Package ‘embed’

May 30, 2023

Title Extra Recipes for Encoding Predictors

Version 1.1.1

Description Predictors can be converted to one or more numeric representations using a variety of methods. Effect encodings using simple generalized linear models <arXiv:1611.09477> or nonlinear models <arXiv:1604.06737> can be used. There are also functions for dimension reduction and other approaches.

License MIT + file LICENSE

BugReports https://github.com/tidymodels/embed/issues

Depends R (>= 3.4), recipes (>= 1.0.6)

Imports glue, dplyr (>= 1.1.0), generics (>= 0.1.0), keras, lifecycle, purrr, rlang (>= 0.4.10), rsample, stats, tensorflow, tibble, tidyr, utils, uwot, withr, vctrs

Suggests covr, dials (>= 1.2.0), ggplot2, hardhat, irlba, knitr, lme4, modeldata, rmarkdown, rpart, rstanarm, stringdist, testthat (>= 3.0.0), VBsparsePCA, xgboost

ByteCompile true

Config/Needs/website tidymodels, ggiraph, tidyverse/tidytemplate, reticulate

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.2.3

NeedsCompilation no

Author Emil Hvitfeldt [aut, cre] (<https://orcid.org/0000-0002-0679-1945>), Max Kuhn [aut] (<https://orcid.org/0000-0003-2402-136X>), Posit Software, PBC [cph, fnd]

Maintainer Emil Hvitfeldt <emil.hvitfeldt@posit.co>

Repository CRAN

Date/Publication 2023-05-30 09:20:02 UTC
R topics documented:

add_woe .. 2
dictionary .. 3
is_tf_available .. 4
solubility .. 4
stepCollapse_cart 5
stepCollapse_stringdist 7
stepDiscretize_cart 9
stepDiscretize_xgb 11
stepEmbed .. 14
stepFeature_hash ... 17
stepLencode_bayes 20
stepLencode_glm .. 22
stepLencode_mixed 24
stepPca_sparse ... 26
stepPca_sparse_bayes 28
stepPca_truncated 31
stepUmap ... 34
step_woe .. 37
tidy.stepCollapse_cart 40
woe_table ... 41

Index 42

--

add_woe

Add WoE in a data frame

Description

A tidyverse friendly way to plug WoE versions of a set of predictor variables against a given binary outcome.

Usage

add_woe(.data, outcome, ..., dictionary = NULL, prefix = "woe")

Arguments

.data A tbl. The data.frame to plug the new woe version columns.
outcome The bare name of the outcome variable.
... Bare names of predictor variables, passed as you would pass variables to dplyr::select(). This means that you can use all the helpers like starts_with() and matches().
dictionary A tbl. If NULL the function will build a dictionary with those variables passed to You can pass a custom dictionary too, see dictionary() for details.
prefix A character string that will be the prefix to the resulting new variables.
Details

You can pass a custom dictionary to `add_woe()`. It must have the exactly the same structure of the output of `dictionary()`. One easy way to do this is to tweak a output returned from it.

Value

A tibble with the original columns of `.data` plus the woe columns wanted.

Examples

```r
mtcars %>% add_woe("am", cyl, gear:carb)
```

<table>
<thead>
<tr>
<th>dictionary</th>
<th>Weight of evidence dictionary</th>
</tr>
</thead>
</table>

Description

Builds the woe dictionary of a set of predictor variables upon a given binary outcome. Convenient to make a woe version of the given set of predictor variables and also to allow one to tweak some woe values by hand.

Usage

```r
dictionary(.data, outcome, ..., Laplace = 1e-06)
```

Arguments

- `.data`: A tbl. The data.frame where the variables come from.
- `outcome`: The bare name of the outcome variable with exactly 2 distinct values.
- `...`: bare names of predictor variables or selectors accepted by `dplyr::select()`.
- `Laplace`: Default to 1e-6. The pseudocount parameter of the Laplace Smoothing estimator. Value to avoid -Inf/Inf from predictor category with only one outcome class. Set to 0 to allow Inf/-Inf.

Details

You can pass a custom dictionary to `step_woe()`. It must have the exactly the same structure of the output of `dictionary()`. One easy way to do this is by tweaking an output returned from it.

Value

A tibble with summaries and woe for every given predictor variable stacked up.
References

Examples

```r
mtcars %>% dictionary("am", cyl, gear:carb)
```

<table>
<thead>
<tr>
<th>is_tf_available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test to see if tensorflow is available</td>
</tr>
</tbody>
</table>

Description

Test to see if tensorflow is available

Usage

```r
is_tf_available()
```

Value

A logical

Examples

```r
is_tf_available()
```

<table>
<thead>
<tr>
<th>solubility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound solubility data</td>
</tr>
</tbody>
</table>

Description

Compound solubility data

Details

Tetko et al. (2001) and Huuskonen (2000) investigated a set of compounds with corresponding experimental solubility values using complex sets of descriptors. They used linear regression and neural network models to estimate the relationship between chemical structure and solubility. For our analyses, we will use 1267 compounds and a set of more understandable descriptors that fall into one of three groups: 208 binary "fingerprints" that indicate the presence or absence of a particular chemical sub-structure, 16 count descriptors (such as the number of bonds or the number of Bromine atoms) and 4 continuous descriptors (such as molecular weight or surface area).
Value

solubility a data frame

Source

Examples

```r
data(solubility)
str(solubility)
```

step Collapse Cart

Supervised Collapsing of Factor Levels

Description

`step_collapse_cart` creates a specification of a recipe step that can collapse factor levels into a smaller set using a supervised tree.

Usage

```r
step_collapse_cart(
  recipe,
  ...,
  role = NA,
  trained = FALSE,
  outcome = NULL,
  cost_complexity = 1e-04,
  min_n = 5,
  results = NULL,
  skip = FALSE,
  id = rand_id("stepCollapse_cart")
)
```

Arguments

- `recipe` A recipe object. The step will be added to the sequence of operations for this recipe.
- `...` One or more selector functions to choose which variables are affected by the step. See `selections()` for more details. For the `tidy` method, these are not currently used.
step_collapse_cart

role
Not used by this step since no new variables are created.

trained
A logical to indicate if the quantities for preprocessing have been estimated.

outcome
A call to `vars` to specify which variable is used as the outcome to train CART models in order to pool factor levels.

cost_complexity
A non-negative value that regulates the complexity of the tree when pruning occurs. Values near 0.1 usually correspond to a tree with a single splits. Values of zero correspond to unpruned tree.

min_n
An integer for how many data points are required to make further splits during the tree growing process. Larger values correspond to less complex trees.

results
A list of results to convert to new factor levels.

skip
A logical. Should the step be skipped when the recipe is baked by `bake()`?
While all operations are baked when `prep()` is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when using `skip = TRUE` as it may affect the computations for subsequent operations

id
A character string that is unique to this step to identify it.

Details
This step uses a CART tree (classification or regression) to group the existing factor levels into a potentially smaller set. It changes the levels in the factor predictor (and the `tidy()` method can be used to understand the translation).

There are a few different ways that the step will not be able to collapse levels. If the model fails or, if the results have each level being in its own split, the original factor levels are retained. There are also cases where there is "no admissible split" which means that the model could not find any signal in the data.

Value
An updated recipe step.

Tidying
When you `tidy()` this step, a tibble with columns "terms" (the column being modified), "old" (the old levels), "new" (the new levels), and "id". If the CART model failed or could not find a good split, the requested predictor will not be in the results.

Case weights
The underlying operation does not allow for case weights.

