see documentation in eiPack for options for RxC ei.
- **ret.beta**: default = 'r': see documentation in eiPack for options for RxC ei.
- **ret.mcmc**: default = TRUE: see documentation in eiPack for options for RxC ei.
- **usrfun**: see documentation in eiPack for options for RxC ei.

Details

The EI algorithm is run using the `ei` command. A summary of the results can be seen graphically using `plot(ei.object)` or numerically using `summary(ei.object)`. Quantities of interest can be calculated using `eiread(ei.object)`.

Author(s)

Gary King «email: king@harvard.edu» and Molly Roberts «email: molly.e.roberts@gmail.com»

References

Examples

```r
data(sample)
form <- t ~ x
dbuf <- ei(form, total="n", data=sample)
summary(dbuf)
```

Description

Simulate EI solution via importance sampling

Usage

```r
ei.sim(ei.object)
```

Arguments

- **ei.object**: ei object

Author(s)

Gary King «email: king@harvard.edu» and Molly Roberts «email: molly.e.roberts@gmail.com»

References

Description

eiread is the command that pulls quantities of interest from the ei object. The command returns a list of quantities of interest requested by the user.

Usage

eiread(ei.object, ...)

Arguments

ei.object An ei object from the function ei.
... A list of quantities of interest for eiread() to return. See values below.

Value

betab $p \times 1$ point estimate of β^b_i based on its mean posterior. See section 8.2
betaw $p \times 1$ point estimate of β^w_i based on its mean posterior. See section 8.2
sbetab $p \times 1$ standard error for the estimate of β^b_i, based on the standard deviation of its posterior. See section 8.2
sbetaw $p \times 1$ standard error for the estimate of β^w_i, based on the standard deviation of its posterior. See section 8.2
phi Maximum posterior estimates of the CML
psiisms Matrix of random simulations of ψ. See section 8.2
bounds $p \times 4$: bounds on β^b_i and β^w_i. lowerB ~ upperB ~ lowerW ~ upperW. See Chapter 5.
abounds 2×2: aggregate bounds rows: lower, upper; columns: betab, betaw. See Chapter 5.
aggs Simulations of district-level quantities of interest \hat{B}^b and \hat{B}^w. See Section 8.3.
maggs Point estimate of 2 district-level parameters, \hat{B}^b and \hat{B}^w based on the mean of aggs. See Section 8.3.
vCaggs Variance matrix of 2 district-level parameters, \hat{B}^b and \hat{B}^w. See Section 8.3.
CI80b $p \times 2$: lower-upper 80% confidence intervals for β^b_i. See section 8.2.
CI80w $p \times 2$: lower-upper 80% confidence intervals for β^w_i. See section 8.2.
eaggbias Regressions of estimated β^b_i and β^w_i on a constant term and X_i.
goodman Goodman’s Regression. See Section 3.1

Author(s)

Gary King «email: king@harvard.edu» and Molly Roberts «email: molly.e.roberts@gmail.com»
eiRxCsample

References

Examples

data(sample)
formula = t ~ x
dbuf <- ei(formula=formula, total="n", data=sample)
eiread(dbuf, "phi")
eiread(dbuf, "betab", "betaw")

eiRxCsample A Sample Dataset

Description

A description for this dataset

Usage

eiRxCsample

Format

A data frame containing 93 observations.

Source

Source

References

Voter Transitions

Description
Aggregated data from 289 precincts in Fulton County, Georgia. The variable \(t \) represents the fraction voting in 1994 and \(x \) the fraction in 1992. \(\text{Beta}_b \) is then the fraction who vote in both elections, and \(\text{Beta}_w \) the fraction of nonvoters in 1992 who vote in the midterm election of 1994.

Usage
fultongen

Format
A data frame containing 289 observations.

Source

References

Turnout by Race in Louisiana

Description
The fraction of blacks registered voters (\(x \)) and fraction of voter turnout (\(t \)) in each Louisiana precinct, along with the true fraction of black turnout (\(t_b \)) and non-black turnout (\(t_w \)).

