Package ‘emba’

February 6, 2020

Type Package

Title Ensemble Boolean Model Biomarker Analysis

Version 0.1.2

Description Analysis and visualization of an ensemble of boolean models for biomarker discovery in cancer cell networks. The package allows to easily import the data results of a software pipeline that predicts synergistic drug combinations in cancer cell lines, developed by the DrugLogics research group in NTNU. It has generic functions that can be used to split a boolean model dataset to model groups with regards to the models predictive performance (number of true positive predictions or Matthews correlation coefficient score) or synergy prediction based on a given set of observed synergies and find the average activity difference per network node between all group pairs. Thus, given user-specific thresholds, important nodes (biomarkers) can be accessed in the sense that they make the models predict specific synergies (synergy biomarkers) or have better performance in general (performance biomarkers). Lastly, if the boolean models have a specific equation form and differ only in their link operator, link operator biomarkers can also be assessed.

License MIT + file LICENSE

URL https://github.com/bblodfon/emba

BugReports https://github.com/bblodfon/emba/issues

Encoding UTF-8

LazyData true

RoxygenNote 7.0.2

Imports graphics, grDevices, utils, purrr, rje (>= 1.10), igraph (>= 1.2.4), visNetwork (>= 2.0.9), Ckmeans.1d.dp (>= 4.2.2), magrittr (>= 1.5), usefun (>= 0.4.3)

Suggests testthat

NeedsCompilation no

Author John Zobolas [aut, cph, cre] (<https://orcid.org/0000-0002-3609-8674>)

Maintainer John Zobolas <bblodfon@gmail.com>
R topics documented:

add_numbers_above_the_bars ... 3
assign_link_operator_value_to_equation 4
biomarker_mcc_analysis ... 4
biomarker_synergy_analysis ... 6
biomarker_tp_analysis .. 8
calculate_mcc .. 10
calculate_models_mcc ... 11
calculate_models_synergies_fn ... 12
calculate_models_synergies_fp ... 12
calculate_models_synergies_tm ... 13
calculate_models_synergies_tp ... 14
construct_network ... 15
count_models_that_predict_synergies 15
emba .. 16
filter_network ... 16
get_alt_drugname ... 17
get_avg_activity_diff_based_on_mcc_clustering 17
get_avg_activity_diff_based_on_specific_synergy_prediction 19
get_avg_activity_diff_based_on_synergy_set_cmp 20
get_avg_activity_diff_based_on_tp_predictions 22
get_avg_activity_diff_mat_based_on_mcc_clustering 23
get_avg_activity_diff_mat_based_on_specific_synergy_prediction ... 24
get_avg_activity_diff_mat_based_on_tp_predictions 25
get_avg_link_operator_diff_based_on_mcc_clustering 26
get_avg_link_operator_diff_based_on_specific_synergy_prediction ... 26
get_avg_link_operator_diff_based_on_synergy_set_cmp 28
get_avg_link_operator_diff_mat_based_on_mcc_clustering 29
get_avg_link_operator_diff_mat_based_on_specific_synergy_prediction 31
get_avg_link_operator_diff_mat_based_on_tp_predictions 32
get_biomarkers ... 34
get_biomarkers_per_type .. 35
get_edges_from_topology_file .. 36
get_fitness_from_models_dir .. 36
get_link_operators_from_models_dir 37
get_models_based_on_mcc_class_id 38
get_model_names .. 39
get_model_predictions .. 39
get_neighbors ... 40
get_node_colors ... 40
get_node_names ... 41
get_observed_model_predictions ... 42
get_observed_synergies ... 42
get_observed synergies_per_cell_line 43
add_numbers_above_the_bars

Add numbers horizontally above the bars of a barplot

Description

Add numbers horizontally above the bars of a barplot

Usage

```
add_numbers_above_the_bars(stats, bp, color)
```

Arguments

- **stats**: a numeric vector
- **bp**: the result of `barplot` command, usually a numeric vector or matrix
- **color**: string. The color for the numbers
assign_link_operator_value_to_equation

Assign link operator value to boolean equation

Description

Assign link operator value to boolean equation

Usage

assign_link_operator_value_to_equation(equation)

Arguments

equation string. The boolean equation in the form Target* = (ActivatorORActivatorOR...)ANDNOT(InhibitorORInhibitorOR...)

Value

1 if the equation has the 'or not' link operator, 0 if the equation has the 'and not' link operator and NA if it has neither.

biomarker_mcc_analysis

Biomarker analysis based on MCC model classification

Description

Use this function to perform a full biomarker analysis on an ensemble boolean model dataset where the model classification is based on the Matthews correlation coefficient score (MCC). This analysis enables the discovery of performance biomarkers, nodes whose activity and/or boolean model parameterization (link operator) affects the prediction performance of the models (as measured by the MCC score).

Usage

biomarker_mcc_analysis(
 model.predictions,
 models.stable.state,
 models.link.operator = NULL,
 observed.synergies,
 threshold,
 num.of.mcc.classes,
 include.NaN.mcc.class = TRUE
)
Arguments

model.predictions
a data.frame object with rows the models and columns the drug combinations. Possible values for each model-drug combination element are either 0 (no synergy predicted), 1 (synergy was predicted) or NA (couldn’t find stable states in either the drug combination inhibited model or in any of the two single-drug inhibited models).

models.stable.state
a matrix (nxm) with n models and m nodes. The row names of the matrix specify the models’ names whereas the column names specify the name of the network nodes (gene, proteins, etc.). Possible values for each model-node element are either 0 (inactive node) or 1 (active node). Note that the rows (models) have to be in the same order as in the model.predictions parameter.

models.link.operator
a matrix (nxm) with n models and m nodes. The row names of the matrix specify the models’ names whereas the column names specify the name of the network nodes (gene, proteins, etc.). Possible values for each model-node element are either 0 (AND NOT link operator), 1 (OR NOT link operator) or 0.5 if the node is not targeted by both activating and inhibiting regulators (no link operator). Default value: NULL (no analysis on the models parameterization regarding the mutation of the boolean equation link operator will be done).

observed.synergies
a character vector with elements the names of the drug combinations that were found as synergistic. This should be a subset of the tested drug combinations, that is the column names of the model.predictions parameter.

threshold numeric. A number in the [0,1] interval, above which (or below its negative value) a biomarker will be registered in the returned result. Values closer to 1 translate to a more strict threshold and thus less biomarkers are found.

num.of.mcc.classes numeric. A positive integer larger than 2 that signifies the number of mcc classes (groups) that we should split the models MCC values (excluding the 'NaN' values).

include.NaN.mcc.class logical. Should the models that have NaN MCC value (e.g. TP+FP = 0, models that predicted no synergies at all) be classified together in one class - the 'NaN MCC Class' - and compared with the other model classes in the analysis? If TRUE (default), then the number of total MCC classes will be num.of.mcc.classes + 1.

Value

a list with various elements:

• observed.model.predictions: the part of the model.predictions data that includes the observed.synergies.

• unobserved.model.predictions: the complementary part of the model.predictions data that does not include the observed.synergies
• predicted.synergies: a character vector of the synergies (drug combination names) that were predicted by **at least one** of the models in the dataset.

• synergy.subset.stats: an integer vector with elements the number of models the predicted each **observed synergy subset**.

• models.mcc: a numeric vector of MCC values (NaN’s can be included), one for each model.

• diff.state.mcc.mat: a matrix whose rows are **vectors of average node activity state differences** between two groups of models where the classification was based on the **MCC score** of each model and was found using an optimal univariate k-means clustering method (**Ckmeans.1d.dp**) . Rows represent the different classification group matchings, e.g. (1,2) means the models that were classified into the first MCC class vs the models that were classified in the 2nd class (higher is better). The columns represent the network’s node names. Values are in the [-1,1] interval.

• biomarkers.mcc.active: a character vector whose elements are the names of the **active state** biomarkers. These nodes appear more active in the better performance models.

• biomarkers.mcc.inhibited: a character vector whose elements are the names of the **inhibited state** biomarkers. These nodes appear more inhibited in the better performance models.

• diff.link.mcc.mat: a matrix whose rows are **vectors of average node link operator differences** between two groups of models where the classification was based on the **MCC score** of each model and was found using an optimal univariate k-means clustering method (**Ckmeans.1d.dp**) . Rows represent the different classification group matchings, e.g. (1,2) means the models that were classified into the first MCC class vs the models that were classified in the 2nd class (higher is better). The columns represent the network’s node names. Values are in the [-1,1] interval.

• biomarkers.mcc.or: a character vector whose elements are the names of the **OR** link operator biomarkers. These nodes have mostly the **OR** link operator in their respective boolean equations in the better performance models.

• biomarkers.mcc.and: a character vector whose elements are the names of the **AND** link operator biomarkers. These nodes have mostly the **AND** link operator in their respective boolean equations in the better performance models.

See Also

Other general analysis functions: biomarker_synergy_analysis(), biomarker_tp_analysis()

biomarker_synergy_analysis

Biomarker analysis per synergy predicted

Description

Use this function to discover **synergy biomarkers**, i.e. nodes whose activity and/or boolean equation parameterization (link operator) affect the manifestation of synergies in the models. Models are classified based on whether they predict or not each of the predicted synergies.
usage

biomarker_synergy_analysis(
 model.predictions,
 models.stable.state,
 models.link.operator = NULL,
 observed.synergies,
 threshold
)

Arguments

model.predictions
 a data.frame object with rows the models and columns the drug combinations. Possible values for each model-drug combination element are either 0 (no synergy predicted), 1 (synergy was predicted) or NA (couldn’t find stable states in either the drug combination inhibited model or in any of the two single-drug inhibited models).

models.stable.state
 a matrix (nxm) with n models and m nodes. The row names of the matrix specify the models’ names whereas the column names specify the name of the network nodes (gene, proteins, etc.). Possible values for each model-node element are either 0 (inactive node) or 1 (active node). Note that the rows (models) have to be in the same order as in the model.predictions parameter.

models.link.operator
 a matrix (nxm) with n models and m nodes. The row names of the matrix specify the models’ names whereas the column names specify the name of the network nodes (gene, proteins, etc.). Possible values for each model-node element are either 0 (AND NOT link operator), 1 (OR NOT link operator) or 0.5 if the node is not targeted by both activating and inhibiting regulators (no link operator). Default value: NULL (no analysis on the models parameterization regarding the mutation of the boolean equation link operator will be done).

observed.synergies
 a character vector with elements the names of the drug combinations that were found as synergistic. This should be a subset of the tested drug combinations, that is the column names of the model.predictions parameter.

threshold
 numeric. A number in the [0,1] interval, above which (or below its negative value) a biomarker will be registered in the returned result. Values closer to 1 translate to a more strict threshold and thus less biomarkers are found.

Value

a list with various elements:

• observed.model.predictions: the part of the model.predictions data that includes the observed.synergies.
• unobserved.model.predictions: the complementary part of the model.predictions data that does not include the observed.synergies
• **predicted.synergies**: a character vector of the synergies (drug combination names) that were predicted by **at least one** of the models in the dataset.

• **synergy.subset.stats**: an integer vector with elements the number of models the predicted each **observed synergy subset**.

• **diff.state.synergies.mat**: a matrix whose rows are **vectors of average node activity state differences** between two groups of models where the classification for each individual row was based on the prediction or not of a specific synergistic drug combination. The row names are the predicted synergies, one per row, while the columns represent the network’s node names. Values are in the [-1,1] interval.