Examples

data(ames, package = "modeldata")
ames$Sale_Price <- log10(ames$Sale_Price)
step_collapse_stringdist

```r
rec <-
  recipe(Sale_Price ~ ., data = ames) %>%
  step_collapse_cart(
    Sale_Type, Garage_Type, Neighborhood,
    outcome = vars(Sale_Price)
  ) %>%
  prep()
  tidy(rec, number = 1)
```

Description

`step_collapse_stringdist` creates a specification of a recipe step that will collapse factor levels that have a low stringdist between them.

Usage

```r
step_collapse_stringdist(
  recipe, ...
  role = NA,
  trained = FALSE,
  distance = NULL,
  method = "osa",
  options = list(),
  results = NULL,
  columns = NULL,
  skip = FALSE,
  id = rand_id("collapse_stringdist")
)
```

Arguments

- `recipe`: A recipe object. The step will be added to the sequence of operations for this recipe.
- `...`: One or more selector functions to choose which variables are affected by the step. See `selections()` for more details. For the `tidy` method, these are not currently used.
- `role`: Not used by this step since no new variables are created.
- `trained`: A logical to indicate if the quantities for preprocessing have been estimated.
stepCollapseStringdist

distance Integer, value to determine which strings should be collapsed with which. The value is being used inclusive, so 2 will collapse levels that have a string distance between them of 2 or lower.

method Character, method for distance calculation. The default is "osa", see stringdist::stringdistmetrics.

options List, other arguments passed to stringdist::stringdistmatrix such as weight, q, p, and bt, that are used for different values of method.

results A list denoting the way the labels should be collapses is stored here once this preprocessing step has be trained by prep().

columns A character string of variable names that will be populated (eventually) by the terms argument.

skip A logical. Should the step be skipped when the recipe is baked by bake()? While all operations are baked when prep() is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when using skip = TRUE as it may affect the computations for subsequent operations.

id A character string that is unique to this step to identify it.

Value
An updated version of recipe with the new step added to the sequence of existing steps (if any). For the tidy method, a tibble with columns terms (the columns that will be affected) and base.

Tidying
When you tidy() this step, a tibble with columns "terms" (the column being modified), "from" (the old levels), "to" (the new levels), and "id".

Case weights
The underlying operation does not allow for case weights.

Examples

library(recipes)
library(tibble)
data0 <- tibble(
 x1 = c("a", "b", "d", "e", "sfgsfgsd", "hjhgfjgjgr"),
 x2 = c("ak", "b", "djj", "e", "hjhgfjgjgr", "hjhgfjgjgr")
)

rec <- recipe(~., data = data0) %>%
 stepCollapseStringdist(all_predictors(), distance = 1) %>%
 prep()

rec %>%
bake(new_data = NULL)
step_discretize_cart

Discretize numeric variables with CART

Description

`step_discretize_cart` creates a *specification* of a recipe step that will discretize numeric data (e.g. integers or doubles) into bins in a supervised way using a CART model.

Usage

```r
step_discretize_cart(
  recipe,
  ..., 
  role = NA, 
  trained = FALSE, 
  outcome = NULL, 
  cost_complexity = 0.01, 
  tree_depth = 10, 
  min_n = 20, 
  rules = NULL, 
  skip = FALSE, 
  id = rand_id("discretize_cart")
)
```

Arguments

- `recipe`: A recipe object. The step will be added to the sequence of operations for this recipe.
- `...`: One or more selector functions to choose which variables are affected by the step. See `selections()` for more details.
- `role`: Defaults to "predictor".
- `trained`: A logical to indicate if the quantities for preprocessing have been estimated.
- `outcome`: A call to `vars` to specify which variable is used as the outcome to train CART models in order to discretize explanatory variables.
step_discretize_cart

- **cost_complexity**: The regularization parameter. Any split that does not decrease the overall lack of fit by a factor of cost_complexity is not attempted. Corresponds to `cp` in `rpart::rpart()`. Defaults to 0.01.

- **tree_depth**: The maximum depth in the final tree. Corresponds to `maxdepth` in `rpart::rpart()`. Defaults to 10.

- **min_n**: The number of data points in a node required to continue splitting. Corresponds to `minsplit` in `rpart::rpart()`. Defaults to 20.

- **rules**: The splitting rules of the best CART tree to retain for each variable. If length zero, splitting could not be used on that column.

- **skip**: A logical. Should the step be skipped when the recipe is baked by `recipes::bake()`? While all operations are baked when `recipes::prep()` is run, some operations may not be able to be conducted on new data (e.g., processing the outcome variable(s)). Care should be taken when using `skip = TRUE` as it may affect the computations for subsequent operations.

- **id**: A character string that is unique to this step to identify it.

Details

`step_discretize_cart()` creates non-uniform bins from numerical variables by utilizing the information about the outcome variable and applying a CART model.

The best selection of buckets for each variable is selected using the standard cost-complexity pruning of CART, which makes this discretization method resistant to overfitting.

This step requires the `rpart` package. If not installed, the step will stop with a note about installing the package.

Note that the original data will be replaced with the new bins.

Value

An updated version of `recipe` with the new step added to the sequence of any existing operations.

Tidying

When you `tidy()` this step, a tibble with columns `terms` (the columns that is selected), `values` is returned.

Tuning Parameters

This step has 3 tuning parameters:

- **cost_complexity**: Cost-Complexity Parameter (type: double, default: 0.01)
- **tree_depth**: Tree Depth (type: integer, default: 10)
- **min_n**: Minimal Node Size (type: integer, default: 20)

Case weights

This step performs an supervised operation that can utilize case weights. To use them, see the documentation in `recipes::case_weights` and the examples on tidymodels.org.
Discretize numeric variables with XgBoost

step_discretize_xgb

Description

step_discretize_xgb creates a specification of a recipe step that will discretize numeric data (e.g., integers or doubles) into bins in a supervised way using an XgBoost model.

Usage

```r
step_discretize_xgb(
  recipe,
  ..., 
  role = NA,
  trained = FALSE,
  outcome = NULL,
  sample_val = 0.2,
  learn_rate = 0.3,
  num_breaks = 10,
)```

**Examples**

```r
library(modeldata)
data(ad_data)library(rsample)

split <- initial_split(ad_data, strata = "Class")

ad_data_tr <- training(split)
ad_data_te <- testing(split)

cart_rec <-
 recipe(Class ~ ., data = ad_data_tr) %>%
 step_discretize_cart(
 tau, age, p_tau, Ab_42,
 outcome = "Class", id = "cart splits"
)

cart_rec <- prep(cart_rec, training = ad_data_tr)