Usage
lavoteall

Format
A data frame containing 3262 observations.
Source

References

matproii

Voter Registration by Race in Southern States

Description

Aggregate voter registration and fraction black, in counties in Florida, Louisiana, North Carolina and South Carolina

Usage

matproii

Format

A data frame containing 268 observations.

Source

References

nj Nonminority Turnout in New Jersey

Description

A description for this dataset

Usage

nj

Format

A data frame containing 493 observations.

Source

References

plot.ei Plotting Ecological Inference Estimates

Description

'plot' method for the class 'ei'.

Usage

S3 method for class 'ei'
plot(x, ...)

Arguments

x An ei object from the function ei.
... A list of options to return in graphs. See values below.
plot.ei

Details

Returns any of a set of possible graphical objects, mirroring those in the examples in King (1997). Graphical option lci is a logical value specifying the use of the Law of Conservation of Ink, where the implicit information in the data is represented through color gradients, i.e., the color of the line is a function of the length of the tomography line. This can be passed as an argument and is used for “tomogD” and “tomog” plots.

Value

tomogD
Tomography plot with the data only. See Figure 5.1, page 81.
tomog
Tomography plot with ML contours. See Figure 10.2, page 204.
tomogCI
Tomography plot with 80% confidence intervals. Confidence intervals appear on the screen in red with the remainder of the tomography line in yellow. The confidence interval portion is also printed thicker than the rest of the line. See Figure 9.5, page 179.
tomogCI95
Tomography plot with 95% confidence intervals. Confidence intervals appear on the screen in red with the remainder of the tomography line in yellow. The confidence interval portion is also printed thicker than the rest of the line. See Figure 9.5, page 179.
tomogE
Tomography plot with estimated mean posterior β^b_i and β^w_i points.
tomogP
Tomography plot with mean posterior contours.
betab
Density estimate (i.e., a smooth version of a histogram) of point estimates of β^b_i’s with whiskers.
betaw
Density estimate (i.e., a smooth version of a histogram) of point estimates of β^w_i’s with whiskers.
xt
Basic X_i by T_i scatterplot.
xtc
Basic X_i by T_i scatterplot with circles sized proportional to N_i.
xtfit
X_i by T_i plot with estimated $E(T_i|X_i)$ and conditional 80% confidence intervals. See Figure 10.3, page 206.
xtfitg
xtfit with Goodman’s regression line superimposed.
estsim
All the simulated β^b_i’s by all the simulated β^w_i’s. The simulations should take roughly the same shape of the mean posterior contours, except for those sampled from outlier tomography lines.
boundXb
X_i by the bounds on β^b_i (each precinct appears as one vertical line), see the lines in the left graph in Figure 13.2, page 238.
boundXw
X_i by the bounds on β^w_i (each precinct appears as one vertical line), see the lines in the right graph in Figure 13.2, page 238.
truth
Compares truth to estimates at the district and precinct-level. Requires truth in the ei object. See Figures 10.4 (page 208) and 10.5 (page 210).
movieD
For each observation, one tomography plot appears with the line for the particular observation darkened. After the graph for each observation appears, the user can choose to view the next observation (hit return), jump to a specific observation number (type in the number and hit return), or stop (hit “s” and return).
For each observation, one page of graphics appears with the posterior distribution of β^B_i and β^W_i and a plot of the simulated values of β^B_i and β^W_i from the tomography line. The user can choose to view the next observation (hit return), jump to a specific observation number (type in the number and hit return), or stop (hit “s” and return).

Author(s)

Gary King «email: king@harvard.edu» and Molly Roberts «email: molly.e.roberts@gmail.com»

References

Examples

data(sample)
formula = t ~ x
dbuf <- ei(formula=formula, total="n", data=sample)
plot(dbuf, "tomog")
plot(dbuf, "tomog", "betab", "betaw", "xtfit")

RxCdata Sample Dataset

Description

A description for this dataset

Usage

RxCdata

Format

A data frame containing 60 observations.