• **activity.biomarkers**: a data.frame object with rows the predicted synergies and columns the nodes (column names of the models.stable.state matrix). Possible values for each synergy-node element are either 1 (active state biomarker), -1 (inhibited state biomarker) or 0 (not a biomarker) for the given threshold value.

• **diff.link.synergies.mat**: a matrix whose rows are **vectors of average node link operator differences** between two groups of models where the classification for each individual row was based on the prediction or not of a specific synergistic drug combination. The row names are the predicted synergies, one per row, while the columns represent the network’s node names. Values are in the [-1,1] interval.

• **link.operator.biomarkers**: a data.frame object with rows the predicted synergies and columns the nodes (column names of the models.link.operator matrix). Possible values for each synergy-node element are either 1 (OR link operator biomarker), -1 (AND link operator biomarker) or 0 (not a biomarker) for the given threshold value.

See Also

Other general analysis functions: `biomarker_mcc_analysis()`, `biomarker_tp_analysis()`
Arguments

model.predictions
	a data.frame object with rows the models and columns the drug combinations. Possible values for each model-drug combination element are either 0 (no synergy predicted), 1 (synergy was predicted) or NA (couldn’t find stable states in either the drug combination inhibited model or in any of the two single-drug inhibited models).

models.stable.state
	a matrix (nxm) with n models and m nodes. The row names of the matrix specify the models’ names whereas the column names specify the name of the network nodes (gene, proteins, etc.). Possible values for each model-node element are either 0 (inactive node) or 1 (active node). Note that the rows (models) have to be in the same order as in the model.predictions parameter.

models.link.operator
	a matrix (nxm) with n models and m nodes. The row names of the matrix specify the models’ names whereas the column names specify the name of the network nodes (gene, proteins, etc.). Possible values for each model-node element are either 0 (AND NOT link operator), 1 (OR NOT link operator) or 0.5 if the node is not targeted by both activating and inhibiting regulators (no link operator). Default value: NULL (no analysis on the models parameterization regarding the mutation of the boolean equation link operator will be done).

observed.synergies
	a character vector with elements the names of the drug combinations that were found as synergistic. This should be a subset of the tested drug combinations, that is the column names of the model.predictions parameter.

threshold

numeric. A number in the [0,1] interval, above which (or below its negative value) a biomarker will be registered in the returned result. Values closer to 1 translate to a more strict threshold and thus less biomarkers are found.

Value

a list with various elements:

• observed.model.predictions: the part of the model.predictions data that includes the observed.synergies.

• unobserved.model.predictions: the complementary part of the model.predictions data that does not include the observed.synergies

• predicted.synergies: a character vector of the synergies (drug combination names) that were predicted by at least one of the models in the dataset.

• synergy.subset.stats: an integer vector with elements the number of models the predicted each observed synergy subset.

• models.synergies.tp: an integer vector of true positive (TP) values, one for each model.

• diff.tp.mat: a matrix whose rows are vectors of average node activity state differences between two groups of models where the classification was based on the number of true positive predictions. Rows represent the different classification group matchings, e.g. (1,2) means the models that predicted 1 TP synergy vs the models that predicted 2 TP synergies and the columns represent the network’s node names. Values are in the [-1,1] interval.
• biomarkers.tp.active: a character vector whose elements are the names of the active state biomarkers. These nodes appear as more active in the better performance models.
• biomarkers.tp.inhibited: a character vector whose elements are the names of the inhibited state biomarkers. These nodes appear as more inhibited in the better performance models.
• diff.link.tp.mat: a matrix whose rows are vectors of average node link operator differences between two groups of models where the classification was based on the number of true positive predictions. Rows represent the different classification group matchings, e.g. (1,2) means the models that predicted 1 TP synergy vs the models that predicted 2 TP synergies and the columns represent the network’s node names. Values are in the [-1,1] interval.
• biomarkers.tp.or: a character vector whose elements are the names of the OR link operator biomarkers. These nodes have mostly the OR link operator in their respective boolean equations in the better performance models.
• biomarkers.tp.and: a character vector whose elements are the names of the AND link operator biomarkers. These nodes have mostly the AND link operator in their respective boolean equations in the better performance models.

See Also

Other general analysis functions: biomarker_mcc_analysis(), biomarker_synergy_analysis()

| calculate_mcc | Calculate the Matthews correlation coefficient vector |

Description

Use this function to calculate the MCC values given vectors of TP (true positives), FP (false positives), TN (true negatives), FN (false negatives), P (positives) and N (negatives). Note that the input vectors have to be of the same size and have one-to-one value correspondence for the output MCC vector values to make sense.

Usage

calculate_mcc(tp, tn, fp, fn, p, n)

Arguments

tp numeric vector of TPs
tn numeric vector of TNs
fp numeric vector of FPs
fn numeric vector of FNs
p numeric vector of positives (p = tp + fn)
n numeric vector of negatives (n = tn + fp)

Value

a numeric vector of MCC values, each value being in the [-1,1] interval or NaN.
calculate_models_mcc

See Also

Other confusion matrix calculation functions: calculate_models_mcc(), calculate_models_synergies_fn(), calculate_models_synergies_fp(), calculate_models_synergies_tn(), calculate_models_synergies_tp()

calculate_models_mcc Calculate the Matthews correlation coefficient for each model

Description

Calculate the Matthews correlation coefficient for each model

Usage

calculate_models_mcc(
 observed.model.predictions,
 unobserved.model.predictions,
 number.of.drug.comb.tested
)

Arguments

observed.model.predictions
data.frame object with rows the models and columns the drug combinations that were found as synergistic (positive results). Possible values for each model-drug combination element are either 0 (no synergy predicted), 1 (synergy was predicted) or NA (couldn't find stable states in either the drug combination inhibited model or in any of the two single-drug inhibited models)

unobserved.model.predictions
data.frame object with rows the models and columns the drug combinations that were found as non-synergistic (negative results). Possible values for each model-drug combination element are either 0 (no synergy predicted), 1 (synergy was predicted) or NA (couldn't find stable states in either the drug combination inhibited model or in any of the two single-drug inhibited models)

number.of.drug.comb.tested
numeric. The total number of drug combinations tested, which should be equal to the sum of the columns of the observed.model.predictions and the unobserved.model.predictions

Value

a numeric vector of MCC values, each value being in the [-1,1] interval or NaN. The names attribute holds the models’ names.

See Also

Other confusion matrix calculation functions: calculate_mcc(), calculate_models_synergies_fn(), calculate_models_synergies_fp(), calculate_models_synergies_tn(), calculate_models_synergies_tp()
calculate_models_synergies_fn

Count the non-synergies of the observed synergies per model (FN)

Description
Since the given observed.model.predictions data.frame has only the positive results, this function returns the total number of 0’s and NA’s in each row.

Usage
calculate_models_synergies_fn(observed.model.predictions)

Arguments
observed.model.predictions
data.frame object with rows the models and columns the drug combinations that were found/observed as synergistic (negative results). Possible values for each model-drug combination element are either 0 (no synergy predicted), 1 (synergy was predicted) or NA (couldn’t find stable states in either the drug combination inhibited model or in any of the two single-drug inhibited models)

Value
an integer vector with elements the number of false negative predictions per model. The model names are given in the names attribute (same order as in the rownames attribute of the observed.model.predictions data.frame).

See Also
Other confusion matrix calculation functions: calculate_mcc(), calculate_models_mcc(), calculate_models_synergies_fp(), calculate_models_synergies_tn(), calculate_models_synergies_tp()

calculate_models_synergies_fp

Count the predictions of the non-synergistic drug combinations per model (FP)

Description
Since the given unobserved.model.predictions data.frame has only the negative results, this function returns the total number of 1’s in each row.

Usage
calculate_models_synergies_fp(unobserved.model.predictions)
Arguments

unobserved.model.predictions
data.frame object with rows the models and columns the drug combinations that were found/observed as non-synergistic (negative results). Possible values for each model-drug combination element are either 0 (no synergy predicted), 1 (synergy was predicted) or NA (couldn’t find stable states in either the drug combination inhibited model or in any of the two single-drug inhibited models)

Value

an integer vector with elements the number of false positive predictions per model. The model names are given in the names attribute (same order as in the rownames attribute of the unobserved.model.predictions data.frame).

See Also

Other confusion matrix calculation functions: calculate_mcc(), calculate_models_mcc(), calculate_models_synergies_fn(), calculate_models_synergies_tn(), calculate_models_synergies_tp()

calculate_models_synergies_tn

Count the non-synergies of the non-synergistic drug combinations per model (TN)

Description

Since the given unobserved.model.predictions data.frame has only the negative results, this function returns the total number of 0’s and NA's in each row.

Usage

calculate_models_synergies_tn(unobserved.model.predictions)

Arguments

unobserved.model.predictions
data.frame object with rows the models and columns the drug combinations that were found/observed as non-synergistic (negative results). Possible values for each model-drug combination element are either 0 (no synergy predicted), 1 (synergy was predicted) or NA (couldn’t find stable states in either the drug combination inhibited model or in any of the two single-drug inhibited models)

Value

an integer vector with elements the number of true negative predictions per model. The model names are given in the names attribute (same order as in the rownames attribute of the unobserved.model.predictions data.frame).
calculate_models_synergies_tp

Count the predictions of the observed synergies per model (TP)

Description

Since the given observed.model.predictions data.frame has only the positive results, this function returns the total number of 1's in each row.

Usage

```r
calculate_models_synergies_tp( observed.model.predictions )
```

Arguments

- `observed.model.predictions` - data.frame object with rows the models and columns the drug combinations that were found/observed as **synergistic (positive results)**. Possible values for each *model-drug combination element* are either 0 (no synergy predicted), 1 (synergy was predicted) or NA (couldn't find stable states in either the drug combination inhibited model or in any of the two single-drug inhibited models).

Value

an integer vector with elements the number of true positive predictions per model. The model names are given in the *names* attribute (same order as in the *rownames* attribute of the observed.model.predictions data.frame).

See Also

Other confusion matrix calculation functions: `calculate_mcc()`, `calculate_models_mcc()`, `calculate_models_synergies_fn()`, `calculate_models_synergies_fp()`, `calculate_models_synergies_tn()`
construct_network

Construct igraph network graph

Description
Use this function to create an igraph graph object based on the topology .sif file given. It automatically sets various visualization graph properties and checks if the node names from the topology file are the same as in the models inside the given models.dir (if not NULL).

Usage
construct_network(topology.file, models.dir = NULL)

Arguments
- topology.file: string. The name of the .sif file (can be a full path name).
- models.dir: string. A dir with .gitsbe files/models. Default value: NULL. If specified, it is used for the validation of the node names.

Value
an igraph graph object representing the network as defined in the topology file

See Also
graph_from_data_frame, get_edges_from_topology_file, get_node_names

count_models_that_predict_synergies

Count models that predict a set of synergies

Description
Use this function to find the number of models that predict a given set of drug combinations (usually the ones found as synergies).

Usage
count_models_that_predict_synergies(drug.comb.vec, model.predictions)

Arguments
- drug.comb.vec: a character vector. Elements are (synergistic) drug combinations, each one being a string in the form A-B - no spaces between the names and the hyphen '-'.
- model.predictions: a data.frame object with rows as the models and columns the drug combinations tested. Possible values for each model-drug combination element are either 0 (no synergy predicted), 1 (synergy was predicted) or NA
Value
the number of models that predict the given drug combination set (have a value of 1 in the respective columns of the model.predictions data.frame). If the given set is empty, we return the number of models that predicted no synergies at all (after the NA values are discarded, the number of rows in the model.predictions data.frame that have only zero values)

Description
Analysis and visualization of an ensemble of boolean models for biomarker discovery in cancer cell networks.