The splits:
tidy(cart_rec, id = "cart splits")
bake(cart_rec, ad_data_te, tau)
```
tree_depth = 1,
min_n = 5,
rules = NULL,
skip = FALSE,
id = rand_id("discretize_xgb")
)

Arguments

**recipe**
A recipe object. The step will be added to the sequence of operations for this recipe.

**...**
One or more selector functions to choose which variables are affected by the step. See `selections()` for more details.

**role**
Defaults to "predictor".

**trained**
A logical to indicate if the quantities for preprocessing have been estimated.

**outcome**
A call to `vars` to specify which variable is used as the outcome to train XgBoost models in order to discretize explanatory variables.

**sample_val**
Share of data used for validation (with early stopping) of the learned splits (the rest is used for training). Defaults to 0.20.

**learn_rate**
The rate at which the boosting algorithm adapts from iteration-to-iteration. Corresponds to `eta` in the `xgboost` package. Defaults to 0.3.

**num_breaks**
The maximum number of discrete bins to bucket continuous features. Corresponds to `max_bin` in the `xgboost` package. Defaults to 10.

**tree_depth**
The maximum depth of the tree (i.e. number of splits). Corresponds to `max_depth` in the `xgboost` package. Defaults to 1.

**min_n**
The minimum number of instances needed to be in each node. Corresponds to `min_child_weight` in the `xgboost` package. Defaults to 5.

**rules**
The splitting rules of the best XgBoost tree to retain for each variable.

**skip**
A logical. Should the step be skipped when the recipe is baked by `recipes::bake()`? While all operations are baked when `recipes::prep()` is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when using `skip = TRUE` as it may affect the computations for subsequent operations.

**id**
A character string that is unique to this step to identify it.

Details

`step_discretize_xgb()` creates non-uniform bins from numerical variables by utilizing the information about the outcome variable and applying the xgboost model. It is advised to impute missing values before this step. This step is intended to be used particularly with linear models because thanks to creating non-uniform bins it becomes easier to learn non-linear patterns from the data.

The best selection of buckets for each variable is selected using an internal early stopping scheme implemented in the `xgboost` package, which makes this discretization method prone to overfitting.

The pre-defined values of the underlying xgboost learns good and reasonably complex results. However, if one wishes to tune them the recommended path would be to first start with changing the
value of num_breaks to e.g.: 20 or 30. If that doesn’t give satisfactory results one could experiment with modifying the tree_depth or min_n parameters. Note that it is not recommended to tune learn_rate simultaneously with other parameters.

This step requires the `xgboost` package. If not installed, the step will stop with a note about installing the package.

Note that the original data will be replaced with the new bins.

Value

An updated version of `recipe` with the new step added to the sequence of any existing operations.

Tidying

When you `tidy()` this step, a tibble with columns `terms` (the columns that is selected), `values` is returned.

Tuning Parameters

This step has 5 tuning parameters:

- `sample_val`: Proportion of data for validation (type: double, default: 0.2)
- `learn_rate`: Learning Rate (type: double, default: 0.3)
- `num_breaks`: Number of Cut Points (type: integer, default: 10)
- `tree_depth`: Tree Depth (type: integer, default: 1)
- `min_n`: Minimal Node Size (type: integer, default: 5)

Case weights

This step performs an supervised operation that can utilize case weights. To use them, see the documentation in `recipes::case_weights` and the examples on tidymodels.org.

See Also

`step_discretize_cart()`, `recipes::recipe()`, `recipes::prep()`, `recipes::bake()`

Examples

```r
library(rsample)
library(recipes)
data(credit_data, package = "modeldata")
set.seed(1234)
split <- initial_split(credit_data[1:1000,], strata = "Status")

credit_data_tr <- training(split)
credit_data_te <- testing(split)

xgb_rec <-
```
step_embed

```r
recipe(Status ~ Income + Assets, data = credit_data_tr) %>%
 step_impute_median(Income, Assets) %>%
 step_discretize_xgb(Income, Assets, outcome = "Status")

xgb_rec <- prep(xgb_rec, training = credit_data_tr)
bake(xgb_rec, credit_data_te, Assets)
```

---

**Description**

*step_embed* creates a specification of a recipe step that will convert a nominal (i.e. factor) predictor into a set of scores derived from a tensorflow model via a word-embedding model. *embed_control* is a simple wrapper for setting default options.

**Usage**

```r
step_embed(
 recipe,
 ...,
 role = "predictor",
 trained = FALSE,
 outcome = NULL,
 predictors = NULL,
 num_terms = 2,
 hidden_units = 0,
 options = embed_control(),
 mapping = NULL,
 history = NULL,
 keep_original_cols = FALSE,
 skip = FALSE,
 id = rand_id("embed")
)
```

```r
embed_control(
 loss = "mse",
 metrics = NULL,
 optimizer = "sgd",
 epochs = 20,
 validation_split = 0,
 batch_size = 32,
 verbose = 0,
 callbacks = NULL
)
```
**Arguments**

- **recipe**
  A recipe object. The step will be added to the sequence of operations for this recipe.

- **...**
  One or more selector functions to choose variables. For `step_embed`, this indicates the variables to be encoded into a numeric format. See `recipes::selections()` for more details. For the tidy method, these are not currently used.

- **role**
  For model terms created by this step, what analysis role should they be assigned to? By default, the function assumes that the embedding variables created will be used as predictors in a model.

- **trained**
  A logical to indicate if the quantities for preprocessing have been estimated.

- **outcome**
  A call to `vars` to specify which variable is used as the outcome in the neural network.

- **predictors**
  An optional call to `vars` to specify any variables to be added as additional predictors in the neural network. These variables should be numeric and perhaps centered and scaled.

- **num_terms**
  An integer for the number of resulting variables.

- **hidden_units**
  An integer for the number of hidden units in a dense ReLu layer between the embedding and output later. Use a value of zero for no intermediate layer (see Details below).

- **options**
  A list of options for the model fitting process.

- **mapping**
  A list of tibble results that define the encoding. This is NULL until the step is trained by `recipes::prep()`.

- **history**
  A tibble with the convergence statistics for each term. This is NULL until the step is trained by `recipes::prep()`.

- **keep_original_cols**
  A logical to keep the original variables in the output. Defaults to FALSE.

- **skip**
  A logical. Should the step be skipped when the recipe is baked by `recipes::bake()`? While all operations are baked when `recipes::prep()` is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when using `skip = TRUE` as it may affect the computations for subsequent operations.

- **id**
  A character string that is unique to this step to identify it.

- **optimizer, loss, metrics**
  Arguments to pass to `keras::compile()`

- **epochs, validation_split, batch_size, verbose, callbacks**
  Arguments to pass to `keras::fit()`

**Details**

Factor levels are initially assigned at random to the new variables and these variables are used in a neural network to optimize both the allocation of levels to new columns as well as estimating a model to predict the outcome. See Section 6.1.2 of Francois and Allaire (2018) for more details.

The new variables are mapped to the specific levels seen at the time of model training and an extra instance of the variables are used for new levels of the factor.
One model is created for each call to step_embed. All terms given to the step are estimated and encoded in the same model which would also contain predictors given in predictors (if any).

When the outcome is numeric, a linear activation function is used in the last layer while softmax is used for factor outcomes (with any number of levels).

For example, the keras code for a numeric outcome, one categorical predictor, and no hidden units used here would be

```r
keras_model_sequential() %>%
 layer_embedding(
 input_dim = num_factor_levels_x + 1,
 output_dim = num_terms,
 input_length = 1
) %>%
 layer_flatten()
 layer_dense(units = 1, activation = 'linear')
```

If a factor outcome is used and hidden units were requested, the code would be

```r
keras_model_sequential() %>%
 layer_embedding(
 input_dim = num_factor_levels_x + 1,
 output_dim = num_terms,
 input_length = 1
) %>%
 layer_flatten()
 layer_dense(units = hidden_units, activation = "relu") %>%
 layer_dense(units = num_factor_levels_y, activation = 'softmax')
```

Other variables specified by predictors are added as an additional dense layer after layer_flatten and before the hidden layer.

Also note that it may be difficult to obtain reproducible results using this step due to the nature of Tensorflow (see link in References).

tensorflow models cannot be run in parallel within the same session (via foreach or futures) or the parallel package. If using a recipes with this step with caret, avoid parallel processing.

**Value**

An updated version of recipe with the new step added to the sequence of existing steps (if any). For the tidy method, a tibble with columns terms (the selectors or variables for encoding), level (the factor levels), and several columns containing embed in the name.

**Tidying**

When you tidy() this step, a tibble with columns terms (the selectors or variables selected), levels (levels in variable), and a number of columns with embedding information are returned.
**Tuning Parameters**

This step has 2 tuning parameters:

- `num_terms`: # Model Terms (type: integer, default: 2)
- `hidden_units`: # Hidden Units (type: integer, default: 0)

**Case weights**

The underlying operation does not allow for case weights.

**References**

Francois C and Allaire JJ (2018) *Deep Learning with R*, Manning

"Concatenate Embeddings for Categorical Variables with Keras" [https://flovv.github.io/Embeddings_with_keras_part2/](https://flovv.github.io/Embeddings_with_keras_part2/)

**Examples**

