Package ‘elastes’

July 3, 2022

Type Package

Title Elastic Full Procrustes Means for Sparse and Irregular Planar Curves

Version 0.1.6

Description Provides functions for the computation of functional elastic shape means over sets of open planar curves. The package is particularly suitable for settings where these curves are only sparsely and irregularly observed. It uses a novel approach for elastic shape mean estimation, where planar curves are treated as complex functions and a full Procrustes mean is estimated from the corresponding smoothed Hermitian covariance surface. This is combined with the methods for elastic mean estimation proposed in Steyer, Stöcker, Greven (2022) [doi:10.1111/biom.13706]. See Stöcker et. al. (2022) [arXiv:2203.10522] for details.

License GPL (>= 3)

Encoding UTF-8

Language en-US

Imports elasdics, utils, graphics, stats, splines, mgcv, sparseFLMM, orthogonalsplinebasis

Suggests knitr, covr, testthat (>= 3.0.0), rmarkdown, shapes

RoxygenNote 7.2.0

Config/testthat/edition 3

VignetteBuilder knitr

URL https://mpff.github.io/elastes/

NeedsCompilation no

Author Manuel Pfeuffer [aut, cre], Lisa Steyer [aut], Almond Stoecker [aut]

Maintainer Manuel Pfeuffer <mnl.pfeuffer@gmail.com>

Repository CRAN

Date/Publication 2022-07-03 18:20:05 UTC
compute_elastic_shape_mean

Compute an elastic full Procrustes mean for a collection of curves

Description

Computes an elastic full Procrustes mean for curves stored in `data_curves`. Constructor function for class `elastic_shape_mean`.

Usage

```r
compute_elastic_shape_mean(
  data_curves,
  knots = seq(0, 1, len = 13),
  type = c("smooth", "polygon"),
  penalty = 2,
  var_type = c("smooth", "constant", "zero"),
  pfit_method = c("smooth", "polygon"),
  smooth_warp = function(i) 0,
  eps = 0.05,
  max_iter = 50,
  verbose = FALSE,
  cluster = NULL
)
```

Arguments

- **data_curves**: list of `data.frame` s with observed points in each row. Each variable is one coordinate direction. If there is a variable `t`, it is treated as the time parametrization, not as an additional coordinate.

- **knots**: set of knots for the mean spline curve
compute_elastic_shape_mean

type if "smooth" linear srv-splines are used which results in a differentiable mean
curve if "polygon" the mean will be piecewise linear.
penalty the penalty to use in the covariance smoothing step. use '-1' for no penalty.
var_type (experimental) assume "smooth", "constant" or "zero" measurement-error vari-
ance along t
pfit_method (experimental) "smooth" or "polygon"
smooth_warp (experimental) controls the weighting of original and smoothed observations
over the iterations, if pfit_method == "smooth".
eps the algorithm stops if L2 norm of coefficients changes by less than eps
max_iter maximal number of iterations
verbose print iterations
cluster (experimental) use the parallel package for faster computation

Value

an object of class elastic_shape_mean, which is a list with entries

type "smooth" if mean was modeled using linear srv-splines, "polygon" if constant
srv-splines
coefs spline coefficients
knots spline knots
variance sample elastic shape variance
data_curves list of data.frames with observed points in each row. First variable t gives
the initial parametrization, second variable t_optim the optimal parametrization
when the curve is aligned to the mean. Has the attributes 'rotation', 'scaling',
'translation' and 'dist_to_mean'. Use get_procrustes_fit to get the elastic
full Procrustes fit.
fit see fit_mean

Examples

curve <- function(t){
 rbind(t*cos(13*t), t*sin(13*t))
}
set.seed(18)
data_curves <- lapply(1:4, function(i){
 m <- sample(10:15, 1)
 delta <- abs(rnorm(m, mean = 1, sd = 0.05))
 t <- cumsum(delta)/sum(delta)
 data.frame(t(curve(t)) + 0.07*t*matrix(cumsum(rnorm(2*length(delta))),
 ncol = 2))
})

#randomly rotate and scale curves
rand_scale <- function(curve){ (0.5 + runif(1)) * curve }
rand_rotate <- function(curve){
 names <- colnames(curve)
theta <- 2*pi*runif(1)
mat <- matrix(c(cos(theta), sin(theta), -sin(theta), cos(theta)), nrow = 2, ncol = 2)
curve.rot <- as.matrix(curve) %*% t(mat)
curve.rot <- as.data.frame(curve.rot)
colnames(curve.rot) <- names
return(curve.rot)
}
data_curves <- lapply(data_curves, rand_scale)
data_curves <- lapply(data_curves, rand_rotate)