Details
For a complete list of functions, use library(help = "emba")

filter_network
Filter the network's vertices

Description
Produce an induced subgraph of the given net igraph object. How many vertices/nodes will be kept in the result graph object is determined by the initial nodes given and the level provided. A level equal to 0 corresponds to a subgraph with only the given nodes, a level equal to 1 to a subgraph with the nodes + their neighbors (the closed neighbourhood set) and a level equal to 2 to a subgraph with the nodes + their neighbors + the nodes neighbor neighbors! (so the neighbourhood of the neighbourhood)

Usage
filter_network(net, nodes, level)

Arguments
net an igraph object.
nodes character vector of node names. It must be a subset of the nodes of the net object.
level integer. Can be only 0, 1 or 2 and specifies the neighbourhood depth of the result graph.

Value
an induced subgraph of the net igraph object.
get_alt_drugname \(\text{Get alternative drug combination name}\)

Description

Use this function on a string \(A-B\) that represents a drug combination, to get the reverse combination name \(-B-A\) - for testing/checking data.

Usage

\[
\text{get_alt_drugname}(\text{drug.comb})
\]

Arguments

- \(\text{drug.comb}\) a string in the form \(\text{drugname.1-drugname.2}\) (no spaces between the names and the hyphen \(\ '-'\))

Value

the alternative, yet equivalent drug combination

Examples

\[
\begin{align*}
drug.comb &= "A-B" \\
alt.drug.comb &= \text{get_alt_drugname}(\text{drug.comb})
\end{align*}
\]

get_avg_activity_diff_based_on_mcc_clustering \(\text{Get the average activity difference based on MCC clustering}\)

Description

This function splits the models to 'good' and 'bad' based on an MCC value clustering method: \(\text{class.id.high}\) denotes the group id with the higher MCC values (good model group) vs \(\text{class.id.low}\) which denotes the group id with the lower MCC values (bad model group). Then, for each network node, the function finds the node's average activity in each of the two classes (a value in the [0,1] interval) and then subtracts the bad class average activity value from the good one.
Usage

get_avg_activity_diff_based_on_mcc_clustering(
 models.mcc,
 models.stable.state,
 mcc.class.ids,
 models.cluster.ids,
 class.id.low,
 class.id.high
)

Arguments

models.mcc a numeric vector of Matthews Correlation Coefficient (MCC) scores, one for each model. The names attribute holds the models’ names. Can be the result of using the function calculate_models_mcc.

models.stable.state a matrix (nxm) with n models and m nodes. The row names of the matrix specify the models’ names (same order as in the models.mcc parameter) whereas the column names specify the name of the network nodes (gene, proteins, etc.). Possible values for each model-node element are either 0 (inactive node) or 1 (active node).

mcc.class.ids a numeric vector of group/class ids starting from NaN if models with NaN MCC score are included or 1 otherwise. E.g. c(1,2,3), where we have 3 MCC classes and no NaN values.

models.cluster.ids a numeric vector of cluster ids assigned to each model. It is the result of using Ckmeans.1d.dp with input the sorted vector of the models’ MCC values with no NaNs included.

class.id.low integer. This number specifies the MCC class id of the ’bad’ models.

class.id.high integer. This number specifies the MCC class id of the ’good’ models and needs to be strictly higher than class.id.low.

Value

a numeric vector with values in the [-1,1] interval (minimum and maximum possible average difference) and with the names attribute representing the name of the nodes.

Details

So, if a node has a value close to -1 it means that on average, this node is more inhibited in the ’good’ models compared to the ’bad’ ones while a value closer to 1 means that the node is more activated in the ’good’ models. A value closer to 0 indicates that the activity of that node is not so much different between the ’good’ and ’bad’ models and so it won’t not be a node of interest when searching for indicators of better performance (higher MCC score/class) in the good models.
get_avg_activity_diff_based_on_specific_synergy_prediction

Description

Given a specific drug combination, this function splits the models to good (those that predicted that particular combination, i.e. found it as synergistic - a value of 1 in the model.predictions) and bad (those that found it as non-synergistic - a value of 0 in the model.predictions). The models whose predicted value for that synergy is marked as NA are excluded from the analysis. Then, for each network node, the function finds the node’s average activity in each of the two model groups (a value in the [0,1] interval) and then subtracts the bad group’s average activity value from the good one.

Usage

get_avg_activity_diff_based_on_specific_synergy_prediction(
 model.predictions,
 models.stable.state,
 drug.comb
)

Arguments

model.predictions
a data.frame object with rows the models and columns the drug combinations. Possible values for each model-drug combination element are either 0 (no synergy predicted), 1 (synergy was predicted) or NA (couldn’t find stable states in either the drug combination inhibited model or in any of the two single-drug inhibited models)

models.stable.state
a matrix (nxm) with n models and m nodes. The row names of the matrix specify the models' names whereas the column names specify the name of the network nodes (gene, proteins, etc.). Possible values for each model-node element are either 0 (inactive node) or 1 (active node).

drug.comb
string. The drug combination which will be used to split the models. It must be included in the column names of the model.predictions object.

See Also

Other average data difference functions: get_avg_activity_diff_based_on_specific_synergy_prediction(), get_avg_activity_diff_based_on_synergy_set_cmp(), get_avg_activity_diff_based_on_tp_predictions(), get_avg_activity_diff_mat_based_on_mcc_clustering(), get_avg_activity_diff_mat_based_on_specific_synergy_prediction(), get_avg_activity_diff_mat_based_on_tp_predictions(), get_avg_link_operator_diff_based_on_specific_synergy_prediction(), get_avg_link_operator_diff_based_on_synergy_set_cmp(), get_avg_link_operator_diff_mat_based_on_mcc_clustering(), get_avg_link_operator_diff_mat_based_on_specific_synergy_prediction(), get_avg_link_operator_diff_mat_based_on_tp_predictions()
Value

A numeric vector with values in the [-1,1] interval (minimum and maximum possible average difference) and with the *names* attribute representing the name of the nodes.

Details

So, if a node has a value close to -1 it means that on average, this node is more *inhibited* in the models that predicted the specific drug combination given, whereas a value closer to 1 means that the node is more *activated* in these models. A value closer to 0 indicates that the activity of that node is *not so much different* between the models that predicted the synergy and those that did not and so it won’t not be a node of interest when searching for *synergy biomarkers* - nodes whose activity is important for the manifestation of the synergy.

See Also

get_avg_activity_diff_based_on_synergy_set_cmp

Get the average activity difference based on the comparison of two synergy sets

Description

This function splits the models to 'good' and 'bad' based on the predictions of two different synergy sets, one of them being a subset of the other. The 'good' models are those that predict the `synergy.set.str` (e.g. "A-B,A-C,B-C") while the 'bad' models are those that predict the `synergy.subset.str` (e.g. "A-B,B-C"). Then, for each network node, the function finds the node's average activity in each of the two classes (a value in the [0,1] interval) and then subtracts the bad class average activity value from the good one.

Usage

```r
get_avg_activity_diff_based_on_synergy_set_cmp(
  synergy.set.str,
  synergy.subset.str,
  model.predictions,
  models.stable.state
)
```
get_avg_activity_diff_based_on_synergy_set_cmp

Arguments

synergy.set.str
a string of drug combinations, comma-separated. The number of the specified combinations must be larger than the ones defined in the synergy.subset.str parameter. They also must be included in the tested drug combinations, i.e. the columns of the model.predictions parameter.

synergy.subset.str
a string of drug combinations, comma-separated. There must be at least one combination defined and all of them should also be included in the synergy.set.str parameter.

model.predictions
a data.frame object with rows the models and columns the drug combinations. Possible values for each model-drug combination element are either 0 (no synergy predicted), 1 (synergy was predicted) or NA (couldn’t find stable states in either the drug combination inhibited model or in any of the two single-drug inhibited models)

models.stable.state
a matrix (nxm) with n models and m nodes. The row names of the matrix specify the models’ names whereas the column names specify the name of the network nodes (gene, proteins, etc.). Possible values for each model-node element are either 0 (inactive node) or 1 (active node).

Value

a numeric vector with values in the [-1,1] interval (minimum and maximum possible average difference) and with the names attribute representing the name of the nodes.

Details

So, if a node has a value close to -1 it means that on average, this node is more inhibited in the models that predicted the extra synergy(-ies) that are included in the synergy.set.str but not in the synergy.subset.str, whereas a value closer to 1 means that the node is more activated in these models. These nodes are potential biomarkers because their activity state can influence the prediction performance of a model and make it predict the extra synergy(-ies). A value closer to 0 indicates that the activity of that node is not so much different between the models that predicted the synergy set and those that predicted its subset, so it won’t not be a node of interest when searching for potential biomarkers for the extra synergy(-ies).

See Also

Other average data difference functions: get_avg_activity_diff_based_on_mcc_clustering(), get_avg_activity_diff_based_on_specific_synergy_prediction(), get_avg_activity_diff_based_on_tp_predictions(), get_avg_activity_diff_mat_based_on_mcc_clustering(), get_avg_activity_diff_mat_based_on_specific_synergy_prediction(), get_avg_activity_diff_mat_based_on_tp_predictions(), get_avg_link_operator_diff_based_on_mcc_clustering(), get_avg_link_operator_diff_based_on_specific_synergy_prediction(), get_avg_link_operator_diff_mat_based_on_specific_synergy_prediction().
get_avg_activity_diff_based_on_tp_predictions

Get the average activity difference based on the number of true positives

Description

This function splits the models to 'good' and 'bad' based on the number of true positive predictions:
num.high TP (good) vs num.low TP (bad). Then, for each network node, it finds the node’s average activity in each of the two classes (a value in the [0,1] interval) and then subtracts the 'bad' average activity value from the good’ one.

Usage

get_avg_activity_diff_based_on_tp_predictions(
 models,
 models.synergies.tp,
 models.stable.state,
 num.low,
 num.high
)

Arguments

models character vector. The model names.
models.synergies.tp an integer vector of TP values. The names attribute holds the models’ names and have to be in the same order as in the models parameter.
models.stable.state a matrix (nxm) with n models and m nodes. The row names of the matrix specify the models’ names (same order as in the models parameter) whereas the column names specify the name of the network nodes (gene, proteins, etc.). Possible values for each model-node element are either 0 (inactive node) or 1 (active node).
num.low integer. The number of true positives representing the 'bad' model class.
num.high integer. The number of true positives representing the 'good' model class. This number has to be strictly higher than num.low.

Value

a numeric vector with values in the [-1,1] interval (minimum and maximum possible average difference) and with the names attribute representing the name of the nodes.
get_avg_activity_diff_mat_based_on_mcc_clustering

Details

So, if a node has a value close to -1 it means that on average, this node is more inhibited in the 'good' models compared to the 'bad' ones while a value closer to 1 means that the node is more activated in the 'good' models. A value closer to 0 indicates that the activity of that node is not so much different between the 'good' and 'bad' models and so it won’t not be a node of interest when searching for indicators of better performance (higher number of true positives) in the good models.