```r
data(grants, package = "modeldata")
set.seed(1)
grants_other <- sample_n(grants_other, 500)

rec <- recipe(class ~ num_ci + sponsor_code, data = grants_other) %>%
 step_embed(sponsor_code,
 outcome = vars(class),
 options = embed_control(epochs = 10))
```

**Description**

[Soft-deprecated]

step_feature_hash is being deprecated in favor of `textrecipes::step_dummy_hash()`. This function creates a specification of a recipe step that will convert nominal data (e.g. character or factors) into one or more numeric binary columns using the levels of the original data.
Usage

```r
step_feature_hash(
 recipe,
 ...,
 role = "predictor",
 trained = FALSE,
 num_hash = 2^6,
 preserve = deprecated(),
 columns = NULL,
 keep_original_cols = FALSE,
 skip = FALSE,
 id = rand_id("feature_hash")
)
```

Arguments

- **recipe**: A recipe object. The step will be added to the sequence of operations for this recipe.
- **...**: One or more selector functions to choose variables for this step. See `selections()` for more details.
- **role**: For model terms created by this step, what analysis role should they be assigned? By default, the new columns created by this step from the original variables will be used as `predictors` in a model.
- **trained**: A logical to indicate if the quantities for preprocessing have been estimated.
- **num_hash**: The number of resulting dummy variable columns.
- **preserve**: Use `keep_original_cols` instead to specify whether the selected column(s) should be retained in addition to the new dummy variables.
- **columns**: A character vector for the selected columns. This is `NULL` until the step is trained by `recipes::prep()`.
- **keep_original_cols**: A logical to keep the original variables in the output. Defaults to `FALSE`.
- **skip**: A logical. Should the step be skipped when the recipe is baked by `bake()`? While all operations are baked when `prep()` is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when using `skip = TRUE` as it may affect the computations for subsequent operations.
- **id**: A character string that is unique to this step to identify it.

Details

`step_feature_hash()` will create a set of binary dummy variables from a factor or character variable. The values themselves are used to determine which row that the dummy variable should be assigned (as opposed to having a specific column that the value will map to).

Since this method does not rely on a pre-determined assignment of levels to columns, new factor levels can be added to the selected columns without issue. Missing values result in missing values for all of the hashed columns.
Note that the assignment of the levels to the hashing columns does not try to maximize the allocation. It is likely that multiple levels of the column will map to the same hashed columns (even with small data sets). Similarly, it is likely that some columns will have all zeros. A zero-variance filter (via recipes::step_zv()) is recommended for any recipe that uses hashed columns.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble with columns terms (the columns that is selected) is returned.

Case weights

The underlying operation does not allow for case weights.

References


See Also

recipes::step_dummy(), recipes::step_zv()

Examples

data(grants, package = "modeldata")
rec <-
  recipe(class ~ sponsor_code, data = grants_other) %>%
  step_feature_hash(
    sponsor_code,
    num_hash = 2^6, keep_original_cols = TRUE
  ) %>%
  prep()

# How many of the 298 locations ended up in each hash column?
results <-
  bake(rec, new_data = NULL, starts_with("sponsor_code")) %>%
  distinct()

apply(results %>% select(-sponsor_code), 2, sum) %>% table()
Description

step_lencode_bayes creates a specification of a recipe step that will convert a nominal (i.e. factor) predictor into a single set of scores derived from a generalized linear model estimated using Bayesian analysis.

Usage

```r
step_lencode_bayes(
 recipe,
 ...,
 role = NA,
 trained = FALSE,
 outcome = NULL,
 options = list(seed = sample.int(10^5, 1)),
 verbose = FALSE,
 mapping = NULL,
 skip = FALSE,
 id = rand_id("lencode_bayes")
)
```

Arguments

- `recipe` A recipe object. The step will be added to the sequence of operations for this recipe.
- `...` One or more selector functions to choose variables. For `step_lencode_bayes`, this indicates the variables to be encoded into a numeric format. See `recipes::selections()` for more details. For the tidy method, these are not currently used.
- `role` Not used by this step since no new variables are created.
- `trained` A logical to indicate if the quantities for preprocessing have been estimated.
- `outcome` A call to `vars` to specify which variable is used as the outcome in the generalized linear model. Only numeric and two-level factors are currently supported.
- `options` A list of options to pass to `rstanarm::stan_glmer()`.
- `verbose` A logical to control the default printing by `rstanarm::stan_glmer()`.
- `mapping` A list of tibble results that define the encoding. This is NULL until the step is trained by `recipes::prep()`.
- `skip` A logical. Should the step be skipped when the recipe is baked by `recipes::bake()`? While all operations are baked when `recipes::prep()` is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when using `skip = TRUE` as it may affect the computations for subsequent operations.
- `id` A character string that is unique to this step to identify it.
**Details**

For each factor predictor, a generalized linear model is fit to the outcome and the coefficients are returned as the encoding. These coefficients are on the linear predictor scale so, for factor outcomes, they are in log-odds units. The coefficients are created using a no intercept model and, when two factor outcomes are used, the log-odds reflect the event of interest being the first level of the factor. For novel levels, a slightly thinned average of the coefficients is returned.

A hierarchical generalized linear model is fit using `rstanarm::stan_glmer()` and no intercept via

```
stan_glmer(outcome ~ (1 | predictor), data = data, ...)
```

where the ... include the family argument (automatically set by the step, unless passed in by options) as well as any arguments given to the options argument to the step. Relevant options include `chains`, `iter`, `cores`, and arguments for the priors (see the links in the References below). `prior_intercept` is the argument that has the most effect on the amount of shrinkage.

**Value**

An updated version of `recipe` with the new step added to the sequence of existing steps (if any). For the `tidy` method, a tibble with columns `terms` (the selectors or variables for encoding), `level` (the factor levels), and `value` (the encodings).

**Tidying**

When you `tidy()` this step, a tibble with columns `terms` (the selectors or variables selected), `value` and `component` is returned.

**Case weights**

This step performs an supervised operation that can utilize case weights. To use them, see the documentation in `recipes::case_weights` and the examples on tidymodels.org.

**References**


"Hierarchical Partial Pooling for Repeated Binary Trials" [https://tinyurl.com/stan-pooling](https://tinyurl.com/stan-pooling)

"Prior Distributions for `rstanarm` Models" [https://tinyurl.com/stan-priors](https://tinyurl.com/stan-priors)

"Estimating Generalized (Non-)Linear Models with Group-Specific Terms with `rstanarm`" [https://tinyurl.com/stan-glm-grouped](https://tinyurl.com/stan-glm-grouped)

**Examples**

```r
library(recipes)
library(dplyr)
library(modeldata)
```
data(grants)
set.seed(1)
grants_other <- sample_n(grants_other, 500)

reencoded <- recipe(class ~ sponsor_code, data = grants_other) %>%
step_lencode_bayes(sponsor_code, outcome = vars(class))

---

step_lencode_glm  Supervised Factor Conversions into Linear Functions using Likelihood Encodings

Description

step_lencode_glm creates a specification of a recipe step that will convert a nominal (i.e. factor) predictor into a single set of scores derived from a generalized linear model.

Usage

step_lencode_glm(
  recipe,
  ..., 
  role = NA, 
  trained = FALSE, 
  outcome = NULL, 
  mapping = NULL, 
  skip = FALSE, 
  id = rand_id("lencode_glm")
)

Arguments

recipe  A recipe object. The step will be added to the sequence of operations for this recipe.
...
role  A logical to indicate if the quantities for preprocessing have been estimated.
outcome  A call to vars to specify which variable is used as the outcome in the generalized linear model. Only numeric and two-level factors are currently supported.
mapping  A list of tibble results that define the encoding. This is NULL until the step is trained by recipes::prep().
step_lencode_glm

skip  A logical. Should the step be skipped when the recipe is baked by `recipes::bake()`?
While all operations are baked when `recipes::prep()` is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when using `skip = TRUE` as it may affect the computations for subsequent operations.

id  A character string that is unique to this step to identify it.

Details

For each factor predictor, a generalized linear model is fit to the outcome and the coefficients are returned as the encoding. These coefficients are on the linear predictor scale so, for factor outcomes, they are in log-odds units. The coefficients are created using a no intercept model and, when two factor outcomes are used, the log-odds reflect the event of interest being the first level of the factor.

For novel levels, a slightly timmed average of the coefficients is returned.

Value

An updated version of `recipe` with the new step added to the sequence of existing steps (if any). For the tidy method, a tibble with columns `terms` (the selectors or variables for encoding), `level` (the factor levels), and `value` (the encodings).

Tidying

When you `tidy()` this step, a tibble with columns `terms` (the selectors or variables selected), `value` and `component` is returned.

Case weights

This step performs an supervised operation that can utilize case weights. To use them, see the documentation in `recipes::case_weights` and the examples on tidymodels.org.

References


Examples