Source

Source

References

Sample Data for Black Votes

Description
A description for this dataset

Usage
sample

Format
A vector containing 141 observations.

Source
Source

References

summary.ei Summarize Ecological Inference Estimates

Description
’summary’ method for the class ‘ei’.

Usage
S3 method for class 'ei'
summary(object, ...)

Arguments
object An ei object from the function ei.
... A list of options to return in graphs. See values below.

Author(s)
Gary King «email: king@harvard.edu» and Molly Roberts «email: molly.e.roberts@gmail.com»
References

Examples

data(sample)
 formula = t ~ x
dbuf <- ei(formula=formula, total="n",data=sample)
print(summary(dbuf))

tomogRxC

Description

A tomography plot for an estimated Ecological Inference model in RxC data.

Usage

tomogRxC(formula, data, total=NULL, refine=100)

Arguments

formula A formula of the form cbind(col1, col2,...)~cbind(row1, row2,...)
data data that contains the data that corresponds to the formula
total ‘total’ is the name of the variable in the dataset that contains the number of individuals in each unit
refine specifies the amount of refinement for the image. Higher numbers mean better resolution.

Author(s)

Gary King «email: king@harvard.edu» and Molly Roberts «email: molly.e.roberts@gmail.com»

References

Examples

data(RxCdata)
 formula = cbind(turnout, noturnout) ~ cbind(white, black, hisp)
tomogRxC(formula, data=RxCdata)
Description

A tomography plot in 3 dimensions for RxC Ecological Inference data and an estimated Ecological Inference model in RxC data.

Usage

tomogRx3d(formula, data, total=NULL, lci=TRUE, estimates=FALSE, ci=FALSE, level=.95, seed=1234, color=hcl(h=30,c=100,l=60), transparency=.75, light=FALSE, rotate=TRUE)

Arguments

- **formula**: A formula of the form `cbind(col1, col2,...)~cbind(row1, row2,...)`
- **data**: data that contains the data that corresponds to the formula
- **total**: 'total' is the name of the variable in the dataset that contains the number of individuals in each unit
- **lci**: logical value specifying the use of the Law of Conservation of Ink, where the implicit information in the data is represented through color gradients, i.e. the color of the plane is a function of the area of the tomography plane.
- **estimates**: logical value specifying whether the point estimates of β's are included for each observation on the tomography plot.
- **ci**: logical value specifying whether the estimated confidence ellipse is included on the tomography plot.
- **level**: numeric value from 0 to 1 specifying the significance level of the confidence ellipse; eg. .95 refers to 95% confidence ellipse.
- **seed**: seed value for model estimation.
- **color**: color of tomography planes if lci=F.
- **transparency**: numeric value from 0 to 1 specifying transparency of tomography planes; 0 is entirely transparent.
- **light**: logical value specifying whether lights should be included in the rgl interface. The inclusion of lights will create shadows in the plot that may distort colors.
- **rotate**: logical value specifying whether the plot will rotate for 20 seconds.

Details

Requires rgl package and rgl viewer.

Author(s)

Gary King «email: king@harvard.edu»; Molly Roberts «email: molly.e.roberts@gmail.com»; Soledad Prillaman «email: soledadartiz@fas.harvard.edu».
References

Examples

```r
data(RxCdata)
formula <- cbind(turnout, noturnout) ~ cbind(white, black, hisp)
tomogRxC3d(formula, RxCdata, total=NULL, lci=TRUE, estimates=TRUE, ci=TRUE, transparency=.5, light=FALSE, rotate=FALSE)
```
Index

*Topic datasets
 census1910, 3
eiRxCsample, 7
fultongen, 8
lavoteall, 8
matproii, 9
nj, 10
RxCdata, 12
sample, 13

bounds1, 2

census1910, 3

EI (ei), 3
ei, 3
ei.sim, 5
eiread, 6
eiRxCsample, 7

fultongen, 8
lavoteall, 8
matproii, 9

nj, 10
plot.ei, 10
RxCdata, 12
sample, 13
summary.ei, 13

tomogRxC, 14
tomogRxC3d, 15