See Also

Other average data difference functions: get_avg_activity_diff_based_on_mcc_clustering(), get_avg_activity_diff_based_on_specific_synergy_prediction(), get_avg_activity_diff_mat_based_on_mcc_clustering(), get_avg_activity_diff_mat_based_on_specific_synergy_prediction(), get_avg_activity_diff_mat_based_on_tp_predictions(), get_avg_link_operator_diff_based_on_specific_synergy_prediction(), get_avg_link_operator_diff_based_on_synergy_set_cmp(), get_avg_link_operator_diff_mat_based_on_mcc_clustering(), get_avg_link_operator_diff_mat_based_on_specific_synergy_prediction(), get_avg_link_operator_diff_mat_based_on_tp_predictions(),

get_avg_activity_diff_mat_based_on_mcc_clustering

Get average activity difference matrix based on MCC clustering

Description

This function splits the Matthews correlation coefficient (MCC) scores of the models to specific groups using the Ckmeans.1d.dp package for the clustering (groups are denoted by ids, e.g. NaN, 1, 2, 3, etc. where a larger id corresponds to a group of models with higher MCC scores) and for each pairwise combination of group id matchings (e.g. (0,1), (1,3), etc.), it uses the get_avg_activity_diff_based_on_mcc_clustering function, comparing thus all groups of models that belong to different MCC classes.

Usage

get_avg_activity_diff_mat_based_on_mcc_clustering(
 models.mcc,
 models.stable.state,
 num.of.mcc.classes,
 include.NaN.mcc.class
)

Arguments

models.mcc a numeric vector of Matthews Correlation Coefficient (MCC) scores, one for each model. The names attribute holds the models’ names. Can be the result of using the function calculate_models_mcc.

models.stable.state a matrix (nxm) with n models and m nodes. The row names of the matrix specify the models’ names (same order as in the models.mcc parameter) whereas the
get_avg_activity_diff_mat_based_on_specific_synergy_prediction

column names specify the name of the network nodes (gene, proteins, etc.). Possible values for each model-node element are either 0 (inactive node) or 1 (active node).

num.of.mcc.classes numeric. A positive integer larger than 2 that signifies the number of mcc classes (groups) that we should split the models MCC values (excluding the 'NaN' values).

include.NaN.mcc.class logical. Should the models that have NaN MCC value (e.g. TP+FP = 0, models that predicted no synergies at all) be classified together in one class - the 'NaN MCC Class' - and compared with the other model classes in the analysis? If TRUE, then the number of total MCC classes will be num.of.mcc.classes + 1.

Value

a matrix whose rows are vectors of average node activity state differences between two groups of models where the classification was based on the models’ MCC values. Rows represent the different classification group matchings, e.g. (1,2) means the models that belonged to the 1st group of MCC values vs the models that belonged to the 2nd group. The columns represent the network’s node names. Values are in the [-1,1] interval.

See Also

Other average data difference functions: get_avg_activity_diff_based_on_mcc_clustering(), get_avg_activity_diff_based_on_specific_synergy_prediction(), get_avg_activity_diff_based_on_synergy_set_cmp(), get_avg_activity_diff_based_on_tp_predictions(), get_avg_activity_diff_mat_based_on_specific_synergy_prediction(), get_avg_link_operator_diff_based_on_specific_synergy_prediction(), get_avg_link_operator_diff_mat_based_on_specific_synergy_prediction().
Arguments

model.predictions

a data.frame object with rows the models and columns the drug combinations. Possible values for each model-drug combination element are either 0 (no synergy predicted), 1 (synergy was predicted) or NA (couldn't find stable states in either the drug combination inhibited model or in any of the two single-drug inhibited models).

models.stable.state

a matrix (nxm) with n models and m nodes. The row names of the matrix specify the models' names whereas the column names specify the name of the network nodes (gene, proteins, etc.). Possible values for each model-node element are either 0 (inactive node) or 1 (active node).

predicted.synergies

a character vector of the synergies (drug combination names) that were predicted by at least one of the models in the dataset. It must be a subset of the column names (the drug combinations) of the model.predictions object.

Value

a matrix whose rows are vectors of average node activity state differences between two groups of models where the classification for each individual row was based on the prediction or not of a specific synergistic drug combination. The row names are the predicted synergies, one per row, while the columns represent the network's node names. Values are in the [-1,1] interval.

See Also

Other average data difference functions: get_avg_activity_diff_based_on_mcc_clustering(), get_avg_activity_diff_based_on_specific_synergy_prediction(), get_avg_activity_diff_based_on_synergy_set_cmp(), get_avg_activity_diff_based_on_tp_predictions(), get_avg_activity_diff_mat_based_on_mcc_clustering(), get_avg_activity_diff_mat_based_on_specific_synergy_prediction(), get_avg_activity_diff_mat_based_on_tp_predictions(), get_avg_link_operator_diff_based_on_specific_synergy_prediction(), get_avg_link_operator_diff_based_on_synergy_set_cmp(), get_avg_link_operator_diff_mat_based_on_mcc_clustering(), get_avg_link_operator_diff_mat_based_on_specific_synergy_prediction(), get_avg_link_operator_diff_mat_based_on_tp_predictions()
get_avg_activity_diff_mat_based_on_tp_predictions

Usage

get_avg_activity_diff_mat_based_on_tp_predictions(
 models,
 models.synergies.tp,
 models.stable.state
)

Arguments

models character vector. The model names.
models.synergies.tp an integer vector of TP values. The names attribute holds the models’ names and have to be in the same order as in the models parameter.
models.stable.state a matrix (nxm) with n models and m nodes. The row names of the matrix specify the models’ names (same order as in the models parameter) whereas the column names specify the name of the network nodes (gene, proteins, etc.). Possible values for each model-node element are either 0 (inactive node) or 1 (active node).

Value

a matrix whose rows are vectors of average node activity state differences between two groups of models where the classification was based on the number of true positive predictions. Rows represent the different classification group matchings, e.g. (1,2) means the models that predicted 1 TP synergy vs the models that predicted 2 TP synergies and the columns represent the network’s node names. Values are in the [-1,1] interval.

See Also

Other average data difference functions: get_avg_activity_diff_based_on_mcc_clustering(), get_avg_activity_diff_based_on_specific_synergy_prediction(), get_avg_activity_diff_based_on_synergy_set_cmp(), get_avg_activity_diff_based_on_tp_predictions(), get_avg_activity_diff_mat_based_on_mcc_clustering(), get_avg_activity_diff_mat_based_on_specific_synergy_prediction(), get_avg_activity_diff_mat_based_on_specific_synergy_prediction()
Description

Given a specific drug combination, this function uses the `get_avg_activity_diff_based_on_specific_synergy_prediction` to split the models to good (those that predicted that particular combination, i.e. found it as synergistic - a value of 1 in the `model.predictions`) and bad (those that found it as non-synergistic - a value of 0 in the `model.predictions`). The models whose predicted value for that synergy is marked as NA are excluded from the analysis. Then, for each network node, the function finds the node’s average link operator value in each of the two model groups (a value in the [0,1] interval) and then subtracts the bad group’s average activity value from the good one.

Usage

```r
get_avg_link_operator_diff_based_on_specific_synergy_prediction(
  model.predictions,
  models.link.operator,
  drug.comb
)
```

Arguments

- `model.predictions`: a data.frame object with rows the models and columns the drug combinations. Possible values for each `model-drug combination element` are either 0 (no synergy predicted), 1 (synergy was predicted) or NA (couldn’t find stable states in either the drug combination inhibited model or in any of the two single-drug inhibited models).
- `models.link.operator`: matrix (nxm) with n models and m nodes. The row names of the matrix specify the models’ names (same order as in the `model.predictions` parameter) whereas the column names specify the name of the network nodes (gene, proteins, etc.). Possible values for each `model-node element` are either 0 (AND NOT link operator), 1 (OR NOT link operator) or 0.5 if the node is not targeted by both activating and inhibiting regulators (no link operator).
- `drug.comb`: string. The drug combination which will be used to split the models. It must be included in the column names of the `model.predictions` object.

Value

A numeric vector with values in the [-1,1] interval (minimum and maximum possible average difference) and with the `names` attribute representing the name of the nodes.

Details

So, if a node has a value close to -1 it means that on average, this node’s boolean equation has the AND NOT link operator in the models that predicted the specific drug combination given, whereas a value closer to 1 means that the node’s boolean equation has mostly the OR NOT link operator in these models. A value closer to 0 indicates that the link operator in the node’s boolean equation is not so much different between the models that predicted the given drug combination and those that did not, so it won’t not be a node of interest when searching for potential link operator
biomarkers for this synergy. A value exactly equal to 0 can also mean that this node didn’t not have a link operator in its boolean equation, again making it a non-important indicator of link operator difference.

See Also

Other average data difference functions: get_avg_activity_diff_based_on_mcc_clustering(), get_avg_activity_diff_based_on_specific_synergy_prediction(), get_avg_activity_diff_based_on_synergy_set_cmp(), get_avg_activity_diff_based_on_tp_predictions(), get_avg_activity_diff_mat_based_on_mcc_clustering(), get_avg_activity_diff_mat_based_on_specific_synergy_prediction(), get_avg_activity_diff_mat_based_on_synergy_set_cmp(), get_avg_activity_diff_mat_based_on_tp_predictions(), get_avg_link_operator_diff_based_on_synergy_set_cmp(), get_avg_link_operator_diff_mat_based_on_mcc_clustering(), get_avg_link_operator_diff_mat_based_on_specific_synergy_prediction(), get_avg_link_operator_diff_mat_based_on_synergy_set_cmp(), get_avg_link_operator_diff_mat_based_on_tp_predictions().

get_avg_link_operator_diff_based_on_synergy_set_cmp

Get the average link operator difference based on the comparison of two synergy sets

Description

This function uses the get_avg_link_operator_diff_based_on_synergy_set_cmp which splits the models to 'good' and 'bad' based on the predictions of two different synergy sets, one of them being a subset of the other. The 'good' models are those that predict the synergy.set.str (e.g. "A-B,A-C,B-C") while the 'bad' models are those that predict the synergy.subset.str (e.g. "A-B,B-C"). Then, for each network node, the function finds the node’s average link operator value in each of the two classes (a value in the [0,1] interval, 0 being AND NOT and 1 being OR NOT) and then subtracts the bad class average link operator value from the good one.

Usage

get_avg_link_operator_diff_based_on_synergy_set_cmp(
 synergy.set.str,
 synergy.subset.str,
 model.predictions,
 models.link.operator
)

Arguments

synergy.set.str
 a string of drug combinations, comma-separated. The number of the specified combinations must be larger than the ones defined in the synergy.subset.str parameter. They also must be included in the tested drug combinations, i.e. the columns of the model.predictions parameter.

synergy.subset.str
 a string of drug combinations, comma-separated. There must be at least one combination defined and all of them should also be included in the synergy.set.str parameter.
model.predictions

A data.frame object with rows the models and columns the drug combinations. Possible values for each model-drug combination element are either 0 (no synergy predicted), 1 (synergy was predicted) or NA (couldn’t find stable states in either the drug combination inhibited model or in any of the two single-drug inhibited models).

models.link.operator

A matrix (nxm) with n models and m nodes. The row names of the matrix specify the models’ names whereas the column names specify the name of the network nodes (gene, proteins, etc.). Possible values for each model-node element are either 0 (AND NOT link operator), 1 (OR NOT link operator) or 0.5 if the node is not targeted by both activating and inhibiting regulators (no link operator).