```r
library(recipes)
library(dplyr)
library(modeldata)

data(grants)

set.seed(1)
grants_other <- sample_n(grants_other, 500)

reencoded <- recipe(class ~ sponsor_code, data = grants_other) %>%
```
**Description**

*step_lencode_mixed* creates a specification of a recipe step that will convert a nominal (i.e. factor) predictor into a single set of scores derived from a generalized linear mixed model.

**Usage**

```r
step_lencode_mixed(
 recipe,
 ...,
 role = NA,
 trained = FALSE,
 outcome = NULL,
 options = list(quiet = 0),
 mapping = NULL,
 skip = FALSE,
 id = rand_id("lencode_mixed")
)
```

**Arguments**

- `recipe` A recipe object. The step will be added to the sequence of operations for this recipe.
- `...` One or more selector functions to choose variables. For *step_lencode_mixed*, this indicates the variables to be encoded into a numeric format. See `recipes::selections()` for more details. For the tidy method, these are not currently used.
- `role` Not used by this step since no new variables are created.
- `trained` A logical to indicate if the quantities for preprocessing have been estimated.
- `outcome` A call to `vars` to specify which variable is used as the outcome in the generalized linear model. Only numeric and two-level factors are currently supported.
- `options` A list of options to pass to `lme4::lmer()` or `lme4::glmer()`.
- `mapping` A list of tibble results that define the encoding. This is NULL until the step is trained by `recipes::prep()`.
- `skip` A logical. Should the step be skipped when the recipe is baked by `recipes::bake()`? While all operations are baked when `recipes::prep()` is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when using `skip = TRUE` as it may affect the computations for subsequent operations.
- `id` A character string that is unique to this step to identify it.
Details

For each factor predictor, a generalized linear model is fit to the outcome and the coefficients are returned as the encoding. These coefficients are on the linear predictor scale so, for factor outcomes, they are in log-odds units. The coefficients are created using a no intercept model and, when two factor outcomes are used, the log-odds reflect the event of interest being the first level of the factor.

For novel levels, a slightly trimmed average of the coefficients is returned.

A hierarchical generalized linear model is fit using `lme4::lmer()` or `lme4::glmer()`, depending on the nature of the outcome, and no intercept via

```r
lmer(outcome ~ 1 + (1 | predictor), data = data, ...)
```

where the ... include the family argument (automatically set by the step) as well as any arguments given to the options argument to the step. Relevant options include control and others.

Value

An updated version of `recipe` with the new step added to the sequence of existing steps (if any). For the `tidy` method, a tibble with columns `terms` (the selectors or variables for encoding), `level` (the factor levels), and `value` (the encodings).

Tidying

When you `tidy()` this step, a tibble with columns `terms` (the selectors or variables selected), `value` and component is returned.

Case weights

This step performs an supervised operation that can utilize case weights. To use them, see the documentation in `recipes::case_weights` and the examples on `tidymodels.org`.

References


Examples

```r
library(recipes)
library(dplyr)
library(modeldata)
data(grants)
set.seed(1)
grants_other <- sample_n(grants_other, 500)
reencoded <- recipe(class ~ sponsor_code, data = grants_other) %>%
```

```r
```
Description

`step_pca_sparse()` creates a *specification* of a recipe step that will convert numeric data into one or more principal components that can have some zero coefficients.

Usage

```r
step_pca_sparse(
 recipe,
 ...,
 role = "predictor",
 trained = FALSE,
 num_comp = 5,
 predictor_prop = 1,
 options = list(),
 res = NULL,
 prefix = "PC",
 keep_original_cols = FALSE,
 skip = FALSE,
 id = rand_id("pca_sparse")
)
```

Arguments

- **recipe** A recipe object. The step will be added to the sequence of operations for this recipe.
- **...** One or more selector functions to choose which variables will be used to compute the components. See `selections()` for more details. For the tidy method, these are not currently used.
- **role** For model terms created by this step, what analysis role should they be assigned? By default, the function assumes that the new principal component columns created by the original variables will be used as predictors in a model.
- **trained** A logical to indicate if the quantities for preprocessing have been estimated.
- **num_comp** The number of PCA components to retain as new predictors. If `num_comp` is greater than the number of columns or the number of possible components, a smaller value will be used.
- **predictor_prop** The maximum number of original predictors that can have non-zero coefficients for each PCA component (via regularization).
- **options** A list of options to the default method for `irlba::ssvd()`.
The rotation matrix once this preprocessing step has been trained by `prep()`.

A character string that will be the prefix to the resulting new variables. See notes below.

A logical to keep the original variables in the output. Defaults to `FALSE`.

A logical. Should the step be skipped when the recipe is baked by `recipes::bake()`?

While all operations are baked when `recipes::prep()` is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when using `skip = TRUE` as it may affect the computations for subsequent operations.

A character string that is unique to this step to identify it.

The `irlba` package is required for this step. If it is not installed, the user will be prompted to do so when the step is defined. The `irlba::ssvd()` function is used to encourage sparsity; that documentation has details about this method.

The argument `num_comp` controls the number of components that will be retained (per default the original variables that are used to derive the components are removed from the data). The new components will have names that begin with `prefix` and a sequence of numbers. The variable names are padded with zeros. For example, if `num_comp < 10`, their names will be `PC1`–`PC9`.

- `PC9`. If `num_comp = 101`, the names would be `PC001`–`PC101`.

An updated version of `recipe` with the new step added to the sequence of existing steps (if any). For the `tidy` method, a tibble with columns `terms` (the selectors or variables selected), `value` (the loading), and `component` is returned.

When you `tidy()` this step, a tibble with columns `terms` (the selectors or variables selected), `value` and `component` is returned.

This step has 2 tuning parameters:

- `num_comp`: # Components (type: integer, default: 5)
- `predictor_prop`: Proportion of Predictors (type: double, default: 1)

The underlying operation does not allow for case weights.

See Also

`step_pca_sparse_bayes()`
Examples

```r
library(recipes)
library(ggplot2)

data(ad_data, package = "modeldata")

ad_rec <-
 recipe(Class ~ ., data = ad_data) %>%
 step_zv(all_predictors()) %>%
 step_YeoJohnson(all_numeric_predictors()) %>%
 step_normalize(all_numeric_predictors()) %>%
 step_pca_sparse(
 all_numeric_predictors(),
 predictor_prop = 0.75,
 num_comp = 3,
 id = "sparse pca"
) %>%
 prep()

tidy(ad_rec, id = "sparse pca") %>%
 mutate(value = ifelse(value == 0, NA, value)) %>%
 ggplot(aes(x = component, y = terms, fill = value)) +
 geom_tile() +
 scale_fill_gradient2() +
 theme(axis.text.y = element_blank())
```

------

**step_pca_sparse_bayes**  *Sparse Bayesian PCA Signal Extraction*

Description

`step_pca_sparse_bayes()` creates a specification of a recipe step that will convert numeric data into one or more principal components that can have some zero coefficients.

Usage