#compute smooth procrustes mean with 2 order penalty
knots <- seq(0,1, length = 11)
elastic_shape_mean <- compute_elastic_shape_mean(
data_curves,
knots = knots,
type = "smooth",
penalty = 2
)
plot(elastic_shape_mean)

elastes

elastes: Elastic Full Procrustes Means for Sparse and Irregular Planar Curves

Description

Provides functions for the computation of functional elastic shape means over sets of open planar curves. The package is particularly suitable for settings where these curves are only sparsely and irregularly observed. It uses a novel approach for elastic shape mean estimation, where planar curves are treated as complex functions and a full Procrustes mean is estimated from the corresponding smoothed hermitian covariance surface, which is combined with the methods for elastic mean estimation proposed in Steyer, Stöcker, Greven (2022). See Stöcker et. al. (2022) for details on the method.

Details

Compute a mean for a set of observed curves: compute_elastic_shape_mean

fit_alignment_proc2d

Optimal rotation and scaling alignment to a smooth curve

Description

Finds optimal rotation and scaling alignment for a discrete open srv curve to a smooth curve
Usage

```r
fit_alignment_proc2d(
  q,
  type,
  knots,
  var_type,
  coefs.compl,
  method,
  cov_fit,
  pca,
  L
)
```

Arguments

- `q`: complex srv curve with parametrization, needs to be vectorized. The result of a call to `get_model_data_complex`
- `type`: spline degree
- `knots`: basis knots
- `var_type`: either "smooth" or "constant" measurement error in `cov_fit` object
- `coefs.compl`: complex coefficients of smooth curve
- `method`: temp
- `cov_fit`: temp
- `pca`: temp
- `L`: temp

Value

optimal rotation G and scaling b

fit_mean

Mean estimation for open planar curves.

Description

Fits an elastic full Procrustes mean for open, planar curves. Is usually called from `compute_elastic_shape_mean`.