Value

A numeric vector with values in the [-1,1] interval (minimum and maximum possible average difference) and with the names attribute representing the name of the nodes.

Details

So, if a node has a value close to -1 it means that on average, this node’s boolean equation has the AND NOT link operator in the models that predicted the extra synergy(-ies) that are included in the synergy.set.str but not in the synergy.subset.str, whereas a value closer to 1 means that the node’s boolean equation has mostly the OR NOT link operator in these models. These nodes are potential link operator biomarkers because the structure of their respective boolean equations (denoted by their link operator) can influence the prediction performance of a model and make it predict the extra synergy(-ies). A value closer to 0 indicates that the link operator in the node’s boolean equation is not so much different between the models that predicted the synergy set and those that predicted it’s subset, so it won’t not be a node of interest when searching for potential link operator biomarkers for the extra synergy(-ies). A value exactly equal to 0 can also mean that this node didn’t not have a link operator in its boolean equation, again making it a non-important indicator of difference in model performance.

See Also

Other average data difference functions: get_avg_activity_diff_based_on_mcc_clustering(), get_avg_activity_diff_based_on_specific_synergy_prediction(), get_avg_activity_diff_based_on_synergy(), get_avg_activity_diff_based_on_tp_predictions(), get_avg_activity_diff_mat_based_on_mcc_clustering(), get_avg_activity_diff_mat_based_on_specific_synergy_prediction(), get_avg_activity_diff_mat_based_on_tp_predictions(), get_avg_link_operator_diff_based_on_specific_synergy_prediction(), get_avg_link_operator_diff_mat_based_on_specific_synergy_prediction(), get_avg_link_operator_diff_mat_based_on_mcc_clustering()
Description

This function uses the `get_avg_activity_diff_mat_based_on_mcc_clustering` function with the parameter `models.link.operator` as input in the place of `models.stable.state`, since the two matrices representing the two inputs have the same data format (rows represent models, columns represent nodes, and each value is a number in the [0,1] interval).

Usage

```r
get_avg_link_operator_diff_mat_based_on_mcc_clustering(
  models.mcc,
  models.link.operator,
  num.of.mcc.classes,
  include.NaN.mcc.class
)
```

Arguments

- `models.mcc` a numeric vector of Matthews Correlation Coefficient (MCC) scores, one for each model. The `names` attribute holds the models’ names. Can be the result of using the function `calculate_models_mcc`.
- `models.link.operator` matrix (nxm) with n models and m nodes. The row names of the matrix specify the models’ names (same order as in the `models.mcc` parameter) whereas the column names specify the name of the network nodes (gene, proteins, etc.). Possible values for each model-node element are either 0 (AND NOT link operator), 1 (OR NOT link operator) or 0.5 if the node is not targeted by both activating and inhibiting regulators (no link operator).
- `num.of.mcc.classes` numeric. A positive integer larger than 2 that signifies the number of mcc classes (groups) that we should split the models MCC values (excluding the 'NaN' values).
- `include.NaN.mcc.class` logical. Should the models that have NaN MCC value (e.g. TP+FP = 0, models that predicted no synergies at all) be classified together in one class - the 'NaN MCC Class' - and compared with the other model classes in the analysis? If `TRUE`, then the number of total MCC classes will be `num.of.mcc.classes + 1`.

Value

A matrix whose rows are **vectors of average node link operator differences** between two groups of models where the classification was based on the models’ MCC values. Rows represent the different classification group matchings, e.g. (1,2) means the models that belonged to the 1st group of MCC values vs the models that belonged to the 2nd group. The columns represent the network’s node names. Values are in the [-1,1] interval.

Details

So, if a node has a value close to -1 it means that on average, this node’s boolean equation has the **AND NOT** link operator in the 'good' models compared to the 'bad' ones while a value closer
to 1 means that the node's boolean equation has mostly the OR NOT link operator in the 'good' models. A value closer to 0 indicates that the link operator in the node's boolean equation is not so much different between the 'good' and 'bad' models and so it won't not be a node of interest when searching for indicators of better performance (higher average MCC value) in the parameterization of the good models (the boolean equations). A value exactly equal to 0 can also mean that this node didn't not have a link operator in its boolean equation, again making it a non-important indicator of difference in model performance.

See Also

Other average data difference functions: get_avg_activity_diff_based_on_mcc_clustering(), get_avg_activity_diff_based_on_specific_synergy_prediction(), get_avg_activity_diff_based_on_tp_predictions(), get_avg_activity_diff_mat_based_on_mcc_clustering(), get_avg_activity_diff_mat_based_on_specific_synergy_prediction(), get_avg_activity_diff_mat_based_on_tp_predictions(), get_avg_link_operator_diff_based_on_mcc_clustering(), get_avg_link_operator_diff_based_on_specific_synergy_prediction(), get_avg_link_operator_diff_mat_based_on_mcc_clustering(), get_avg_link_operator_diff_mat_based_on_specific_synergy_prediction(), get_avg.link_operator_diff_mat_based.on_specific.synergy.prediction()
models.link.operator

matrix (nxm) with n models and m nodes. The row names of the matrix specify the models’ names (same order as in the model.predictions parameter) whereas the column names specify the name of the network nodes (gene, proteins, etc.). Possible values for each model-node element are either 0 (AND NOT link operator), 1 (OR NOT link operator) or 0.5 if the node is not targeted by both activating and inhibiting regulators (no link operator).

predicted.synergies

a character vector of the synergies (drug combination names) that were predicted by at least one of the models in the dataset. It must be a subset of the column names (the drug combinations) of the model.predictions object.

Value

a matrix whose rows are vectors of average node link operator differences between two groups of models where the classification for each individual row was based on the prediction or not of a specific synergistic drug combination. The row names are the predicted synergies, one per row, while the columns represent the network’s node names. Values are in the [-1,1] interval.

Details

So, if a node has a value close to -1 it means that on average, this node’s boolean equation has the AND NOT link operator in the models that predicted the specified synergy while a value closer to 1 means that the node’s boolean equation has mostly the OR NOT link operator in these models. A value closer to 0 indicates that the link operator in the node’s boolean equation is not so much different between the models that predicted the synergy and those that did not and so it won’t not be a node of interest when searching for synergy biomarkers - nodes whose parameterization (value of the link operator) affects the manifestation of synergy. A value exactly equal to 0 can also mean that this node didn’t not have a link operator in its boolean equation (making it thus a non-important node with regard to the parameterization).

See Also

Other average data difference functions: get_avg_activity_diff_based_on_mcc_clustering(), get_avg_activity_diff_based_on spécifique_synergy_prediction(), get_avg_activity_diff_mat_based_on_mcc_clustering(), get_avg_activity_diff_mat_based_on spécifique_synergy_prediction(), get_avg_activity_diff_mat_based_on_tp_predictions(), get_avg_activity_diff_mat_based_on spécifique_synergy_prediction(), get_avg_link_operator_diff_based_on spécifique_synergy_prediction(), get_avg_link_operator_diff_mat_based_on_mcc_clustering(), get_avg_link_operator_diff_mat_based_on spécifique_synergy_prediction(), get_avg_link_operator_diff_mat_based_on_tp_predictions()
get_avg_link_operator_diff_mat_based_on_tp_predictions

Description

This function uses the `get_avg_activity_diff_mat_based_on_tp_predictions` function with the parameter `models.link.operator` as input in the place of `models.stable.state`, since the two matrices representing the two inputs have the same data format (rows represent models, columns represent nodes, and each value is a number in the [0,1] interval).

Usage

```r
get_avg_link_operator_diff_mat_based_on_tp_predictions(
  models,
  models.synergies.tp,
  models.link.operator
)
```

Arguments

- `models` character vector. The model names.
- `models.synergies.tp` an integer vector of TP values. The `names` attribute holds the models’ names and have to be in the same order as in the `models` parameter.
- `models.link.operator` matrix (nxm) with n models and m nodes. The row names of the matrix specify the models’ names whereas the column names specify the name of the network nodes (gene, proteins, etc.). Possible values for each model-node element are either 0 (AND NOT link operator), 1 (OR NOT link operator) or 0.5 if the node is not targeted by both activating and inhibiting regulators (no link operator).

Value

A matrix whose rows are vectors of average node link operator differences between two groups of models based on some kind of classification (e.g. number of TP predictions) and whose names are set in the `rownames` attribute of the matrix (usually denoting the different classification groups, e.g. (1,2) means the models that predicted 1 TP synergy vs the models that predicted 2 TP synergies, if the classification is done by number of TP predictions). The columns represent the network’s node names. Values are in the [-1,1] interval.

Details

So, if a node has a value close to -1 it means that on average, this node’s boolean equation has the AND NOT link operator in the ‘good’ models compared to the ‘bad’ ones while a value closer to 1 means that the node’s boolean equation has mostly the OR NOT link operator in the ‘good’ models. A value closer to 0 indicates that the link operator in the node’s boolean equation is not so much different between the ‘good’ and ‘bad’ models and so it won’t not be a node of interest when searching for indicators of better performance (higher number of true positives) in the parameterization of the good models (the boolean equations). A value exactly equal to 0 can also mean that this node didn’t not have a link operator in its boolean equation, again making it a non-important indicator of difference in model performance.
get_biomarkers

Description

Use this function to find all biomarkers across many performance classification group matchings based on a given threshold between 0 and 1. The logic behind the biomarker selection is that if there is at least one value in a column of the `diff.mat` matrix that surpasses the threshold given, then the corresponding node (name of the column) is returned as a biomarker. This means that for a single node, if at least one value that represents an average data difference (for example, the average activity state difference) between any of the given classification group comparisons is above (below) the threshold (negative threshold), then a positive (negative) biomarker is reported.

Usage

```r
get_biomarkers(diff.mat, threshold)
```

Arguments

- `diff.mat`: a matrix whose rows are vectors of average node data differences between two groups of models based on some kind of classification (e.g. number of TP predictions) and whose names are set in the `rownames` attribute of the matrix (usually denoting the different classification groups, e.g. (1,2) means the models that predicted 1 TP synergy vs the models that predicted 2 TP synergies, if the classification is done by number of TP predictions). The columns represent the network’s node names.

- `threshold`: numeric. A number in the [0,1] interval, above which (or below its negative value) a biomarker will be registered in the returned result. Values closer to 1 translate to a more strict threshold and thus less biomarkers are found.

Value

A list with two elements:

- `biomarkers.pos`: a character vector that includes the node names of the *positive* biomarkers
- `biomarkers.neg`: a character vector that includes the node names of the *negative* biomarkers
Details

This function uses the get_biomarkers_per_type function to get the biomarkers (nodes) of both types (positive and negative) from the average data differences matrix. If a node though is found to surpass the significance threshold level given both negatively and positively, we will keep it as a biomarker in the category which corresponds to the comparison of the highest classification groups. For example, if the data comes from a model performance classification based on the MCC score and in the comparison of the MCC classes (1,3) the node of interest had an average difference of -0.89 (a negative biomarker) while for the comparison of the (3,4) MCC classes it had a value of 0.91 (a positive biomarker), then we will keep that node only as a positive biomarker. The logic behind this is that the 'higher' performance-wise are the classification groups that we compare, the more sure we are that the average data difference corresponds to a better indicator for the type of the biomarker found.