```r
step_pca_sparse_bayes(
 recipe,
 ..., role = "predictor",
 trained = FALSE,
 num_comp = 5,
 prior_slab_dispersion = 1,
 prior_mixture_threshold = 0.1,
 options = list(),
 res = NULL,
 prefix = "PC",
```
Arguments

recipe A recipe object. The step will be added to the sequence of operations for this recipe.

... One or more selector functions to choose which variables will be used to compute the components. See selections() for more details. For the tidy method, these are not currently used.

role For model terms created by this step, what analysis role should they be assigned? By default, the function assumes that the new principal component columns created by the original variables will be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

num_comp The number of PCA components to retain as new predictors. If num_comp is greater than the number of columns or the number of possible components, a smaller value will be used. A value of zero indicates that PCA will not be used on the data.

prior_slab_dispersion This value is proportional to the dispersion (or scale) parameter for the slab portion of the prior. Smaller values result in an increase in zero coefficients.

prior_mixture_threshold The parameter that defines the trade-off between the spike and slab components of the prior. Increasing this parameter increases the number of zero coefficients.

options A list of options to the default method for VBsparsePCA::VBsparsePCA().

res The rotation matrix once this preprocessing step has been trained by prep().

prefix A character string that will be the prefix to the resulting new variables. See notes below.

keep_original_cols A logical to keep the original variables in the output. Defaults to FALSE.

skip A logical. Should the step be skipped when the recipe is baked by recipes::bake()? While all operations are baked when recipes::prep() is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when using skip = TRUE as it may affect the computations for subsequent operations.

id A character string that is unique to this step to identify it.

Details

The VBsparsePCA package is required for this step. If it is not installed, the user will be prompted to do so when the step is defined.

A spike-and-slab prior is a mixture of two priors. One (the “spike”) has all of its mass at zero and represents a variable that has no contribution to the PCA coefficients. The other prior is a broader distribution that reflects the coefficient distribution of variables that do affect the PCA analysis. This...
is the "slab". The narrower the slab, the more likely that a coefficient will be zero (or are regularized to be closer to zero). The mixture of these two priors is governed by a mixing parameter, which itself has a prior distribution and a hyper-parameter prior.

PCA coefficients and their resulting scores are unique only up to the sign. This step will attempt to make the sign of the components more consistent from run-to-run. However, the sparsity constraint may interfere with this goal.

The argument `num_comp` controls the number of components that will be retained (per default the original variables that are used to derive the components are removed from the data). The new components will have names that begin with prefix and a sequence of numbers. The variable names are padded with zeros. For example, if `num_comp < 10`, their names will be PC1

- PC9. If `num_comp = 101`, the names would be PC001 - PC101.

**Value**

An updated version of `recipe` with the new step added to the sequence of existing steps (if any). For the `tidy` method, a tibble with columns `terms` (the selectors or variables selected), `value` (the loading), and `component`.

**Tidying**

When you `tidy()` this step, a tibble with columns `terms` (the selectors or variables selected), `value` and `component` is returned.

**Tuning Parameters**

This step has 3 tuning parameters:

- `num_comp`: # Components (type: integer, default: 5)
- `prior_slab_dispersion`: Dispersion of Slab Prior (type: double, default: 1)
- `prior_mixture_threshold`: Threshold for Mixture Prior (type: double, default: 0.1)

**Case weights**

The underlying operation does not allow for case weights.

**References**


**See Also**

`step_pca_sparse()`
Examples

```r
library(recipes)
library(ggplot2)

data(ad_data, package = "modeldata")

ad_rec <-
 recipe(Class ~ ., data = ad_data) %>%
 step_zv(all_predictors()) %>%
 step_YeoJohnson(all_numeric_predictors()) %>%
 step_normalize(all_numeric_predictors()) %>%
 step_pca_sparse_bayes(
 all_numeric_predictors(),
 prior_mixture_threshold = 0.95,
 prior_slab_dispersion = 0.05,
 num_comp = 3,
 id = "sparse bayesian pca"
) %>%
 prep()

tidy(ad_rec, id = "sparse bayesian pca") %>%
 mutate(value = ifelse(value == 0, NA, value)) %>%
 ggplot(aes(x = component, y = terms, fill = value)) +
 geom_tile() +
 scale_fill_gradient2() +
 theme(axis.text.y = element_blank())
```

---

**Description**

`step_pca_truncated` creates a specification of a recipe step that will convert numeric data into one or more principal components. It is truncated as it only calculates the number of components it is asked instead of all of them as is done in `recipes::step_pca()`.

**Usage**

```r
step_pca_truncated(
 recipe,
 ...,
 role = "predictor",
 trained = FALSE,
 num_comp = 5,
 options = list(),
 res = NULL,
 columns = NULL,
```
 Arguments

 recipe A recipe object. The step will be added to the sequence of operations for this recipe.
...
 role For model terms created by this step, what analysis role should they be assigned? By default, the new columns created by this step from the original variables will be used as predictors in a model.
 trained A logical to indicate if the quantities for preprocessing have been estimated.
 num_comp The number of components to retain as new predictors. If num_comp is greater than the number of columns or the number of possible components, a smaller value will be used. If num_comp = 0 is set then no transformation is done and selected variables will stay unchanged.
 options A list of options to the default method for irlba::prcomp_irlba(). Argument defaults are set to retx = FALSE, center = FALSE, scale. = FALSE, and tol = NULL. Note that the argument x should not be passed here (or at all).
 res The irlba::prcomp_irlba() object is stored here once this preprocessing step has be trained by prep().
 columns A character string of variable names that will be populated elsewhere.
 prefix A character string for the prefix of the resulting new variables. See notes below.
 keep_original_cols A logical to keep the original variables in the output. Defaults to FALSE.
 skip A logical. Should the step be skipped when the recipe is baked by bake()? While all operations are baked when prep() is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when using skip = TRUE as it may affect the computations for subsequent operations.
 id A character string that is unique to this step to identify it.

Details

 Principal component analysis (PCA) is a transformation of a group of variables that produces a new set of artificial features or components. These components are designed to capture the maximum amount of information (i.e. variance) in the original variables. Also, the components are statistically independent from one another. This means that they can be used to combat large inter-variables correlations in a data set.

It is advisable to standardize the variables prior to running PCA. Here, each variable will be centered and scaled prior to the PCA calculation. This can be changed using the options argument or by using step_center() and step_scale().
The argument `num_comp` controls the number of components that will be retained (the original variables that are used to derive the components are removed from the data). The new components will have names that begin with prefix and a sequence of numbers. The variable names are padded with zeros. For example, if `num_comp < 10`, their names will be PC1 - PC9. If `num_comp = 101`, the names would be PC001 - PC101.

Value

An updated version of `recipe` with the new step added to the sequence of any existing operations.

Tidying

When you `tidy()` this step, use either `type = "coef"` for the variable loadings per component or `type = "variance"` for how much variance each component accounts for.

Tuning Parameters

This step has 1 tuning parameters:

- `num_comp`: # Components (type: integer, default: 5)

Case weights

This step performs an unsupervised operation that can utilize case weights. As a result, case weights are only used with frequency weights. For more information, see the documentation in `case_weights` and the examples on tidymodels.org.

References


Examples

