Package ‘electivity’

October 13, 2022

Type Package
Title Algorithms for Electivity Indices
Version 1.0.2
Date 2019-08-13
Description Provides all electivity algorithms (including Vanderploeg and Scavia electivity) that were examined in Lechowicz (1982) <doi:10.1007/BF00349007>, plus the example data that were provided for moth resource utilisation.

URL https://github.com/DesiQuintans/electivity
BugReports https://github.com/DesiQuintans/electivity/issues
Encoding UTF-8
LazyData true
Depends R (>= 3.4.0)
Suggests utils (>= 3.4.2), usethis (>= 1.0.0)
RoxygenNote 6.1.1
License MIT + file LICENSE
NeedsCompilation no
Author Desi Quintans [aut, cre] (<https://orcid.org/0000-0003-3356-0293>)
Maintainer Desi Quintans <science@desiquintans.com>
Repository CRAN
Date/Publication 2019-08-20 14:50:05 UTC

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>chesson_alpha</td>
<td>2</td>
</tr>
<tr>
<td>electivity</td>
<td>3</td>
</tr>
<tr>
<td>ivlev_electivity</td>
<td>3</td>
</tr>
<tr>
<td>ivlev_forage</td>
<td>4</td>
</tr>
<tr>
<td>jacob_electivity</td>
<td>5</td>
</tr>
<tr>
<td>jacob_forage</td>
<td>5</td>
</tr>
</tbody>
</table>
chesson_alpha

Chesson’s alpha, or Vanderploeg and Scavia’s selectivity coefficient (W)

Description
These two functions calculate the same value; alpha and W are identical.

Usage
chesson_alpha(r, p, na.rm = TRUE)

vs_select_coef(r, p, na.rm = TRUE)

Arguments
r (Numeric) Resource utilisation.
p (Numeric) Resource availability.
na.rm (Logical) If ‘TRUE’, ‘NA’s will be ignored when calculating the selectivity coefficient (W).

Value
A numeric vector.

Examples
data(moth_distrib)

chesson_alpha(moth_distrib$r, moth_distrib$p)

vs_select_coef(moth_distrib$r, moth_distrib$p)
electivity

Algorithms for electivity indices and measures of resource use versus availability.

Description

This package is essentially Lechowicz (1982) turned into an R package. It includes all algorithms that were described therein plus the example data that was provided for moth resource utilisation.

Details

Users are encouraged to read the original paper before deciding which algorithm is most useful for them. Lechowicz recommended Vanderploeg and Scavia’s E* index (implemented in this package as `vs_electivity()`) as "the single best, but not perfect, electivity index" because "E* embodies a measure of the feeder’s perception of a food’s value as a function of both its abundance and the abundance of other food types present.” In practice, he found that all indices returned nearly identical rank orders of preferred hosts except for Strauss’ linear index (L).

Author

Desi Quintans (@eco_desi)

URL

https://github.com/DesiQuintans/electivity/

ivlev_electivity

Ivlev’s electivity, E

Description

Bounded between -1.0 (avoidance), 0 (random feeding), and +1.0 (preference).

Usage

`ivlev_electivity(r, p)`

Arguments

- `r` (Numeric) Resource utilisation.
- `p` (Numeric) Resource availability.
ivlev_forage

Value

A numeric vector.

Source

Examples

data(moth_distrib)
ivlev_electivity(moth_distrib$r, moth_distrib$p)

ivlev_forage

Ivlev's forage ratio, E’

Description

Bounded between +0.1 (avoidance), +1.0 (random feeding), and infinity (preference).

Usage

ivlev_forage(r, p, log10 = FALSE)

Arguments

r (Numeric) Resource utilisation.

p (Numeric) Resource availability.

log10 (Logical) If TRUE, transform the value with log10().

Value

A numeric vector.

Examples

data(moth_distrib)
ivlev_forage(moth_distrib$r, moth_distrib$p, log10 = FALSE)
ivlev_forage(moth_distrib$r, moth_distrib$p, log10 = TRUE)
jacob_electivity

Jacob's modified electivity, D

Description

Bounded between +0.1 (avoidance), +1.0 (random feeding), and infinity (preference).