See Also

Other biomarker functions: get_biomarkers_per_type()

description

Use this function to find either positive or negative biomarkers across many performance classification group matchings based on a given threshold between 0 and 1. The logic behind the biomarker selection is that if there is at least one value in a column of the diff.mat matrix that surpasses the threshold given, then the corresponding node (name of the column) is return as a biomarker. This means that for a single node, if at least one value that represents an average data difference (for example, the average activity state difference) between any of the given classification group comparisons (below) the threshold (negative threshold), then a positive (negative) biomarker is reported.

Usage

get_biomarkers_per_type(diff.mat, threshold, type)

Arguments

diff.mat a matrix whose rows are vectors of average node data differences between two groups of models based on some kind of classification (e.g. number of TP predictions) and whose names are set in the rownames attribute of the matrix (usually denoting the different classification groups, e.g. (1,2) means the models that predicted 1 TP synergy vs the models that predicted 2 TP synergies, if the classification is done by number of TP predictions). The columns represent the network's node names.

threshold numeric. A number in the [0,1] interval, above which (or below its negative value) a biomarker will be registered in the returned result. Values closer to 1 translate to a more strict threshold and thus less biomarkers are found.

type character. Accepted values are positive or negative.
get_fitness_from_models_dir

Value

a character vector that includes the node names that were found either as positive or negative.

See Also

Other biomarker functions: get_biomarkers()

get_edges_from_topology_file

Get the edges from a specified topology

Description

Use this function to read a topology .sif file (either space or tab-delimited) and get a matrix of network edges specifying the source and target name, the regulation effect (activation or inhibition) and the color (green or red) of each interaction.

Usage

get_edges_from_topology_file(topology.file)

Arguments

topology.file string. The name of the .sif file (can be a full path name).

Value

a matrix with as many rows as in the .sif topology file (each row is an edge) and 4 columns defining the source and target node name, the regulation (activation or inhibition) and the color (green or red) of the signed interaction.

get_fitness_from_models_dir

Load the models fitness scores

Description

Use this function to merge the fitness scores from all models into a single vector (the fitness score is a value between 0 and 1 and denotes how close was the model fitted to one or more training data observations). Each model’s fitness value is loaded from the respective .gitsbe file that can be found inside the given models.dir directory.

Usage

get_fitness_from_models_dir(models.dir)
get_link_operators_from_models_dir

Arguments
models.dir string. A dir with .gitsbe files/models

Value
a numeric vector with elements the fitness scores and the names of the models included in the names attribute.

Examples
models.dir = system.file("extdata", "models", package = "emba", mustWork = TRUE)
models.fitness = get_fitness_from_models_dir(models.dir)

get_link_operators_from_models_dir

Load the models boolean equation link operator data

Description
Use this function to merge the link operator data used in the boolean equations of the models into a single matrix. Every boolean model is defined by a series of boolean equations in the form Target = (ActivatorORActivatorOR...)ANDNOT(InhibitorORInhibitorOR...)”. The link operator can be either AND NOT, OR NOT or non-existent if the target has only activating regulators or only inhibiting ones. The models are loaded from .gitsbe files that can be found inside the given models.dir directory.

Usage
get_link_operators_from_models_dir(
 models.dir,
 remove.equations.without.link.operator = TRUE
)

Arguments
models.dir string. A dir with .gitsbe files/models
remove.equations.without.link.operator logical. Should we keep the nodes (columns in the returned matrix) which do not have both type of regulators (so no link operator)? Default value: TRUE (remove these nodes).
get_models_based_on_mcc_class_id

Value

A matrix (nxm) with n models and m nodes. The row names of the matrix specify the models’ names whereas the column names specify the name of the network nodes (gene, proteins, etc.). Possible values for each model-node element are either 0 (AND NOT link operator), 1 (OR NOT link operator) or 0.5 if the node is not targeted by both activating and inhibiting regulators (no link operator).

Examples

```r
models.dir = system.file("extdata", "models", package = "emba", mustWork = TRUE)
models.link.operator = get_link_operators_from_models_dir(models.dir)
models.link.operator.with.extra.nodes =
  get_link_operators_from_models_dir(models.dir, FALSE)
```

get_models_based_on_mcc_class_id

Get models based on the MCC class id

Description

This helper function finds all the models that belong to a specific MCC cluster, i.e. their MCC values belong to the same cluster id.

Usage

```r
get_models_based_on_mcc_class_id(class.id, models.cluster.ids, models.mcc)
```

Arguments

- **class.id**: an integer specifying the class id.
- **models.cluster.ids**: a numeric vector of cluster ids assigned to each model. It is the result of using `Ckmeans.1d.dp` with input the sorted vector of the models’ MCC values with no NaNs included.
- **models.mcc**: a numeric sorted vector of Matthews Correlation Coefficient (MCC) scores, one for each model (no NaNs included). The names attribute holds the models’ names.

Value

A character vector of model names
get_model_names
Get the model names

Description
Get the model names

Usage
get_model_names(models.dir)

Arguments
models.dir
string. A dir with .gitsbe files/models

Value
a character vector of the model names, corresponding to the names of the .gitsbe files.

Examples
models.dir = system.file("extdata", "models", package = "emba", mustWork = TRUE)
models = get_model_names(models.dir)

get_model_predictions
Load the models predictions data

Description
Use this function to read a file that has the model predictions data and output it to a data.frame object.

Usage
get_model_predictions(model.predictions.file)

Arguments
model.predictions.file
a tab-delimited file (for the specific format check the example below)
get_node_colors

Value

A `data.frame` object with rows the models and columns the drug combinations. Possible values for each `model-drug combination element` are either 0 (no synergy predicted), 1 (synergy was predicted) or NA (couldn’t find stable states in either the drug combination inhibited model or in any of the two single-drug inhibited models).

Examples

```r
model.predictions.file = system.file("extdata", "model_predictions", package = "emba", mustWork = TRUE)
model.predictions = get_model_predictions(model.predictions.file)
```

get_neighbors

Get neighbor nodes

Description

Given an igraph network object and vector of node names, this function returns the set of unique neighbor nodes considering both ingoing and outgoing edges (the closed neighbourhood node set).

Usage

```r
get_neighbors(net, nodes)
```

Arguments

- `net`: igraph object
- `nodes`: character vector of node names

Value

A character vector of all the unique neighbors of the given nodes in the net graph.

get_node_colors

Get the node colors

Description

This function splits the [-1,1] interval into 2000 smaller ones and matches each value of the `diff` vector to a specific hex color code, using a spline interpolation of the colors as defined in the `col` parameter.
Usage

get_node_colors(net, diff, col)

Arguments

- **net**
 - an igraph graph object with the node names defined in `V(net)$name`

- **diff**
 - numeric vector. Every value is in the [-1,1] interval and represents the average activity difference of each node. The node names have to be specified in the `names` attribute of the given `diff` vector and have to be the same as in `V(net)$name`.

- **col**
 - a character vector of colors to do the color interpolation in the [-1,1] interval. Usually a two-element vector specifying the colors matching the start and end of the interval (-1 and 1 respectively) or a three-element vector specifying the colors matching the values -1, 0 and 1 (can be more of course, you get the idea).

Value

a character vector of hex color codes where the `names` attribute corresponds to the nodes of the given igraph object. Will be used to fill in the `V(net)$color` property of the `net` object. If there are nodes that are part of the network object `net` but not present in the `diff` vector, then a `NA` value will be given for the color of these nodes.

get_node_names
Get the node names

Description

This function uses the first `.gitsbe` file that it finds inside the given directory to output a vector of the network node names (which should be the same for every model).

Usage

get_node_names(models.dir)

Arguments

- **models.dir**
 - string. A dir with `.gitsbe` files/models

Value

a character vector of the node names (protein and/or gene names)

Examples

```r
models.dir = system.file("extdata", "models", package = "emba", mustWork = TRUE)
nodes = get_node_names(models.dir)
```
get_observed_model_predictions

Subset the model predictions to the (true) observed synergies

Description

Subset the model predictions to the (true) observed synergies

Usage

get_observed_model_predictions(model.predictions, observed.synergies)

Arguments

model.predictions

a data.frame object with rows the models and columns the drug combinations. Possible values for each model-drug combination element are either 0 (no synergy predicted), 1 (synergy was predicted) or NA (couldn’t find stable states in either the drug combination inhibited model or in any of the two single-drug inhibited models)

observed.synergies

a character vector with elements the names of the drug combinations that were found as synergistic

Value

a data.frame object with rows the models and columns the drug combinations that were found/observed as synergistic (positive results). Possible values for each model-drug combination element are either 0 (no synergy predicted), 1 (synergy was predicted) or NA (couldn’t find stable states in either the drug combination inhibited model or in any of the two single-drug inhibited models)

get_observed_synergies

Load the observed synergies data

Description

Use this function to read a file that has the observed synergies data and output it to a character vector. If drug.combinations.tested is NULL (the default), no data validation is done, otherwise we check that the observed synergies are indeed a subset of the tested drug combinations.

Usage

get_observed_synergies(file, drug.combinations.tested = NULL)
get_observed_synergies_per_cell_line

Arguments

file string. The name of the file, can be a full path. See example below for the format of an observed synergies file.
drug.combinations.tested a character vector with drug combinations as elements. Default value: NULL.

Value

a character vector with elements the names of the drug combinations that were found as synergistic

Examples

observed.synergies.file = system.file("extdata", "observed_synergies", package = "emba", mustWork = TRUE)
observed.synergies = get_observed_synergies(observed.synergies.file)

get_observed_synergies_per_cell_line

Get observed synergies per cell line

Description

Use this function to get the observed synergies from the respective files inside the given list of cell line directories.

Usage

get_observed_synergies_per_cell_line(cell.line.dirs, drug.combos)

Arguments

cell.line.dirs a character vector of the cell line directories, in the form of [path]/cell_line_name. The cell line name directory should be different for each element of the vector as we use it to fill in the rownames of the result data.frame object. Inside each cell line directory we read the observed synergies from a file called observed_synergies (if it exists and is non-empty). This file has the names of the observed drug combinations, one in each line.
drug.combos a character vector with elements the names of all the drug combinations that were tested in the analysis.

Value

a data.frame, whose columns represent the drug combinations tested and the rows the cell lines. Possible values for each cell line-drug combination element are either 1 (an observed synergy) or 0 (non-observed synergy).
get_perf_biomarkers_per_cell_line

Get performance biomarkers per cell line

Description

Use this function to get the performance biomarkers from the respective files inside the given list of directories.

Usage

```r
get_perf_biomarkers_per_cell_line(biomarkers.dirs, node.names)
```

Arguments

- `biomarkers.dirs`
 a character vector of the biomarker directories, in the form of `path//cell_line_name//dir`. The cell line name directory should be different for each element of the vector as we use it to fill in the rownames of the result data.frame object. Inside each `dir` (the directory name does not matter, but `biomarkers` is a good choice), we read the biomarkers from two files (if they exist and are non-empty): `biomarkers_active` and `biomarkers_inhibited`, which have the active and inhibited performance biomarkers for each cell line (these files have a list of node names/biomarkers, one in each line).

- `node.names`
 a character vector of the node names used in the analysis. The biomarker names taken from the files inside the given directories must be a subset of this vector.

Value

a data.frame, whose columns represent the network nodes and the rows the cell lines. Possible values for each cell line-node element are either 1 (active state biomarker), -1 (inhibited state biomarker) or 0 (not a biomarker).

get_stable_state_from_models_dir

Load the models stable state data

Description

Use this function to merge the stable states from all models into a single matrix. The models stable states are loaded from `.gitsbe` files that can be found inside the given models.dir directory.