```r
rec <- recipe(~., data = mtcars)
pca_trans <- rec %>%
 step_normalize(all_numeric()) %>%
 step_pca_truncated(all_numeric(), num_comp = 2)
pca_estimates <- prep(pca_trans, training = mtcars)
pca_data <- bake(pca_estimates, mtcars)

rng <- extendrange(c(pca_data$PC1, pca_data$PC2))
plot(pca_data$PC1, pca_data$PC2,
 xlim = rng, ylim = rng
)

tidy(pca_trans, number = 2)
tidy(pca_estimates, number = 2)
```
Description

step_umap creates a specification of a recipe step that will project a set of features into a smaller space.

Usage

step_umap(
  recipe,
  ...,
  role = "predictor",
  trained = FALSE,
  outcome = NULL,
  neighbors = 15,
  num_comp = 2,
  min_dist = 0.01,
  metric = "euclidean",
  learn_rate = 1,
  epochs = NULL,
  options = list(verbose = FALSE, n_threads = 1),
  seed = sample(10^5, 2),
  prefix = "UMAP",
  keep_original_cols = FALSE,
  retain = deprecated(),
  object = NULL,
  skip = FALSE,
  id = rand_id("umap")
)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this recipe.

... One or more selector functions to choose variables for this step. See selections() for more details.

role For model terms created by this step, what analysis role should they be assigned? By default, the new columns created by this step from the original variables will be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

outcome A call to vars to specify which variable is used as the outcome in the encoding process (if any).
step_uimap

neighbors An integer for the number of nearest neighbors used to construct the target simplicial set. If neighbors is greater than the number of data points, the smaller value is used.

num_comp An integer for the number of UMAP components. If num_comp is greater than the number of selected columns minus one, the smaller value is used.

min_dist The effective minimum distance between embedded points.

metric Character, type of distance metric to use to find nearest neighbors. See uwot::umap() for more details. Default to "euclidean".

learn_rate Positive integer of the learning rate for the optimization process.

epochs Number of iterations for the neighbor optimization. See uwot::umap() for more details.

options A list of options to pass to uwot::umap(). The arguments X, n_neighbors, n_components, min_dist, n_epochs, ret_model, and learning_rate should not be passed here. By default, verbose and n_threads are set.

seed Two integers to control the random numbers used by the numerical methods. The default pulls from the main session’s stream of numbers and will give reproducible results if the seed is set prior to calling prep() or bake().

prefix A character string for the prefix of the resulting new variables. See notes below.

keep_original_cols A logical to keep the original variables in the output. Defaults to FALSE.

retain Use keep_original_cols instead to specify whether the original predictors should be retained along with the new embedding variables.

object An object that defines the encoding. This is NULL until the step is trained by recipes::prep().

skip A logical. Should the step be skipped when the recipe is baked by bake()? While all operations are baked when prep() is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when using skip = TRUE as it may affect the computations for subsequent operations.

id A character string that is unique to this step to identify it.

Details

UMAP, short for Uniform Manifold Approximation and Projection, is a nonlinear dimension reduction technique that finds local, low-dimensional representations of the data. It can be run unsupervised or supervised with different types of outcome data (e.g. numeric, factor, etc).

The new components will have names that begin with prefix and a sequence of numbers. The variable names are padded with zeros. For example, if num_comp < 10, their names will be UMAP1 - UMAP9. If num_comp = 101, the names would be UMAP001 - UMAP101.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.
Tidying

When you `tidy()` this step, a tibble with columns `terms` (the selectors or variables selected) is returned.

Tuning Parameters

This step has 5 tuning parameters:

- `num_comp`: # Components (type: integer, default: 2)
- `neighbors`: # Nearest Neighbors (type: integer, default: 15)
- `min_dist`: Min Distance between Points (type: double, default: 0.01)
- `learn_rate`: Learning Rate (type: double, default: 1)
- `epochs`: # Epochs (type: integer, default: NULL)

Case weights

The underlying operation does not allow for case weights.

Saving prepped recipe object

This recipe step may require native serialization when saving for use in another R session. To learn more about serialization for prepped recipes, see the `bundle` package.

References


Examples

```r
library(recipes)
library(ggplot2)

split <- seq.int(1, 150, by = 9)
tr <- iris[-split,]
te <- iris[split,]

set.seed(11)
supervised <-
 recipe(Species ~ ., data = tr) %>%
 step_center(all_predictors()) %>%
 step_scale(all_predictors()) %>%
 step_umap(all_predictors(), outcome = vars(Species), num_comp = 2) %>%
 prep(training = tr)

theme_set(theme_bw())
```
step_woe

bake(supervised, new_data = te, Species, starts_with("umap")) %>%
ggplot(aes(x = UMAP1, y = UMAP2, col = Species)) +
geom_point(alpha = .5)

step_woe

Weight of evidence transformation

Description

step_woe creates a specification of a recipe step that will transform nominal data into its numerical transformation based on weights of evidence against a binary outcome.

Usage

step_woe(
  recipe,
  ..., role = "predictor",
  outcome,
  trained = FALSE,
  dictionary = NULL,
  Laplace = 1e-06,
  prefix = "woe",
  skip = FALSE,
  id = rand_id("woe")
)

Arguments

• recipe A recipe object. The step will be added to the sequence of operations for this recipe.
  ...
  One or more selector functions to choose which variables will be used to compute the components. See selections() for more details. For the tidy method, these are not currently used.
  role For model terms created by this step, what analysis role should they be assigned to? By default, the function assumes that the new woe components columns created by the original variables will be used as predictors in a model.
  outcome The bare name of the binary outcome encased in vars().
  trained A logical to indicate if the quantities for preprocessing have been estimated.
  dictionary A tbl. A map of levels and woe values. It must have the same layout than the output returned from dictionary(). If "NULL" the function will build a dictionary with those variables passed to .... See dictionary() for details.
  Laplace The Laplace smoothing parameter. A value usually applied to avoid -Inf/Inf from predictor category with only one outcome class. Set to 0 to allow Inf/-Inf. The default is 1e-6. Also known as 'pseudocount' parameter of the Laplace smoothing technique.
prefix A character string that will be the prefix to the resulting new variables. See notes below.

skip A logical. Should the step be skipped when the recipe is baked by `recipes::bake()`? While all operations are baked when `recipes::prep()` is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when using `skip = TRUE` as it may affect the computations for subsequent operations.

id A character string that is unique to this step to identify it.

Details

WoE is a transformation of a group of variables that produces a new set of features. The formula is

\[ woe_c = \log\left(\frac{P(X = c|Y = 1)}{P(X = c|Y = 0)}\right) \]

where \( c \) goes from 1 to \( C \) levels of a given nominal predictor variable \( X \).

These components are designed to transform nominal variables into numerical ones with the property that the order and magnitude reflects the association with a binary outcome. To apply it on numerical predictors, it is advisable to discretize the variables prior to running WoE. Here, each variable will be binarized to have woE associated later. This can achieved by using `step_discretize()`.

The argument `Laplace` is an small quantity added to the proportions of 1’s and 0’s with the goal to avoid \( \log(p/0) \) or \( \log(0/p) \) results. The numerical woE versions will have names that begin with `woe_` followed by the respective original name of the variables. See Good (1985).

One can pass a custom dictionary tibble to `step_woe()`. It must have the same structure of the output from `dictionary()` (see examples). If not provided it will be created automatically. The role of this tibble is to store the map between the levels of nominal predictor to its woE values. You may want to tweak this object with the goal to fix the orders between the levels of one given predictor. One easy way to do this is by tweaking an output returned from `dictionary()`.

Value

An updated version of `recipe` with the new step added to the sequence of existing steps (if any). For the tidy method, a tibble with the woE dictionary used to map categories with woE values.

Tidying

When you `tidy()` this step, a tibble with columns `terms` (the selectors or variables selected), `value`, `n_tot`, `n_bad`, `n_good`, `p_bad`, `p_good`, `woe` and `outcome` is returned. See `dictionary()` for more information.

Tuning Parameters

This step has 1 tuning parameters:

- `Laplace`: Laplace Correction (type: double, default: 1e-06)

Case weights

The underlying operation does not allow for case weights.
References


Examples