Usage

```r
jacob_electivity(r, p)
```

Arguments

- `r`
 (Numeric) Resource utilisation.
- `p`
 (Numeric) Resource availability.

Value

A numeric vector.

Examples

```r
data(moth_distrib)
jacob_electivity(moth_distrib$r, moth_distrib$p)
```

jacob_forage

Jacob's modified forage ratio, Q

Description

When logged (which is Jacob's recommendation), bounded between negative and positive infinity.

Usage

```r
jacob_forage(r, p, log10 = FALSE)
```

Arguments

- `r`
 (Numeric) Resource utilisation.
- `p`
 (Numeric) Resource availability.
- `log10`
 (Logical) If TRUE, return the value as Log10.

Value

A numeric vector.
Examples

```r
data(moth_distrib)
jacob_forage(moth_distrib$r, moth_distrib$p, log10 = TRUE)
jacob_forage(moth_distrib$r, moth_distrib$p, log10 = FALSE)
```

moth_distrib

Distribution of gypsy moth larvae, Lymantria dispar, feeding in a deciduous forest in southwestern Quebec, Canada.

Description

This is Table 2 in the cited source paper.

Usage

```r
moth_distrib
```

Format

A dataframe with 19 rows and 6 variables:

- **binomen**: Species of tree.
- **n_indiv**: Number of randomly sampled trees.
- **dbh_cm_sum**: Summed diameters at breast height, in centimeters.
- **larva_mean_sum**: Summed numbers of larvae (the means of two counts taken on June 26-27, 1979 and July 3-4, 1979).
- **r**: Relative proportion of larvae feeding on trees (Lechowicz 1982, Equation 2)
- **p**: Estimate of foliage biomass (Lechowicz 1982, Equation 1).

Source

Examples

```r
data(moth_distrib)
```
Description

This is Table 3 in the cited source paper.

Usage

moth_elect

Format

A dataframe with 19 rows and 8 variables:

- **binomen**: Species of tree.
- **E**: Ivlev’s electivity index.
- **E_prime_i**: Ivlev’s forage ratio.
- **D_i**: Jacob’s modified electivity.
- **log_Q_i**: Jacob’s modified forage ratio, log10.
- **L_i**: Strauss’ linear index.
- **W_i**: Chesson’s alpha, or Vanderploeg and Scavia’s selectivity coefficient.
- **E_star_i**: Vanderploeg and Scavia’s relativised electivity.

Source

Examples

```r
data(moth_elect)
```
strauss_linear

Strauss’ linear index, L

Description

Bounded between -1.0 (avoidance), 0 (random feeding), and +1.0 (preference).

Usage

```r
strauss_linear(r, p)
```

Arguments

- `r` (Numeric) Resource utilisation.
- `p` (Numeric) Resource availability.

Value

A numeric vector.

Examples

```r
data(moth_distrib)
strauss_linear(moth_distrib$r, moth_distrib$p)
```

vs_electivity

Vanderploeg and Scavia’s relativised electivity, E *

Description

Bounded between -1.0 (avoidance), 0 (random feeding), and +1.0 (preference).

Usage

```r
vs_electivity(r, p, na.rm = TRUE)
```

Arguments

- `r` (Numeric) Resource utilisation.
- `p` (Numeric) Resource availability.
- `na.rm` (Logical) If TRUE, NAs will be ignored when calculating the selectivity coefficient (W).

Value

A numeric vector.
Examples

```r
data(moth_distrib)
vs_electivity(moth_distrib$r, moth_distrib$p)
```
Index

* data
 moth_distrib, 6
 moth_elect, 7

chesson_alpha, 2

electivity, 3
electivity-package (electivity), 3

ivlev_electivity, 3
ivlev_forage, 4

jacob_electivity, 5
jacob_forage, 5

moth_distrib, 6
moth_elect, 7

strauss_linear, 8

vs_electivity, 8
vs_select_coef (chesson_alpha), 2