Usage

```r
get_stable_state_from_models_dir(models.dir)
```
get_synergy_biomarkers_from_dir

Arguments

models.dir string. A dir with .gitsbe files/models

Value

a matrix (nxm) with n models and m nodes. The row names of the matrix specify the models’ names whereas the column names specify the name of the network nodes (gene, proteins, etc.). Possible values for each model-node element are either 0 (inactive node) or 1 (active node).

Examples

models.dir = system.file("extdata", "models", package = "emba", mustWork = TRUE)
models.stable.state = get_stable_state_from_models_dir(models.dir)

get_synergy_biomarkers_from_dir

Get synergy biomarkers from dir

Description

This function reads the synergy biomarker files inside the given directory and merges the results into a data.frame which it returns. This function should be used when the synergy biomarker results are in separate files inside the directory given (see biomarkers.dir parameter).

Usage

get_synergy_biomarkers_from_dir(
 predicted.synergies,
 biomarkers.dir,
 models.dir,
 node.names = NULL
)

Arguments

predicted.synergies

a character vector of the synergies (drug combination names) that were predicted by at least one of the models in the dataset.

biomarkers.dir string. It specifies the full path name of the directory which holds the biomarker files. The biomarker files must be formatted as: %drug.comb%_biomarkers_active or %drug.comb%_biomarkers_inhibited, where %drug.comb% is an element of the predicted.synergies vector.

models.dir string. A directory with .gitsbe files/models. It’s needed in order to call get_node_names.
node.names a character vector which has the names of the nodes. If it’s not NULL, then it will be used instead of the models.dir parameter. The node.names should include all the nodes that are reported as biomarkers in the biomarker files inside the biomarkers.dir directory. Default value: NULL.

Value

a data.frame, whose columns represent the network nodes and the rows the predicted synergies. Possible values for each synergy-node element are either 1 (active state biomarker), -1 (inhibited state biomarker) or 0 (not a biomarker).

get_synergy_biomarkers_per_cell_line

Get synergy biomarkers per cell line

Description

Use this function to get the synergy biomarkers for each cell line. The biomarkers must be stored in a single file inside each given cell line-specific directory.

Usage

get_synergy_biomarkers_per_cell_line(biomarkers.dirs)

Arguments

biomarkers.dirs

a character vector of the biomarker directories, in the form of {path}/cell_line_name/{dir}. The cell line name directory should be different for each element of the vector as we use it to fill in the rownames of each cell line-specific data.frame object. Inside each {dir}, we read the synergy biomarkers from a file (if it exists and is non-empty) with the name biomarkers_per_synergy. This file has as first row the node names (columns) while every next row starts with the row name (drug combination name) followed by a series of numbers from the ternary set {1,-1,0}, denoting thus which nodes where found as active biomarkers for that synergy, inhibited or not at all as biomarkers.

Value

a list of cell line-specific data frames (each element from the list takes its name from the respective cell line). Each cell-line specific data.frame object has as rows the true positive predicted synergies for that particular cell line and columns the network nodes (should be the same for all cell lines). Possible values for each synergy-node element in each cell line-specific data.frame are either 1 (active state biomarker), -1 (inhibited state biomarker) or 0 (not a biomarker).
get_synergy_comparison_sets

Get synergy comparison sets

Description

This helper function identifies pairs of (set, subset) for each synergy (implicitly given through the synergy.subset.stats object) where each respective subset misses just one synergy from the larger set.

Usage

get_synergy_comparison_sets(synergy.subset.stats)

Arguments

synergy.subset.stats

integer vector with values the amount of models that predicted each synergy subset, defined as a comma-separated string of drug combinations in the names attribute of the vector. It can be the result of using the function get_synergy_subset_stats.

Value

data.frame object with 3 columns. For each row, the 1st column defines a single synergy of interest (e.g. drug combination "A-B"), the 2nd a synergy set that includes the single one (e.g. the set "F-G,A-B,C-D") and the 3rd the synergy subset of the set that does not include the single synergy of the first column (e.g. "F-G,C-D").

get_synergy_subset_stats

Find the number of predictive models for every synergy subset

Description

Use this function to find for each possible subset of drug combinations out of a given list of synergies, the number of models that predicted it given the models’ predictions. So, if for example the set of synergies is this one: {'A-B','C-D','E-F'}, we want to know how many models predicted none of them, just the single subsets (e.g. the {'A-B'}), the two-element subsets (e.g. the {'A-B','C-D'}) and all 3 of them.

Usage

get_synergy_subset_stats(model.predictions, synergies)
get_unobserved_model_predictions

Arguments

- `model.predictions`: a data.frame object with rows the models and columns the drug combinations. Possible values for each `model-drug combination element` are either 0 (no synergy predicted), 1 (synergy was predicted) or NA (couldn’t find stable states in either the drug combination inhibited model or in any of the two single-drug inhibited models).

- `synergies`: a character vector with elements the synergistic drug combinations. Note that these synergies should be a subset of the column names of the `model.predictions` data.frame.

Value

an integer vector with elements the number of models the predicted each synergy subset. The `names` attribute has the names of each synergistic drug combination subset, which are the drug combinations comma separated (e.g. 'A-B,C-D').

Details

Note that if the `synergies` vector has more than 10-15 elements, then this function might take long time to execute even with an optimal implementation of `count_models_that_predict_synergies`.

get_unobserved_model_predictions

Subset the model predictions to the (false) non-observed synergies

Description

Subset the model predictions to the (false) non-observed synergies

Usage

`get_unobserved_model_predictions(model.predictions, observed.synergies)`

Arguments

- `model.predictions`: a data.frame object with rows the models and columns the drug combinations. Possible values for each `model-drug combination element` are either 0 (no synergy predicted), 1 (synergy was predicted) or NA (couldn’t find stable states in either the drug combination inhibited model or in any of the two single-drug inhibited models)

- `observed.synergies`: a character vector with elements the names of the drug combinations that were found as synergistic
get_x_axis_values

Description

This function returns the x-axis values that are going to be used by make_barplot_on_models_stats to render the bar plot.

Usage

get_x_axis_values(models.stats, there.is.one.NaN.category, cont.values)

Arguments

models.stats table object, the result of using table on a (numeric) vector. Usually it represents some models statistics summary - counts for each TP prediction value for example.

there.is.one.NaN.category logical. Is there one NaN category? (check is done before on the names attribute of the models.stats)

cont.values logical. If TRUE, the values of the x-axis will be trimmed to 3 digits after the decimal point. Otherwise, they will be returned as they are.

is_comb_element_of

Description

Use this function to determine if a drug combination is part of a vector of other drug combinations. We take care only of pair-wise drug combinations and an internal check is done for alternative drug names, e.g. we check if A-B combination is included, but also for B-A.

Usage

is_comb_element_of(drug.comb, comb.vector)
Arguments

- **drug.comb**: a string in the form `A-B` (no spaces between the names and the hyphen `-`)
- **comb.vector**: a character vector of drug combinations, each one in the form `drugname.1-drugname.2`

Value

logical, depending if the drug combination is element of the given vector or not.

Examples

```r
# TRUE
is_comb_element_of("A-B", c("E-F", "A-B"))
is_comb_element_of("B-A", c("E-F", "A-B"))

# FALSE
is_comb_element_of("A-B", c("E-F", "A-D"))
is_comb_element_of("A-B", c())
```

make_barplot_on_models_stats

Bar plot of model stats

Description

Use this function to produce a bar plot when the input is the result of using the `table` function to a numeric vector.

Usage

```r
make_barplot_on_models_stats(
  models.stats,
  cell.line,
  title,
  xlab,
  ylab,
  cont.values = FALSE,
  threshold = 0
)
```

Arguments

- **models.stats**: table object, the result of using `table` on a (numeric) vector. Usually it represents some models statistics summary - counts for each TP prediction value for example.
Description

Use this function to easily make a barplot that shows the amount of models that predicted each synergy subset out of the set of all observed synergies.

Usage

```r
make_barplot_on_synergy_subset_stats(
  synergy.subset.stats,
  threshold.for.subset.removal,
  bottom.margin,
  cell.line = NULL
)
```

Arguments

- `synergy.subset.stats` integer vector with values the amount of models that predicted each synergy subset, defined as a comma-separated string of drug combinations in the `names` attribute of the vector
- `threshold.for.subset.removal` integer. Use it to discard elements of the `synergy.subset.stats` vector that are strictly less than the specified threshold
- `bottom.margin` integer used to vertically fit in the names of the drug combinations in the x-axis (specified in inches). The best `bottom.margin` value depends on the `maximum size` of a synergy subset as defined in the `names` attribute of the `synergy.subset.stats`. Some rules of thumb are: `size = 1 => bottom.margin = 4`, `size = 2 => bottom.margin = 6`, `size = 3 => bottom.margin = 9`, `size = 4 => bottom.margin = 12`, etc.
- `cell.line` string. The name of the cell line to be used in the title of the produced plot. Default value: NULL (the cell line name will not be added to the title).
Description

This function uses the igraph package to plot a network of nodes. The nodes are positioned according to the specified coordinates given by the layout parameter and the colors are derived using the diff values and the get_node_colors function. The color of each node indicates if the node’s boolean function has on average the AND NOT or the OR NOT link operator when comparing the average model classified in the ‘good’ category vs the average bad one. A non-colored node (white) will indicate nodes that do not have the link operator in their respective boolean equation (where they function as the target).

Usage

plot_avg_link_operator_diff_graph(net, diff, layout, title)

Arguments

net igraph graph object
diff numeric vector. Every value is in the [-1,1] interval and represents the average link operator value difference of each node. The node names have to be specified in the names attribute of the given vector. For example, diff could be the result of using the function get_avg_link_operator_diff_mat_based_on_tp_predictions and getting one vector row from the output matrix. A value closer to -1 means that the ‘good’ models have more of the AND NOT link operator in their respective boolean equations while a value closer to 1 means that the ‘good’ models have more of the OR NOT link operator.

layout a (nx2) numeric matrix of x-y coordinates (2 columns) for each of the nodes (n) in the net igraph object
title string. The title of the igraph plot

See Also

get_node_colors

Other network plotting functions: plot_avg_link_operator_diff_graphs(), plot_avg_state_diff_graph_vis(), plot_avg_state_diff_graphs(), plot_avg_state_diff_graph()
plot_avg_link_operator_diff_graphs

Plot the graphs from an average link operator differences matrix

Description

This function presents a convenient way to use many times the plot_avg_link_operator_diff_graph function.

Usage

plot_avg_link_operator_diff_graphs(net, diff.mat, layout)

Arguments

- `net`: igraph graph object
- `diff.mat`: a matrix whose rows are vectors of average node link operator differences between two groups of models based on some kind of classification (e.g. number of TP predictions) and whose names are set in the rownames attribute of the matrix (usually denoting the different classification groups, e.g. (1,2) means the models that predicted 1 TP synergy vs the models that predicted 2 TP synergies, if the classification is done by number of TP predictions). The columns represent the network's node names.
- `layout`: a (nx2) numeric matrix of x-y coordinates (2 columns) for each of the nodes (n) in the net igraph object

See Also

Other network plotting functions: plot_avg_link_operator_diff_graph(), plot_avg_state_diff_graph_vis(), plot_avg_state_diff_graphs(), plot_avg_state_diff_graph()

plot_avg_state_diff_graph

Plot the graph of average state differences (igraph)

Description

This function uses the igraph package to plot a network of nodes. The nodes are positioned according to the specified coordinates given by the layout parameter and the colors are derived using the diff values and the get_node_colors function. The color of each node indicates how much more inhibited or active that node is, when comparing the average model classified in the 'good' category vs the average 'bad' one.