```r
library(modeldata)
data("credit_data")

set.seed(111)
in_training <- sample(1:nrow(credit_data), 2000)

credit_tr <- credit_data[in_training,]
credit_te <- credit_data[-in_training,]

rec <- recipe(Status ~ ., data = credit_tr) %>%
 step_woe(Job, Home, outcome = vars(Status))

woe_models <- prep(rec, training = credit_tr)

the encoding:
bake(woe_models, new_data = credit_te %>% slice(1:5), starts_with("woe"))
the original data
credit_te %>%
 slice(1:5) %>%
 dplyr::select(Job, Home)
the details:
tidy(woe_models, number = 1)

Example of custom dictionary + tweaking
custom dictionary
woe_dict_custom <- credit_tr %>% dictionary(Job, Home, outcome = "Status")
woe_dict_custom[4, "woe"] <- 1.23 # tweak

passing custom dict to step_woe()
rec_custom <- recipe(Status ~ ., data = credit_tr) %>%
 step_woe(Job, Home,
 outcome = vars(Status), dictionary = woe_dict_custom
) %>%
 prep()

rec_custom_baked <- bake(rec_custom, new_data = credit_te)
rec_custom_baked %>%
 dplyr::filter(woe.Job == 1.23) %>%
 head()
```
Tidy the Result of a Recipe

tidy will return a data frame that contains information regarding a recipe or operation within the recipe (when a tidy method for the operation exists). See recipes::tidy.recipe for more information.

Usage

```r
S3 method for class 'step Collapse_cart'
 tidy(x, ...)

S3 method for class 'step Collapse_stringdist'
 tidy(x, ...)

S3 method for class 'step Discretize_cart'
 tidy(x, ...)

S3 method for class 'step Discretize_xgb'
 tidy(x, ...)

S3 method for class 'step Embed'
 tidy(x, ...)

S3 method for class 'step Feature_hash'
 tidy(x, ...)

S3 method for class 'step Lencode_bayes'
 tidy(x, ...)

S3 method for class 'step Lencode_glm'
 tidy(x, ...)

S3 method for class 'step Lencode_mixed'
 tidy(x, ...)

S3 method for class 'step PCA_sparse'
 tidy(x, ...)

S3 method for class 'step PCA_sparse_bayes'
 tidy(x, ...)

S3 method for class 'step PCA_truncated'
 tidy(x, type = "coef", ...)
```
## S3 method for class 'step_umap'
tidy(x, ...)

## S3 method for class 'step_woe'
tidy(x, ...)

### Arguments

**x**
A step_woe object.

**...**
Not currently used.

**type**
For step_pca_truncated, either "coef" (for the variable loadings per component) or "variance" (how much variance does each component account for).

### Description

Calculates some summaries and the WoE (Weight of Evidence) between a binary outcome and a given predictor variable. Used to build the dictionary.

### Usage

```r
woe_table(predictor, outcome, Laplace = 1e-06, call = rlang::caller_env(0))
```

### Arguments

**predictor**
A atomic vector, usually with few distinct values.

**outcome**
The dependent variable. A atomic vector with exactly 2 distinct values.

**Laplace**
The pseudocount parameter of the Laplace Smoothing estimator. Default to 1e-6. Value to avoid -Inf/Inf from predictor category with only one outcome class. Set to 0 to allow Inf/-Inf.

**call**
The execution environment of a currently running function, e.g. caller_env(). The function will be mentioned in error messages as the source of the error. See the call argument of rlang::abort() for more information.

### Value

A tibble with counts, proportions and woE. Warning: woE can possibly be -Inf. Use 'Laplace' arg to avoid that.

### References


Index

* datagen
  step_embed, 14
  step_lencode_bayes, 20
  step_lencode_glm, 22
  step_lencode_mixed, 24
  step_pca_sparse, 26
  step_pca_sparse_bayes, 28
  step_woe, 37
* datasets
  solubility, 4
* pca
  step_pca_sparse, 26
  step_pca_sparse_bayes, 28
* preprocessing encoding
  step_embed, 14
  step_lencode_bayes, 20
  step_lencode_glm, 22
  step_lencode_mixed, 24
* preprocessing woe
  transformation_methods
    step_woe, 37
* preprocessing
  step_pca_sparse, 26
  step_pca_sparse_bayes, 28
* projection methods
  step_pca_sparse, 26
  step_pca_sparse_bayes, 28

add_woe, 2
add_woe(), 3
bake(), 6, 8, 18, 32, 35
case_weights, 33
dictionary, 3
dictionary(), 2, 3, 37, 38
embed_control (step_embed), 14
irlba::prcomp_irlba(), 32
irlba::ssvd(), 26, 27
is_tf_available, 4
keras::compile(), 15
keras::fit(), 15
lme4::glmer(), 24, 25
lme4::lmer(), 24, 25
prep(), 6, 8, 18, 27, 29, 32, 35
recipes::bake(), 10–13, 15, 20, 23, 24, 27, 29, 38
recipes::case_weights, 10, 13, 21, 23, 25
recipes::prep(), 10–13, 15, 18, 20, 22–24, 27, 29, 35, 38
recipes::recipe(), 11, 13
recipes::selections(), 15, 20, 22, 24
recipes::step_dummy(), 19
recipes::step_pca(), 31
recipes::step_zv(), 19
rlang::abort(), 41
rpart::rpart(), 10
rstanarm::stan_glmer(), 20, 21
selections(), 5, 7, 9, 12, 18, 26, 29, 32, 34, 37
solubility, 4
step_center(), 32
step Collapse_cart, 5
step Collapse_stringdist, 7
step discretize(), 38
step discretize_cart, 9
step discretize_cart(), 13
step discretize_xgb, 11
step discretize_xgb(), 11
step_embed, 14
step feature_hash, 17
step lencode_bayes, 20
step lencode_glm, 22

42
INDEX

step_lencode_mixed, 24
step_pca_sparse, 26
step_pca_sparse(), 30
step_pca_sparse_bayes, 28
step_pca_sparse_bayes(), 27
step_pca_truncated, 31
step_scale(), 32
step_umap, 34
step_woe, 37
stringdist::stringdist-metrics, 8
stringdist::stringdistmatrix(), 8

textrecipes::step_dummy_hash(), 17
tidy(), 6, 8, 10, 13, 16, 19, 21, 23, 25, 27, 30, 33, 36, 38
tidy.recipe (tidy.stepCollapse_cart), 40
tidy.stepCollapse_cart, 40
tidy.stepCollapse_stringdist
   (tidy.stepCollapse_cart), 40
tidy.step_discretize_cart
   (tidy.stepCollapse_cart), 40
tidy.step_discretize_xgb
   (tidy.stepCollapse_cart), 40
tidy.step_embed
   (tidy.stepCollapse_cart), 40
tidy.step_feature_hash
   (tidy.stepCollapse_cart), 40
tidy.step_lencode_bayes
   (tidy.stepCollapse_cart), 40
tidy.step_lencode_glm
   (tidy.stepCollapse_cart), 40
tidy.step_lencode_mixed
   (tidy.stepCollapse_cart), 40
tidy.step_pca_sparse
   (tidy.stepCollapse_cart), 40
tidy.step_pca_sparse_bayes
   (tidy.stepCollapse_cart), 40
tidy.step_pca_truncated
   (tidy.stepCollapse_cart), 40
tidy.step_umap
   (tidy.stepCollapse_cart), 40
tidy.step_woe
   (tidy.stepCollapse_cart), 40
uwot::umap(), 35
VBsparsePCA::VBsparsePCA(), 29
woe_table, 41