Usage

```r
fit_mean(
  srv_data_curves,
  knots,
  penalty,
  var_type,
)```
fit_mean

pfit_method,
max_iter,
type,
eps,
cluster,
verbose,
smooth_warp

Arguments

srv_data_curves  list of data.frames with srv vectors in each row.curves
knots  set of knots for the mean spline curve
penalty  the penalty to use in the covariance smoothing step. use '-1' for no penalty.
var_type  (experimental) assume "smooth", "constant" or "zero" measurement-error variance along t
pfit_method  (experimental) "smooth" or "polygon"
max_iter  maximal number of iterations
type  if "smooth" linear srv-splines are used which results in a differentiable mean curve if "polygon" the mean will be piecewise linear.
eps  the algorithm stops if L2 norm of coefficients changes less
cluster  a cluster object for use in the bam call
verbose  print iterations
smooth_warp  (experimental) controls the weighting of original and smoothed observations over the iterations, if pfit_method == "smooth".

Value

a list with entries
type  "smooth" or "polygon"
coefs  srv spline coefficients of the estimated mean
knots  spline knots
penalty  penalty used in the covariance estimation
distances  distances to mean
fit  a list containing t_optims optimal parametrizations G_optims optimal rotations b_optims optimal scalings n_optims optimal re-normalization n_iter number of iterations until convergence gram the mean basis Gram matrix, cov_fit the covariance smoothing objects in the final iteration, cov_pca cov coef matrix pca object in the final iteration and pfit_coefs the mean basis coef of smoothed pfits in the final iteration
**get_center**

*Calculate the center of a curve*

**Description**

Calculate the center of a curve

**Usage**

`get_center(curve)`

**Arguments**

- `curve`: a data.frame with observed points in each row. Each variable is one coordinate direction. If there is a variable `t`, `t_optim` or `id`, it is treated as the time parametrization, not as an additional coordinate.

**Value**

The average of observed points in `curve`.

**get_distance**

*Distance to a smooth curve*

**Description**

Finds the distance of a discrete open srv curve to a smooth curve

**Usage**

`get_distance(srv_curve, s, q, eps = 10 * .Machine$double.eps)`

**Arguments**

- `srv_curve`: srv transformation of the smooth curve, needs to be vectorized
- `s`: time points for `q`, first has to be 0, last has to be 1
- `q`: square root velocity vectors, one less than time points in `s`
- `eps`: convergence tolerance

**Value**

distance between `srv_curve` and `q`
get_evals

Evaluate a curve on a grid

Usage

get_evals(curve, t_grid = NULL, ...)

## S3 method for class 'data.frame'
get_evals(curve, t_grid = NULL, ...)

## S3 method for class 'elastic_shape_mean'
get_evals(curve, t_grid = NULL, centering = TRUE, srv = FALSE, ...)

Arguments

curve a one parameter function which is to be evaluated on a grid
t_grid the curve is evaluated at the values in t_grid, first value needs to be 0, last value needs to be 1. If t_grid = NULL, a default regular grid with grid length 0.01 is chosen...
centering TRUE if curves shall be centered
srv TRUE if SRV curve shall be evaluated

Value

a data.frame with evaluations of the curve at the values in t_grid in its rows.

See Also

See get_evals for the original code.

Examples

curve <- function(t){c(t*sin(10*t), t*cos(10*t))}
plot(get_evals(curve), type = "b")
get_optimal_t

Finds optimal alignment for discrete open curves

Usage

get_optimal_t(srv_procrustes_curves, coefs, t_optims, type, knots, eps, i)

Arguments

- srv_procrustes_curves: scaling and rotation aligned srv curves
- coefs: mean coefficients
- t_optims: current optimal parametrization
- type: "smooth" or "polygon"
- knots: mean basis knots
- eps: convergence tolerance
- i: current iteration

Value

optimal time points for srv_data_curves, without first value 0 and last value 1 optimal time points have the distance of the observation to the srv_curve as an attribute

get_polygon_length

Calculate the polygon length of a curve

Usage

get_polygon_length(curve)

Arguments

- curve: a data.frame with observed points in each row. Each variable is one coordinate direction. If there is a variable t, t_optim or id, it is treated as the time parametrization, not as an additional coordinate.

Value

The length of curve, treating it as a polygon.
get_procrustes_fit  

Get Procrustes data curve from mean object.

Description

Compute the Procrustes aligned data curve...

Usage

get_procrustes_fit(data_curve)

Arguments

data_curve  A data.frame in an elastic_shape_mean object.

Value

Aligned data_curve as a data.frame.

gt Procrustes_fit_from_param

Helper functions for calculating Procrustes data curve from rotation, scaling and translation parameters.

Description

Compute the Procrustes fit given optimal rotation, scaling and translation.

Usage

gt Procrustes_fit_from_param(
    data_curve,
    rot,
    scale,
    plength,
    trans,
    norm_factor
)
Arguments

- **data_curve**: A `data.frame` with observed points on a curve. Each row is one point, each variable one coordinate direction. If there is a variable t, it is treated as the time parametrization, not as an additional coordinate.
- **rot**: The rotation (in radian).
- **scale**: The scaling.
- **plength**: The polygon length of the original curve.
- **trans**: The translation.
- **norm_factor**: The normalization factor from the smooth curve estimate.

---

**plot.elastic_shape_mean**

*Plot method for planar elastic Procrustes mean curves*

Description

Plots objects of class `elastic_shape_mean`.

Usage

```r
S3 method for class 'elastic_shape_mean'
plot(x, srv = FALSE, centering = TRUE, asp = 1, col = "red", ...)
```

Arguments

- **x**: object of class `elastic_shape_mean`, usually a result of a call to `compute_elastic_shape_mean`
- **srv**: TRUE if the SRV curve should be plotted
- **centering**: TRUE if mean and pfits should be centered
- **asp**: numeric, giving the aspect ratio of the two coordinates, see `plot.window` for details.
- **col**: color of the mean curve.
- **...**: further plotting parameters.

Value

No return value, called for side effects.

See Also

For examples see documentation of `compute_elastic_shape_mean`. See `plot.elastic_mean` for the original code.
Index

compute_elastic_shape_mean, 2, 4, 5, 11
elastes, 4
fit_alignment_proc2d, 4
fit_mean, 5
get_center, 7
get_distance, 7
get_evals, 8, 8
get_optimal_t, 9
get_polygon_length, 9
get_Procrustes_fit, 3, 10
get_Procrustes_fit_from_param, 10
get_Procrustes_fit_from_param
    (get_Procrustes_fit_from_param), 10
plot.elastic_mean, 11
plot.elastic_shape_mean, 11
plot.window, 11