Usage

plot_avg_state_diff_graph(net, diff, layout, title)
Arguments

- **net**: igraph graph object
- **diff**: numeric vector. Every value is in the [-1,1] interval and represents the average activity difference of each node. The node names have to be specified in the `names` attribute of the given vector. For example, `diff` could be the result of using the function `get_avg_activity_diff_based_on_tp_predictions`.
- **layout**: a (nx2) numeric matrix of x-y coordinates (2 columns) for each of the nodes (n) in the `net` igraph object
- **title**: string. The title of the igraph plot

See Also

- `get_node_colors`
- Other network plotting functions: `plot_avg_link_operator_diff_graphs()`, `plot_avg_link_operator_diff_graph()`, `plot_avg_state_diff_graph_vis()`, `plot_avg_state_diff_graphs()`

plot_avg_state_diff_graphs

Plot the graphs from an average state differences matrix

Description

This function presents a convenient way to use many times the `plot_avg_state_diff_graph` function.

Usage

```r
plot_avg_state_diff_graphs(net, diff.mat, layout)
```

Arguments

- **net**: igraph graph object
- **diff.mat**: a matrix whose rows are **vectors of average node activity state differences** between two groups of models based on some kind of classification (e.g. number of TP predictions) and whose names are set in the `rownames` attribute of the matrix (usually denoting the different classification groups, e.g. (1,2) means the models that predicted 1 TP synergy vs the models that predicted 2 TP synergies, if the classification is done by number of TP predictions). The columns represent the network's node names.
- **layout**: a (nx2) numeric matrix of x-y coordinates (2 columns) for each of the nodes (n) in the `net` igraph object

See Also

Other network plotting functions: `plot_avg_link_operator_diff_graphs()`, `plot_avg_link_operator_diff_graph()`, `plot_avg_state_diff_graph_vis()`, `plot_avg_state_diff_graph()`
Description

This function uses the `visNetwork` package to plot a network of nodes. The nodes are positioned according to the specified coordinates given by the `layout` parameter and the colors are derived using the `diff` values and the `get_node_colors` function. The color of each node indicates how much more inhibited or active that node is, when comparing the average model classified in the 'good' category vs the average 'bad' one.

Usage

```r
plot_avg_state_diff_graph_vis(net, diff, layout, title)
```

Arguments

- `net`: igraph graph object (to be translated to a `visNetwork` object)
- `diff`: numeric vector. Every value is in the [-1,1] interval and represents the average activity difference of each node. The node names have to be specified in the `names` attribute of the given vector. For example, `diff` could be the result of using the function `get_avg_activity_diff_based_on_specific_synergy_prediction`.
- `layout`: a (nx2) numeric matrix of x-y coordinates (2 columns) for each of the nodes (n) in the `net` igraph object
- `title`: string. The title of the visNetwork plot

See Also

Other network plotting functions: `plot_avg_link_operator_diff_graphs()`, `plot_avg_link_operator_diff_graph()`, `plot_avg_state_diff_graphs()`, `plot_avg_state_diff_graph()`

Description

This function is a wrapper of the `ahist` function for plotting nicely the distribution of the MCC models’ values.
Usage

plot_mcc_classes_hist(
 models.mcc.no.nan.sorted,
 models.cluster.ids,
 num.of.mcc.classes,
 mcc.class.ids
)

Arguments

models.mcc.no.nan.sorted
 a numeric sorted vector of Matthews Correlation Coefficient (MCC) scores, one for each model (no NaNs included). The names attribute holds the models’ names.

models.cluster.ids
 a numeric vector of cluster ids assigned to each model. It is the result of using Ckmeans.1d.dp with input the sorted vector of the models’ MCC values with no NaNs included (models.mcc.no.nan.sorted).

num.of.mcc.classes
 numeric. A positive integer (>2) that signifies the number of mcc classes (groups) that we should split the models MCC values (excluding the 'NaN' values).

mcc.class.ids
 a numeric vector ranging from from 1 to num.of.mcc.classes.

print_biomarkers_per_predicted_synergy

Print biomarkers for each predicted synergy

Description

Print biomarkers for each predicted synergy

Usage

print_biomarkers_per_predicted_synergy(
 biomarkers.dir,
 predicted.synergies,
 html.output = TRUE
)

Arguments

biomarkers.dir
 string. It specifies the full path name of the directory which holds the biomarker files for each drug combination in the predicted.synergies. The biomarker files must be formatted as: %drug.comb%_biomarkers_active or %drug.comb%_biomarkers_inhibited, where %drug.comb% is an element of the predicted.synergies vector. If the files are not properly formatted or don’t even exist, zero biomarkers are reported.
print_model_and_drug_stats

predicted.synergies

A character vector of the synergies (drug combination names) that were predicted by at least one of the models in the dataset.

html.output

Logical. If TRUE, it makes the printed output nice for an HTML document. Default value: TRUE.

Description

Use this function to pretty print in an R notebook useful statistics for the ensemble model analysis: how many drug combinations were tested by each model, the number of models used and how many nodes each boolean network model had.

Usage

print_model_and_drug_stats(drug.combs, models, nodes, html.output)

Arguments

drug.combs integer. Number of drug combinations tested
models integer. Number of models tested
nodes integer. Number of network nodes
html.output logical. If TRUE, the printed output will look nice in an HTML document

update_biomarker_files

Update biomarker files for a specific synergy

Description

This function gets the (previously-found or 'old') synergy biomarkers from their respective files and if any of these files are empty (no 'old' biomarkers found) or non-existent, the 'new' biomarkers (given as input vector parameters) are automatically saved. When the 'new' biomarkers share common nodes with the 'old' biomarkers, there exist 3 possible ways to combine the results, given by the method parameter. If no common nodes exist, no matter the method selected, the 'new' biomarkers are added to the 'old' ones.
validate_observed_synergies_data

Usage

update_biomarker_files(
 biomarkers.dir,
 drug.comb,
 biomarkers.active.new,
 biomarkers.inhibited.new,
 method = "replace"
)

Arguments

biomarkers.dir string. It specifies the full path name of the directory which holds the biomarker files for the synergistic drug combination specified in the parameter drug.comb. The biomarker files must be formatted as: `%drug.comb%_biomarkers_active` or `%drug.comb%_biomarkers_inhibited`, where `%drug.comb%` is the value of the drug.comb parameter.

drug.comb string. The drug combination (e.g. "A-B") that will be used to identify the related biomarker files.

biomarkers.active.new a numeric vector whose names attribute includes the node names of the (newly found) active biomarkers for the specified synergy. The values of the vector are the average activity difference of each node, derived from a comparison between 2 different groups of models.

biomarkers.inhibited.new a numeric vector whose names attribute includes the node names of the (newly found) inhibited biomarkers for the specified synergy. The values of the vector are the average activity difference of each node, derived from a comparison between 2 different groups of models.

method string. It specifies the method to use to update the biomarker files when there are common nodes between the 'old' and 'new' biomarkers:

1. replace(DEFAULT): we discard the 'old' biomarkers and keep only the 'new' ones
2. prune.to.common: we keep only the common biomarkers
3. extend: we add to the 'old' set of biomarkers the extra ones from the 'new' set that are not non-common to the 'old' ones, extending thus the 'old' biomarker set

validate_observed_synergies_data

Validate observed synergies data

Description

This function checks that the observed synergies are part (a subset) of the tested drug combinations.
validate_observed_synergies_data

Usage

validate_observed_synergies_data(observed.synergies, drug.combinations.tested)

Arguments

observed.synergies
 a character vector of drug combinations

drug.combinations.tested
 a character vector of drug combinations

Value

NULL if no errors found, otherwise stops execution.
Index

add_numbers_above_the_bars, 3
ahist, 55
assign_link_operator_value_to_equation, 4
biomarker_mcc_analysis, 4, 8, 10
biomarker_synergy_analysis, 6, 6, 10
biomarker_tp_analysis, 6, 8
calculate_mcc, 10, 11–14
calculate_models_mcc, 11, 11, 12–14, 18, 23, 30
calculate_models_synergies_fn, 11, 12, 13, 14
calculate_models_synergies_fp, 11, 12, 12, 14
calculate_models_synergies_tn, 11–13, 13, 14
calculate_models_synergies_tp, 11–14, 14
Ckmeans.1d.dp, 6, 18, 38, 56
construct_network, 15
count_models_that_predict_synergies, 15, 48
date, 16
filter_network, 16
get_alt_drugname, 17
get_avg_activity_diff_based_on_mcc_clustering, 17, 20, 21, 23–26, 28, 29, 31, 32, 34
get_avg_activity_diff_based_on_specific_synergy_prediction, 19–21, 23, 24, 24, 26, 28, 29, 31, 32, 34
get_avg_activity_diff_mat_based_on_specific_synergy_prediction, 19–21, 23–25, 25, 28, 29, 31–34
get_avg_activity_diff_mat_based_on_tp_predictions, 19–21, 23–26, 29, 31, 32, 34
get_avg_activity_diff_mat_based_on_specific_synergy_prediction, 19–21, 23–25, 28, 29, 31, 32, 34
get_avg_activity_diff_mat_based_on_mcc_clustering, 19–21, 23–26, 28, 29, 31, 32, 34
get_avg_activity_diff_mat_based_on_specific_synergy_prediction, 19–21, 23–26, 29, 31, 32, 34
get_avg_activity_diff_mat_based_on_tp_predictions, 19–21, 23–26, 29, 31, 32, 32, 52
get_biomarkers, 34, 36
get_biomarkers_per_type, 35, 35
get_edges_from_topology_file, 15, 36
get_fitness_from_models_dir, 36
get_link_operators_from_models_dir, 37
get_model_names, 39
get_model_predictions, 39
get_models_based_on_mcc_class_id, 38
get_neighbors, 40
get_node_colors, 40, 52–55
get_node_names, 15, 41, 45
get_observed_model_predictions, 42
get_observed_synergies, 42
get_observed_s synergies_per_cell_line, 43
get_perf_biomarkers_per_cell_line, 44
get_stable_state_from_models_dir, 44
get_synergy_biomarkers_from_dir, 45
get_synergy_biomarkers_per_cell_line, 46
get_synergy_comparison_sets, 47
get_synergy_subset_stats, 47
get_unobserved_model_predictions, 48
get_x_axis_values, 49
INDEX

graph_from_data_frame, 15
igraph, 52, 53
is_comb_element_of, 49
make_barplot_on_models_stats, 49, 50
make_barplot_on_synergy_subset_stats, 51
plot_avg_link_operator_diff_graph, 52, 53–55
plot_avg_link_operator_diff_graphs, 52, 53, 54, 55
plot_avg_state_diff_graph, 52, 53, 53, 54, 55
plot_avg_state_diff_graph_vis, 52–54, 55
plot_avg_state_diff_graphs, 52–54, 54, 55
plot_mcc_classes_hist, 55
print_biomarkers_per_predicted_synergy, 56
print_model_and_drug_stats, 57
table, 49, 50
update_biomarker_files, 57
validate_observed_synergies_data, 58
visNetwork, 53